effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i}
let generate_elems4_a (t a: Type0) (max: nat) (i: nat{i <= max / 4}) =
false
null
false
a & s: seq t {length s == 4 * i}
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elems4_a : t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max / 4} -> Type0
[]
Hacl.Spec.Lib.generate_elems4_a
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Type0 -> a: Type0 -> max: Prims.nat -> i: Prims.nat{i <= max / 4} -> Type0
{ "end_col": 106, "end_line": 74, "start_col": 76, "start_line": 74 }
Prims.Tot
val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2
val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init =
false
null
false
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
[]
Hacl.Spec.Lib.generate_elems
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> a * s: Lib.Sequence.seq t {Lib.Sequence.length s == n}
{ "end_col": 76, "end_line": 41, "start_col": 39, "start_line": 39 }
Prims.Tot
val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1)
val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init =
false
null
false
let c0, res0 = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let c1, res1 = Loops.repeat_right ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1)
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Division", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Lib.generate_elem_a", "Lib.LoopCombinators.repeat_right", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems4_a", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Seq.Base.empty" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n})
[]
Hacl.Spec.Lib.generate_elems_unroll4
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> a * s: Lib.Sequence.seq t {Lib.Sequence.length s == n}
{ "end_col": 12, "end_line": 110, "start_col": 47, "start_line": 107 }
FStar.Pervasives.Lemma
val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2
val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init =
false
null
true
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.eq_repeat_gen0", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty))
[]
Hacl.Spec.Lib.eq_generate_elems0
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems max 0 f init == FStar.Pervasives.Native.Mktuple2 init FStar.Seq.Base.empty)
{ "end_col": 80, "end_line": 55, "start_col": 43, "start_line": 53 }
Prims.Tot
val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res'
val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) =
false
null
false
let c', e = f i c in let res' = Seq.snoc res e in c', res'
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_a", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1)
[]
Hacl.Spec.Lib.generate_elem_f
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < max} -> acc: Hacl.Spec.Lib.generate_elem_a t a max i -> Hacl.Spec.Lib.generate_elem_a t a max (i + 1)
{ "end_col": 10, "end_line": 27, "start_col": 44, "start_line": 24 }
FStar.Pervasives.Lemma
val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i =
false
null
true
let init2:generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.unfold_repeat_gen", "Prims.op_Addition", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init))
[]
Hacl.Spec.Lib.generate_elems_unfold
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems max (i + 1) f init == Hacl.Spec.Lib.generate_elem_f max f i (Hacl.Spec.Lib.generate_elems max i f init))
{ "end_col": 91, "end_line": 71, "start_col": 48, "start_line": 69 }
Prims.Tot
val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3
val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) =
false
null
false
let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Prims.op_Division", "Hacl.Spec.Lib.generate_elems4_a", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1)
[]
Hacl.Spec.Lib.generate_elems4_f
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < max / 4} -> acc: Hacl.Spec.Lib.generate_elems4_a t a max i -> Hacl.Spec.Lib.generate_elems4_a t a max (i + 1)
{ "end_col": 10, "end_line": 95, "start_col": 46, "start_line": 85 }
Prims.Tot
val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3
val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c =
false
null
false
let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Lib.Sequence.create4", "Prims.op_Addition" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4)
[]
Hacl.Spec.Lib.generate_blocks4_f
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Prims.nat -> f: (i: Prims.nat{i < 4 * k} -> _: a -> a * t) -> i: Prims.nat{i < k} -> c: a -> a * Lib.Sequence.lseq t 4
{ "end_col": 38, "end_line": 191, "start_col": 40, "start_line": 186 }
FStar.Pervasives.Lemma
val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init
val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init =
false
null
true
let c0, res0 = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let c1, res1 = Loops.repeat_right ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let c2, res2 = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let c3, res3 = Loops.repeat_gen ((n / 4) * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 ((n / 4) * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def ((n / 4) * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max ((n / 4) * 4) f init
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Division", "Hacl.Spec.Lib.lemma_generate_elems_unroll4_loop", "Prims.unit", "Lib.LoopCombinators.repeat_gen_def", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.empty", "Lib.LoopCombinators.repeat_right_plus", "Prims.op_Multiply", "Lib.LoopCombinators.repeat_gen", "Lib.LoopCombinators.repeat_right", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init)
[]
Hacl.Spec.Lib.lemma_generate_elems_unroll4
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Lib.generate_elems_unroll4 max n f init == Hacl.Spec.Lib.generate_elems max n f init )
{ "end_col": 64, "end_line": 174, "start_col": 53, "start_line": 165 }
FStar.Pervasives.Lemma
val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_generate_elems4 #t #a max n f init = lemma_generate_elems4_loop #t #a max n f init; lemma_generate_elems_unroll4 #t #a max n f init
val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2) let lemma_generate_elems4 #t #a max n f init =
false
null
true
lemma_generate_elems4_loop #t #a max n f init; lemma_generate_elems_unroll4 #t #a max n f init
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.lemma_generate_elems_unroll4", "Prims.unit", "Hacl.Spec.Lib.lemma_generate_elems4_loop" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1) let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3 val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2) let rec lemma_generate_elems4_loop #t #a max n f init = let k = n / 4 in let (c1, res1) = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then begin eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) end else begin lemma_generate_elems4_loop #t #a max (n - 4) f init; let (c3, res3) = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c4, res4) = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in //assert (c3 == c4 /\ res3 == res4); unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); //let (acc', s') = generate_blocks4_f #t #a (max / 4) f (k - 1) c3 in //assert (res1 == Seq.append res3 s'); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; () end val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_generate_elems4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c, res) = generate_elems #t #a max n f init in let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c1, res1) in c == c2 /\ res == res2)
[]
Hacl.Spec.Lib.lemma_generate_elems4
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems max n f init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = Lib.Sequence.generate_blocks 4 (max / 4) (n / 4) (Lib.LoopCombinators.fixed_a a) (Hacl.Spec.Lib.generate_blocks4_f (max / 4) f) init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Lib.LoopCombinators.repeat_right ((n / 4) * 4) n (Hacl.Spec.Lib.generate_elem_a t a max) (Hacl.Spec.Lib.generate_elem_f max f) (c1, res1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c == c2 /\ res == res2) <: Type0) <: Type0) <: Type0))
{ "end_col": 49, "end_line": 271, "start_col": 2, "start_line": 270 }
FStar.Pervasives.Lemma
val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3
val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1) let lemma_generate_elems4_loop_step #t #a max k f i c s =
false
null
true
let c1, res1 = generate_elems4_f #t #a max f i (c, s) in let c2, res2 = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "Prims.op_Addition", "Lib.Sequence.lseq", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.append", "FStar.Seq.Base.seq", "FStar.Seq.Properties.snoc", "Lib.Sequence.create4", "Prims.unit", "Hacl.Spec.Lib.generate_blocks4_f", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Pervasives.Native.Mktuple2" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1)
[]
Hacl.Spec.Lib.lemma_generate_elems4_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> k: Prims.nat{4 * k <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> i: Prims.nat{i < k} -> c: a -> s: Lib.Sequence.seq t {Lib.Sequence.length s == 4 * i} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems4_f max f i (c, s) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Hacl.Spec.Lib.generate_blocks4_f k f i c in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c1 == c2 /\ FStar.Seq.Base.append s res2 == res1) <: Type0) <: Type0))
{ "end_col": 44, "end_line": 222, "start_col": 57, "start_line": 208 }
FStar.Pervasives.Lemma
val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_generate_elems4_loop #t #a max n f init = let k = n / 4 in let (c1, res1) = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then begin eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) end else begin lemma_generate_elems4_loop #t #a max (n - 4) f init; let (c3, res3) = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c4, res4) = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in //assert (c3 == c4 /\ res3 == res4); unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); //let (acc', s') = generate_blocks4_f #t #a (max / 4) f (k - 1) c3 in //assert (res1 == Seq.append res3 s'); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; () end
val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2) let rec lemma_generate_elems4_loop #t #a max n f init =
false
null
true
let k = n / 4 in let c1, res1 = generate_blocks 4 (max / 4) k (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let c2, res2 = Loops.repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in if k = 0 then (eq_generate_blocks0 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init; Loops.eq_repeat_gen0 k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty)) else (lemma_generate_elems4_loop #t #a max (n - 4) f init; let c3, res3 = generate_blocks 4 (max / 4) (k - 1) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let c4, res4 = Loops.repeat_gen (k - 1) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in unfold_generate_blocks 4 (max / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init (k - 1); Loops.unfold_repeat_gen k (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) (k - 1); lemma_generate_elems4_loop_step #t #a max k f (k - 1) c3 res3; ())
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.fixed_a", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_Equality", "Lib.LoopCombinators.eq_repeat_gen0", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.empty", "Prims.unit", "Lib.Sequence.eq_generate_blocks0", "Prims.op_Division", "Hacl.Spec.Lib.generate_blocks4_f", "Prims.bool", "Prims.op_Subtraction", "Hacl.Spec.Lib.lemma_generate_elems4_loop_step", "Lib.LoopCombinators.unfold_repeat_gen", "Lib.Sequence.unfold_generate_blocks", "Lib.LoopCombinators.repeat_gen", "Prims.op_Multiply", "Lib.Sequence.generate_blocks", "Hacl.Spec.Lib.lemma_generate_elems4_loop" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) val lemma_generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems_unroll4 #t #a max n f init == generate_elems #t #a max n f init) let lemma_generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in let (c2, res2) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let (c3, res3) = Loops.repeat_gen (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_right_plus 0 (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4 * 4) (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty); lemma_generate_elems_unroll4_loop #t #a max (n / 4 * 4) f init val generate_blocks4_f: #t:Type0 -> #a:Type0 -> k:nat -> f:(i:nat{i < 4 * k} -> a -> a & t) -> i:nat{i < k} -> c:a -> tuple2 a (lseq t 4) let generate_blocks4_f #t #a max f i c = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in c3, Lib.Sequence.create4 e0 e1 e2 e3 val lemma_generate_elems4_loop_step: #t:Type0 -> #a:Type0 -> max:nat -> k:nat{4 * k <= max} -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < k} -> c:a -> s:seq t{length s == 4 * i} -> Lemma (let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in c1 == c2 /\ Seq.append s res2 == res1) let lemma_generate_elems4_loop_step #t #a max k f i c s = let (c1, res1) = generate_elems4_f #t #a max f i (c, s) in let (c2, res2) = generate_blocks4_f #t #a k f i c in let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res = Lib.Sequence.create4 e0 e1 e2 e3 in let res0 = Seq.snoc s e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in Seq.lemma_eq_intro (Seq.append s res) res3 val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_generate_elems4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c1, res1) = generate_blocks 4 (max / 4) (n / 4) (Loops.fixed_a a) (generate_blocks4_f #t #a (max / 4) f) init in let (c2, res2) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in c1 == c2 /\ res1 == res2)
[ "recursion" ]
Hacl.Spec.Lib.lemma_generate_elems4_loop
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Lib.Sequence.generate_blocks 4 (max / 4) (n / 4) (Lib.LoopCombinators.fixed_a a) (Hacl.Spec.Lib.generate_blocks4_f (max / 4) f) init in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Lib.LoopCombinators.repeat_gen (n / 4) (Hacl.Spec.Lib.generate_elems4_a t a max) (Hacl.Spec.Lib.generate_elems4_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c2 res2 = _ in c1 == c2 /\ res1 == res2) <: Type0) <: Type0))
{ "end_col": 10, "end_line": 254, "start_col": 55, "start_line": 236 }
FStar.Pervasives.Lemma
val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
[ { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_generate_elems_unroll4_loop #t #a max n f init = let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i:nat{i <= n / 4}) (acc_v:generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let (c, res) = acc_v in (c, res) in let aux (i:nat{i < n / 4}) (acc_v:generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty)
val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1) let lemma_generate_elems_unroll4_loop #t #a max n f init =
false
null
true
let acc_v = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let acc = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in let normalize_v (i: nat{i <= n / 4}) (acc_v: generate_elems4_a t a max i) : generate_elem_a t a max (4 * i) = let c, res = acc_v in (c, res) in let aux (i: nat{i < n / 4}) (acc_v: generate_elems4_a t a max i) : Lemma (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) (normalize_v i acc_v)) = let acc0 = normalize_v i acc_v in let acc = Loops.repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 in Loops.unfold_repeat_right (4 * i) (4 * i + 4) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 3); Loops.unfold_repeat_right (4 * i) (4 * i + 3) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 2); Loops.unfold_repeat_right (4 * i) (4 * i + 2) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i + 1); Loops.unfold_repeat_right (4 * i) (4 * i + 1) (generate_elem_a t a max) (generate_elem_f max f) acc0 (4 * i); Loops.eq_repeat_right (4 * i) (4 * i) (generate_elem_a t a max) (generate_elem_f max f) acc0; assert (normalize_v (i + 1) (generate_elems4_f max f i acc_v) == acc); () in Classical.forall_intro_2 aux; VecLemmas.lemma_repeat_gen_vec 4 (n / 4) (generate_elem_a t a max) (generate_elems4_a t a max) normalize_v (generate_elem_f max f) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty); Loops.repeat_gen_def n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty)
{ "checked_file": "Hacl.Spec.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Lib.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeat_gen_def", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "FStar.Seq.Base.empty", "Prims.unit", "Prims.op_Division", "Hacl.Spec.Lib.generate_elems4_a", "Hacl.Spec.Lib.generate_elems4_f", "FStar.Mul.op_Star", "Lib.Vec.Lemmas.lemma_repeat_gen_vec", "FStar.Classical.forall_intro_2", "Prims.op_Addition", "Lib.LoopCombinators.repeat_right", "Prims.l_True", "Prims.squash", "Prims.op_Multiply", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "Lib.LoopCombinators.eq_repeat_right", "Lib.LoopCombinators.unfold_repeat_right", "Lib.LoopCombinators.repeat_gen" ]
[]
module Hacl.Spec.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators module VecLemmas = Lib.Vec.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let generate_elem_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max}) = a & s:seq t{length s == i} val generate_elem_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max} -> acc:generate_elem_a t a max i -> generate_elem_a t a max (i + 1) let generate_elem_f #t #a max f i (c, res) = let c', e = f i c in let res' = Seq.snoc res e in c', res' val generate_elems: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) init2 val eq_generate_elems0: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (generate_elems #t #a max 0 f init == (init, Seq.empty)) let eq_generate_elems0 #t #a max n f init = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.eq_repeat_gen0 n (generate_elem_a t a max) (generate_elem_f max f) init2 val generate_elems_unfold: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> i:nat{i < n} -> Lemma (generate_elems #t #a max (i + 1) f init == generate_elem_f max f i (generate_elems #t #a max i f init)) let generate_elems_unfold #t #a max n f init i = let init2 : generate_elem_a t a max 0 = (init, Seq.empty) in Loops.unfold_repeat_gen (i + 1) (generate_elem_a t a max) (generate_elem_f max f) init2 i let generate_elems4_a (t:Type0) (a:Type0) (max:nat) (i:nat{i <= max / 4}) = a & s:seq t{length s == 4 * i} val generate_elems4_f: #t:Type0 -> #a:Type0 -> max:nat -> f:(i:nat{i < max} -> a -> a & t) -> i:nat{i < max / 4} -> acc:generate_elems4_a t a max i -> generate_elems4_a t a max (i + 1) let generate_elems4_f #t #a max f i (c, res) = let c0, e0 = f (4 * i) c in let c1, e1 = f (4 * i + 1) c0 in let c2, e2 = f (4 * i + 2) c1 in let c3, e3 = f (4 * i + 3) c2 in let res0 = Seq.snoc res e0 in let res1 = Seq.snoc res0 e1 in let res2 = Seq.snoc res1 e2 in let res3 = Seq.snoc res2 e3 in c3, res3 val generate_elems_unroll4: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Tot (a & s:seq t{length s == n}) let generate_elems_unroll4 #t #a max n f init = let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_right (n / 4 * 4) n (generate_elem_a t a max) (generate_elem_f max f) (c0, res0) in (c1, res1) val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
false
false
Hacl.Spec.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_generate_elems_unroll4_loop: #t:Type0 -> #a:Type0 -> max:nat -> n:nat{n <= max /\ n % 4 = 0} -> f:(i:nat{i < max} -> a -> a & t) -> init:a -> Lemma (let (c0, res0) = Loops.repeat_gen (n / 4) (generate_elems4_a t a max) (generate_elems4_f max f) (init, Seq.empty) in let (c1, res1) = Loops.repeat_gen n (generate_elem_a t a max) (generate_elem_f max f) (init, Seq.empty) in c0 == c1 /\ res0 == res1)
[]
Hacl.Spec.Lib.lemma_generate_elems_unroll4_loop
{ "file_name": "code/bignum/Hacl.Spec.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
max: Prims.nat -> n: Prims.nat{n <= max /\ n % 4 = 0} -> f: (i: Prims.nat{i < max} -> _: a -> a * t) -> init: a -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeat_gen (n / 4) (Hacl.Spec.Lib.generate_elems4_a t a max) (Hacl.Spec.Lib.generate_elems4_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c0 res0 = _ in let _ = Lib.LoopCombinators.repeat_gen n (Hacl.Spec.Lib.generate_elem_a t a max) (Hacl.Spec.Lib.generate_elem_f max f) (init, FStar.Seq.Base.empty) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in c0 == c1 /\ res0 == res1) <: Type0) <: Type0))
{ "end_col": 92, "end_line": 153, "start_col": 58, "start_line": 125 }
Prims.Tot
val kind_unit:parser_kind false WeakKindStrongPrefix
[ { "abbrev": true, "full_module": "LowParse.Spec.Combinators", "short_module": "LPC" }, { "abbrev": true, "full_module": "LowParse.Spec.Base", "short_module": "LP" }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let kind_unit : parser_kind false WeakKindStrongPrefix = ret_kind
val kind_unit:parser_kind false WeakKindStrongPrefix let kind_unit:parser_kind false WeakKindStrongPrefix =
false
null
false
ret_kind
{ "checked_file": "EverParse3d.Kinds.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverParse3d.Kinds.fsti" }
[ "total" ]
[ "EverParse3d.Kinds.ret_kind" ]
[]
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Kinds noextract type weak_kind = | WeakKindWeak | WeakKindStrongPrefix | WeakKindConsumesAll inline_for_extraction noextract let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind = if k1 = k2 then k1 else WeakKindWeak inline_for_extraction noextract val parser_kind (nz:bool) (wk: weak_kind) : Type0 inline_for_extraction noextract val glb (#nz1:bool) (#wk1: weak_kind) (k1:parser_kind nz1 wk1) (#nz2:bool) (#wk2: weak_kind) (k2:parser_kind nz2 wk2) : parser_kind (nz1 && nz2) (weak_kind_glb wk1 wk2) /// Parser: return inline_for_extraction noextract val ret_kind : parser_kind false WeakKindStrongPrefix /// Parser: bind inline_for_extraction noextract val and_then_kind (#nz1:_) (k1:parser_kind nz1 WeakKindStrongPrefix) (#nz2:_) (#wk2: _) (k2:parser_kind nz2 wk2) : parser_kind (nz1 || nz2) wk2 inline_for_extraction noextract val filter_kind (#nz:_) (#wk: _) (k:parser_kind nz wk) : parser_kind nz wk inline_for_extraction noextract val impos_kind : parser_kind true WeakKindStrongPrefix /// Lists/arrays inline_for_extraction noextract val kind_nlist : parser_kind false WeakKindStrongPrefix val kind_all_bytes : parser_kind false WeakKindConsumesAll val kind_t_at_most : parser_kind false WeakKindStrongPrefix val kind_t_exact : parser_kind false WeakKindStrongPrefix val parse_string_kind : parser_kind true WeakKindStrongPrefix val kind_all_zeros : parser_kind false WeakKindConsumesAll inline_for_extraction noextract val kind____UINT8 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT8BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT16BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT32BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT64BE : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT16 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT32 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract val kind____UINT64 : parser_kind true WeakKindStrongPrefix inline_for_extraction noextract let kind_unit
false
false
EverParse3d.Kinds.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val kind_unit:parser_kind false WeakKindStrongPrefix
[]
EverParse3d.Kinds.kind_unit
{ "file_name": "src/3d/prelude/EverParse3d.Kinds.fsti", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
EverParse3d.Kinds.parser_kind false EverParse3d.Kinds.WeakKindStrongPrefix
{ "end_col": 10, "end_line": 124, "start_col": 2, "start_line": 124 }
Prims.Tot
val weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind
[ { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind = if k1 = k2 then k1 else WeakKindWeak
val weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind let weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind =
false
null
false
if k1 = k2 then k1 else WeakKindWeak
{ "checked_file": "EverParse3d.Kinds.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "EverParse3d.Kinds.fsti" }
[ "total" ]
[ "EverParse3d.Kinds.weak_kind", "Prims.op_Equality", "Prims.bool", "EverParse3d.Kinds.WeakKindWeak" ]
[]
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Kinds noextract type weak_kind = | WeakKindWeak | WeakKindStrongPrefix | WeakKindConsumesAll inline_for_extraction noextract let weak_kind_glb (k1 k2: weak_kind)
false
true
EverParse3d.Kinds.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val weak_kind_glb (k1 k2: weak_kind) : Tot weak_kind
[]
EverParse3d.Kinds.weak_kind_glb
{ "file_name": "src/3d/prelude/EverParse3d.Kinds.fsti", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
k1: EverParse3d.Kinds.weak_kind -> k2: EverParse3d.Kinds.weak_kind -> EverParse3d.Kinds.weak_kind
{ "end_col": 19, "end_line": 32, "start_col": 2, "start_line": 30 }
Prims.Tot
val seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s))
val seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b let seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b =
false
null
false
init (length s) (compose f (index s))
{ "checked_file": "Vale.Lib.Seqs_s.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ "total" ]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Seq.Base.length", "Vale.Lib.Seqs_s.compose", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.index" ]
[]
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x)
false
false
Vale.Lib.Seqs_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_map (#a #b: Type) (f: (a -> b)) (s: seq a) : seq b
[]
Vale.Lib.Seqs_s.seq_map
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: (_: a -> b) -> s: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq b
{ "end_col": 39, "end_line": 8, "start_col": 2, "start_line": 8 }
Prims.Tot
val compose: f: ('b -> 'c) -> g: ('a -> 'b) -> 'a -> 'c
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x)
val compose: f: ('b -> 'c) -> g: ('a -> 'b) -> 'a -> 'c let compose (f: ('b -> 'c)) (g: ('a -> 'b)) : 'a -> 'c =
false
null
false
fun x -> f (g x)
{ "checked_file": "Vale.Lib.Seqs_s.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ "total" ]
[]
[]
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq
false
false
Vale.Lib.Seqs_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compose: f: ('b -> 'c) -> g: ('a -> 'b) -> 'a -> 'c
[]
Vale.Lib.Seqs_s.compose
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: (_: 'b -> 'c) -> g: (_: 'a -> 'b) -> _: 'a -> 'c
{ "end_col": 67, "end_line": 5, "start_col": 51, "start_line": 5 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let all_but_last (s:seq 'a {length s > 0}) = slice s 0 (length s - 1)
let all_but_last (s: seq 'a {length s > 0}) =
false
null
false
slice s 0 (length s - 1)
{ "checked_file": "Vale.Lib.Seqs_s.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ "total" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.op_Subtraction" ]
[]
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x) let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s))
false
false
Vale.Lib.Seqs_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val all_but_last : s: FStar.Seq.Base.seq 'a {FStar.Seq.Base.length s > 0} -> FStar.Seq.Base.seq 'a
[]
Vale.Lib.Seqs_s.all_but_last
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq 'a {FStar.Seq.Base.length s > 0} -> FStar.Seq.Base.seq 'a
{ "end_col": 26, "end_line": 11, "start_col": 2, "start_line": 11 }
Prims.Tot
val reverse_seq (#a: Type) (s: seq a) : seq a
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reverse_seq (#a:Type) (s:seq a) : seq a = init (length s) (fun i -> index s (length s - i - 1))
val reverse_seq (#a: Type) (s: seq a) : seq a let reverse_seq (#a: Type) (s: seq a) : seq a =
false
null
false
init (length s) (fun i -> index s (length s - i - 1))
{ "checked_file": "Vale.Lib.Seqs_s.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs_s.fst" }
[ "total" ]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Seq.Base.length", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.op_Subtraction" ]
[]
module Vale.Lib.Seqs_s open FStar.Mul open FStar.Seq let compose (f:'b -> 'c) (g:'a -> 'b) : 'a -> 'c = fun x -> f (g x) let seq_map (#a #b:Type) (f:a -> b) (s:seq a) : seq b = init (length s) (compose f (index s)) let all_but_last (s:seq 'a {length s > 0}) = slice s 0 (length s - 1)
false
false
Vale.Lib.Seqs_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reverse_seq (#a: Type) (s: seq a) : seq a
[]
Vale.Lib.Seqs_s.reverse_seq
{ "file_name": "vale/specs/defs/Vale.Lib.Seqs_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq a
{ "end_col": 55, "end_line": 14, "start_col": 2, "start_line": 14 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_24 = 16777216
let pow2_24 =
false
null
false
16777216
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "total" ]
[]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
false
true
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_24 : Prims.int
[]
Vale.Def.Words.Seq.pow2_24
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 29, "end_line": 53, "start_col": 21, "start_line": 53 }
FStar.Pervasives.Lemma
val two_to_seq_to_two_LE (#a:Type) (x:seq2 a) : Lemma (two_to_seq_LE (seq_to_two_LE x) == x) [SMTPat (two_to_seq_LE (seq_to_two_LE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
val two_to_seq_to_two_LE (#a:Type) (x:seq2 a) : Lemma (two_to_seq_LE (seq_to_two_LE x) == x) [SMTPat (two_to_seq_LE (seq_to_two_LE x))] let two_to_seq_to_two_LE #a x =
false
null
true
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words.Seq_s.seq2", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.two_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_two_LE", "Prims.unit" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val two_to_seq_to_two_LE (#a:Type) (x:seq2 a) : Lemma (two_to_seq_LE (seq_to_two_LE x) == x) [SMTPat (two_to_seq_LE (seq_to_two_LE x))]
[]
Vale.Def.Words.Seq.two_to_seq_to_two_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words.Seq_s.seq2 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.two_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_two_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.two_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_two_LE x))]
{ "end_col": 52, "end_line": 13, "start_col": 2, "start_line": 13 }
FStar.Pervasives.Lemma
val seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) : Lemma (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x) == x) [SMTPat (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
val seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) : Lemma (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x) == x) [SMTPat (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x))] let seq_nat8_to_seq_uint8_to_seq_nat8 (x: seq UInt8.t) =
false
null
true
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8", "Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8", "Prims.unit" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); ()
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) : Lemma (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x) == x) [SMTPat (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x))]
[]
Vale.Def.Words.Seq.seq_nat8_to_seq_uint8_to_seq_nat8
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 x)) ]
{ "end_col": 68, "end_line": 167, "start_col": 2, "start_line": 167 }
FStar.Pervasives.Lemma
val seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a
val seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') let seq_four_to_seq_LE_injective_specific (#a: eqtype) (x x': seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') =
false
null
true
seq_four_to_seq_LE_injective a
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq.seq_four_to_seq_LE_injective", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Prims.l_or", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
[]
Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE x' ==> x == x')
{ "end_col": 32, "end_line": 196, "start_col": 2, "start_line": 196 }
FStar.Pervasives.Lemma
val four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); ()
val four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) let four_to_seq_to_four_BE (#a: Type) (x: seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) =
false
null
true
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_four_BE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
[]
Vale.Def.Words.Seq.four_to_seq_to_four_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_four_BE x) == x)
{ "end_col": 4, "end_line": 121, "start_col": 2, "start_line": 120 }
FStar.Pervasives.Lemma
val seq_nat8_to_seq_uint8_injective (b b':seq nat8) : Lemma (requires equal (seq_nat8_to_seq_uint8 b) (seq_nat8_to_seq_uint8 b')) (ensures b == b')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b'
val seq_nat8_to_seq_uint8_injective (b b':seq nat8) : Lemma (requires equal (seq_nat8_to_seq_uint8 b) (seq_nat8_to_seq_uint8 b')) (ensures b == b') let seq_nat8_to_seq_uint8_injective b b' =
false
null
true
seq_map_injective UInt8.uint_to_t b b'
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.Lib.Seqs.seq_map_injective", "FStar.UInt8.t", "FStar.UInt8.uint_to_t", "Prims.unit" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_nat8_to_seq_uint8_injective (b b':seq nat8) : Lemma (requires equal (seq_nat8_to_seq_uint8 b) (seq_nat8_to_seq_uint8 b')) (ensures b == b')
[]
Vale.Def.Words.Seq.seq_nat8_to_seq_uint8_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> b': FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 b) (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 b')) (ensures b == b')
{ "end_col": 40, "end_line": 173, "start_col": 2, "start_line": 173 }
FStar.Pervasives.Lemma
val seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) : Lemma (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x) == x) [SMTPat (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
val seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) : Lemma (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x) == x) [SMTPat (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x))] let seq_uint8_to_seq_nat8_to_seq_uint8 (x: seq nat8) =
false
null
true
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8", "Prims.unit" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) : Lemma (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x) == x) [SMTPat (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x))]
[]
Vale.Def.Words.Seq.seq_uint8_to_seq_nat8_to_seq_uint8
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 x)) ]
{ "end_col": 68, "end_line": 170, "start_col": 2, "start_line": 170 }
FStar.Pervasives.Lemma
val four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_LE x; four_to_seq_LE x'} four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
val four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_LE x; four_to_seq_LE x'} four_to_seq_LE x == four_to_seq_LE x' ==> x == x') let four_to_seq_LE_injective (a: eqtype) : Lemma (forall (x: four a) (x': four a). four_to_seq_LE x == four_to_seq_LE x' ==> x == x') =
false
null
true
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Vale.Lib.Meta.generic_injective_proof", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Vale.Def.Words.Seq.seq_to_four_to_seq_LE", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_LE x; four_to_seq_LE x'} four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
[]
Vale.Def.Words.Seq.four_to_seq_LE_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.eqtype -> FStar.Pervasives.Lemma (ensures forall (x: Vale.Def.Words_s.four a) (x': Vale.Def.Words_s.four a). {:pattern Vale.Def.Words.Seq_s.four_to_seq_LE x; Vale.Def.Words.Seq_s.four_to_seq_LE x'} Vale.Def.Words.Seq_s.four_to_seq_LE x == Vale.Def.Words.Seq_s.four_to_seq_LE x' ==> x == x')
{ "end_col": 112, "end_line": 206, "start_col": 2, "start_line": 206 }
FStar.Pervasives.Lemma
val seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a
val seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') let seq_four_to_seq_BE_injective_specific (#a: eqtype) (x x': seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') =
false
null
true
seq_four_to_seq_BE_injective a
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq.seq_four_to_seq_BE_injective", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Prims.l_or", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
[]
Vale.Def.Words.Seq.seq_four_to_seq_BE_injective_specific
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE x' ==> x == x')
{ "end_col": 32, "end_line": 201, "start_col": 2, "start_line": 201 }
FStar.Pervasives.Lemma
val seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_BE x; seq_four_to_seq_BE x'} seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); ()
val seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_BE x; seq_four_to_seq_BE x'} seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') let seq_four_to_seq_BE_injective (a: eqtype) : Lemma (forall (x: seq (four a)) (x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') =
false
null
true
let seq_four_to_seq_BE_stronger (#b: Type) (x: seq (four b)) : (s: seq b {length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Prims.unit", "Vale.Lib.Meta.generic_injective_proof", "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.l_or", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) :
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_BE x; seq_four_to_seq_BE x'} seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
[]
Vale.Def.Words.Seq.seq_four_to_seq_BE_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.eqtype -> FStar.Pervasives.Lemma (ensures forall (x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a)) (x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)). {:pattern Vale.Def.Words.Seq_s.seq_four_to_seq_BE x; Vale.Def.Words.Seq_s.seq_four_to_seq_BE x'} Vale.Def.Words.Seq_s.seq_four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE x' ==> x == x')
{ "end_col": 4, "end_line": 191, "start_col": 3, "start_line": 186 }
FStar.Pervasives.Lemma
val four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); ()
val four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) let four_to_seq_LE_is_seq_four_to_seq_LE (#a: Type) (x: four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_LE", "FStar.Pervasives.reveal_opaque", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.nat", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
[]
Vale.Def.Words.Seq.four_to_seq_LE_is_seq_four_to_seq_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words_s.four a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE (FStar.Seq.Base.create 1 x))
{ "end_col": 4, "end_line": 135, "start_col": 2, "start_line": 131 }
FStar.Pervasives.Lemma
val four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_BE x; four_to_seq_BE x'} four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
val four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_BE x; four_to_seq_BE x'} four_to_seq_BE x == four_to_seq_BE x' ==> x == x') let four_to_seq_BE_injective (a: eqtype) : Lemma (forall (x: four a) (x': four a). four_to_seq_BE x == four_to_seq_BE x' ==> x == x') =
false
null
true
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Vale.Lib.Meta.generic_injective_proof", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_four_BE", "Vale.Def.Words.Seq.seq_to_four_to_seq_BE", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x':four a).{:pattern four_to_seq_BE x; four_to_seq_BE x'} four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
[]
Vale.Def.Words.Seq.four_to_seq_BE_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.eqtype -> FStar.Pervasives.Lemma (ensures forall (x: Vale.Def.Words_s.four a) (x': Vale.Def.Words_s.four a). {:pattern Vale.Def.Words.Seq_s.four_to_seq_BE x; Vale.Def.Words.Seq_s.four_to_seq_BE x'} Vale.Def.Words.Seq_s.four_to_seq_BE x == Vale.Def.Words.Seq_s.four_to_seq_BE x' ==> x == x')
{ "end_col": 112, "end_line": 211, "start_col": 2, "start_line": 211 }
FStar.Pervasives.Lemma
val seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) [SMTPat (seq_four_to_seq_BE (seq_to_seq_four_BE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
val seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) [SMTPat (seq_four_to_seq_BE (seq_to_seq_four_BE x))] let seq_four_to_seq_to_seq_four_BE (#a: Type) (x: seq a {length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) =
false
null
true
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) [SMTPat (seq_four_to_seq_BE (seq_to_seq_four_BE x))]
[]
Vale.Def.Words.Seq.seq_four_to_seq_to_seq_four_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_seq_four_BE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (Vale.Def.Words.Seq_s.seq_to_seq_four_BE x))]
{ "end_col": 4, "end_line": 51, "start_col": 2, "start_line": 48 }
FStar.Pervasives.Lemma
val four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); ()
val four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) let four_to_seq_to_four_LE (#a: Type) (x: seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) =
false
null
true
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
[]
Vale.Def.Words.Seq.four_to_seq_to_four_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_four_LE x) == x)
{ "end_col": 4, "end_line": 110, "start_col": 2, "start_line": 109 }
FStar.Pervasives.Lemma
val seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) [SMTPat (seq_four_to_seq_LE (seq_to_seq_four_LE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); ()
val seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) [SMTPat (seq_four_to_seq_LE (seq_to_seq_four_LE x))] let seq_four_to_seq_to_seq_four_LE (#a: Type) (x: seq a {length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) [SMTPat (seq_four_to_seq_LE (seq_to_seq_four_LE x))]
[]
Vale.Def.Words.Seq.seq_four_to_seq_to_seq_four_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_seq_four_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_four_to_seq_LE (Vale.Def.Words.Seq_s.seq_to_seq_four_LE x))]
{ "end_col": 4, "end_line": 43, "start_col": 2, "start_line": 40 }
FStar.Pervasives.Lemma
val seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_LE x; seq_four_to_seq_LE x'} seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); ()
val seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_LE x; seq_four_to_seq_LE x'} seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') let seq_four_to_seq_LE_injective (a: eqtype) : Lemma (forall (x: seq (four a)) (x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') =
false
null
true
let seq_four_to_seq_LE_stronger (#b: Type) (x: seq (four b)) : (s: seq b {length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Prims.unit", "Vale.Lib.Meta.generic_injective_proof", "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.l_or", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) :
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x':seq (four a)).{:pattern seq_four_to_seq_LE x; seq_four_to_seq_LE x'} seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
[]
Vale.Def.Words.Seq.seq_four_to_seq_LE_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.eqtype -> FStar.Pervasives.Lemma (ensures forall (x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a)) (x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)). {:pattern Vale.Def.Words.Seq_s.seq_four_to_seq_LE x; Vale.Def.Words.Seq_s.seq_four_to_seq_LE x'} Vale.Def.Words.Seq_s.seq_four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE x' ==> x == x')
{ "end_col": 4, "end_line": 182, "start_col": 3, "start_line": 177 }
FStar.Pervasives.Lemma
val four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); ()
val four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) let four_to_seq_BE_is_seq_four_to_seq_BE (x: four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) =
false
null
true
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Words.Seq_s.four_to_seq_BE", "FStar.Pervasives.reveal_opaque", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.l_or", "Prims.nat", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
[]
Vale.Def.Words.Seq.four_to_seq_BE_is_seq_four_to_seq_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words_s.four Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.create 1 x))
{ "end_col": 4, "end_line": 144, "start_col": 2, "start_line": 140 }
FStar.Pervasives.Lemma
val append_distributes_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_LE (x @| y) == seq_four_to_seq_LE x @| seq_four_to_seq_LE y)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_distributes_seq_four_to_seq_LE #a x y = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y))
val append_distributes_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_LE (x @| y) == seq_four_to_seq_LE x @| seq_four_to_seq_LE y) let append_distributes_seq_four_to_seq_LE #a x y =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y))
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "FStar.Seq.Base.op_At_Bar", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x') = generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 (* let seq_to_four_LE_injective () : Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x') = generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE *) let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y)); () let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y)); ()
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_distributes_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_LE (x @| y) == seq_four_to_seq_LE x @| seq_four_to_seq_LE y)
[]
Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> y: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_LE (x @| y) == Vale.Def.Words.Seq_s.seq_four_to_seq_LE x @| Vale.Def.Words.Seq_s.seq_four_to_seq_LE y)
{ "end_col": 93, "end_line": 246, "start_col": 2, "start_line": 245 }
FStar.Pervasives.Lemma
val seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) [SMTPat (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); ()
val seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) [SMTPat (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x))] let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x: seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) =
false
null
true
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) [SMTPat (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x))]
[]
Vale.Def.Words.Seq.seq_nat8_to_seq_nat32_to_seq_nat8_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE x)) ]
{ "end_col": 4, "end_line": 156, "start_col": 2, "start_line": 155 }
FStar.Pervasives.Lemma
val append_distributes_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_BE (x @| y) == seq_four_to_seq_BE x @| seq_four_to_seq_BE y)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_distributes_seq_four_to_seq_BE #a x y = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (seq_four_to_seq_BE (x @| y)) (seq_four_to_seq_BE x @| seq_four_to_seq_BE y))
val append_distributes_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_BE (x @| y) == seq_four_to_seq_BE x @| seq_four_to_seq_BE y) let append_distributes_seq_four_to_seq_BE #a x y =
false
null
true
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (seq_four_to_seq_BE (x @| y)) (seq_four_to_seq_BE x @| seq_four_to_seq_BE y))
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "FStar.Seq.Base.op_At_Bar", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x') = generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 (* let seq_to_four_LE_injective () : Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x') = generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE *) let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y)); () let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y)); () let append_distributes_seq_four_to_seq_LE #a x y = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y))
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_distributes_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) (y:seq (four a)) : Lemma (seq_four_to_seq_BE (x @| y) == seq_four_to_seq_BE x @| seq_four_to_seq_BE y)
[]
Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> y: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_four_to_seq_BE (x @| y) == Vale.Def.Words.Seq_s.seq_four_to_seq_BE x @| Vale.Def.Words.Seq_s.seq_four_to_seq_BE y)
{ "end_col": 93, "end_line": 250, "start_col": 2, "start_line": 249 }
FStar.Pervasives.Lemma
val four_to_nat_8_injective (_:unit) : Lemma (forall (x x':four (natN (pow2_norm 8))).{:pattern four_to_nat 8 x; four_to_nat 8 x'} four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
val four_to_nat_8_injective (_:unit) : Lemma (forall (x x':four (natN (pow2_norm 8))).{:pattern four_to_nat 8 x; four_to_nat 8 x'} four_to_nat 8 x == four_to_nat 8 x' ==> x == x') let four_to_nat_8_injective () : Lemma (forall (x: four (natN (pow2_norm 8))) (x': four (natN (pow2_norm 8))). four_to_nat 8 x == four_to_nat 8 x' ==> x == x') =
false
null
true
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.unit", "Vale.Lib.Meta.generic_injective_proof", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq.nat_to_four_to_nat", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Vale.Def.Words_s.pow2_norm", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_nat_8_injective (_:unit) : Lemma (forall (x x':four (natN (pow2_norm 8))).{:pattern four_to_nat 8 x; four_to_nat 8 x'} four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
[]
Vale.Def.Words.Seq.four_to_nat_8_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8))) (x': Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8))). {:pattern Vale.Def.Words.Four_s.four_to_nat 8 x; Vale.Def.Words.Four_s.four_to_nat 8 x'} Vale.Def.Words.Four_s.four_to_nat 8 x == Vale.Def.Words.Four_s.four_to_nat 8 x' ==> x == x')
{ "end_col": 76, "end_line": 216, "start_col": 2, "start_line": 216 }
FStar.Pervasives.Lemma
val seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) [SMTPat (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); ()
val seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) [SMTPat (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x))] let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x: seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) =
false
null
true
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) [SMTPat (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x))]
[]
Vale.Def.Words.Seq.seq_nat8_to_seq_nat32_to_seq_nat8_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE x)) ]
{ "end_col": 4, "end_line": 150, "start_col": 2, "start_line": 149 }
FStar.Pervasives.Lemma
val seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) [SMTPat (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); ()
val seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) [SMTPat (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x))] let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x: seq nat8 {length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Prims.op_Division", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "FStar.Mul.op_Star", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) [SMTPat (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x))]
[]
Vale.Def.Words.Seq.seq_nat32_to_seq_nat8_to_seq_nat32_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length x % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE x) == x) [ SMTPat (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE x)) ]
{ "end_col": 4, "end_line": 164, "start_col": 2, "start_line": 161 }
FStar.Pervasives.Lemma
val seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); ()
val seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] let seq_to_seq_four_to_seq_BE (#a: Type) (x: seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] =
false
null
true
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
[]
Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_to_seq_four_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE x))]
{ "end_col": 4, "end_line": 35, "start_col": 2, "start_line": 32 }
FStar.Pervasives.Lemma
val nat_to_four_8_injective (_:unit) : Lemma (forall (x x':natN (pow2_norm 32)).{:pattern nat_to_four 8 x; nat_to_four 8 x'} nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x') = generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
val nat_to_four_8_injective (_:unit) : Lemma (forall (x x':natN (pow2_norm 32)).{:pattern nat_to_four 8 x; nat_to_four 8 x'} nat_to_four 8 x == nat_to_four 8 x' ==> x == x') let nat_to_four_8_injective () : Lemma (forall (x: natN (pow2_norm 32)) (x': natN (pow2_norm 32)). nat_to_four 8 x == nat_to_four 8 x' ==> x == x') =
false
null
true
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Prims.unit", "Vale.Lib.Meta.generic_injective_proof", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq.four_to_nat_to_four_8", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Vale.Def.Words_s.pow2_norm", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat_to_four_8_injective (_:unit) : Lemma (forall (x x':natN (pow2_norm 32)).{:pattern nat_to_four 8 x; nat_to_four 8 x'} nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
[]
Vale.Def.Words.Seq.nat_to_four_8_injective
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (x: Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32)) (x': Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32)). {:pattern Vale.Def.Words.Four_s.nat_to_four 8 x; Vale.Def.Words.Four_s.nat_to_four 8 x'} Vale.Def.Words.Four_s.nat_to_four 8 x == Vale.Def.Words.Four_s.nat_to_four 8 x' ==> x == x')
{ "end_col": 79, "end_line": 221, "start_col": 2, "start_line": 221 }
FStar.Pervasives.Lemma
val seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); ()
val seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] let seq_to_seq_four_to_seq_LE (#a: Type) (x: seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Division", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Prims.op_Multiply", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "FStar.Pervasives.reveal_opaque", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
[]
Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_LE (Vale.Def.Words.Seq_s.seq_four_to_seq_LE x) == x) [SMTPat (Vale.Def.Words.Seq_s.seq_to_seq_four_LE (Vale.Def.Words.Seq_s.seq_four_to_seq_LE x))]
{ "end_col": 4, "end_line": 26, "start_col": 2, "start_line": 21 }
FStar.Pervasives.Lemma
val append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y)); ()
val append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) let append_distributes_seq_to_seq_four_BE (#a: Type) (x: seq a {length x % 4 == 0}) (y: seq a {length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) =
false
null
true
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y)); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "FStar.Seq.Base.op_At_Bar", "FStar.Pervasives.reveal_opaque", "Prims.op_Division", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x') = generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 (* let seq_to_four_LE_injective () : Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x') = generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE *) let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y)); () let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
[]
Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_BE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> y: FStar.Seq.Base.seq a {FStar.Seq.Base.length y % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_BE (x @| y) == Vale.Def.Words.Seq_s.seq_to_seq_four_BE x @| Vale.Def.Words.Seq_s.seq_to_seq_four_BE y)
{ "end_col": 4, "end_line": 242, "start_col": 2, "start_line": 240 }
FStar.Pervasives.Lemma
val append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y)); ()
val append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) let append_distributes_seq_to_seq_four_LE (#a: Type) (x: seq a {length x % 4 == 0}) (y: seq a {length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) =
false
null
true
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y)); ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "FStar.Seq.Base.op_At_Bar", "FStar.Pervasives.reveal_opaque", "Prims.op_Division", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; () #reset-options let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_LE (seq_to_four_LE x) == x) = assert (equal (four_to_seq_LE (seq_to_four_LE x)) x); () let seq_to_four_to_seq_LE (#a:Type) (x:four a) : Lemma (seq_to_four_LE (four_to_seq_LE x) == x) = () let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) : Lemma (four_to_seq_BE (seq_to_four_BE x) == x) = assert (equal (four_to_seq_BE (seq_to_four_BE x)) x); () let seq_to_four_to_seq_BE (#a:Type) (x:four a) : Lemma (seq_to_four_BE (four_to_seq_BE x) == x) = () let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) : Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); let s0 = four_to_seq_LE x in let s1 = seq_four_to_seq_LE (create 1 x) in assert (equal s0 s1); () let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) : Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x)) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32); let s0 = four_to_seq_BE x in let s1 = seq_four_to_seq_BE (create 1 x) in assert (equal s0 s1); () let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x) = assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x); () let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) : Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x) = assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x); () let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) : Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x); () let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) = assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) = assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) let seq_nat8_to_seq_uint8_injective b b' = seq_map_injective UInt8.uint_to_t b b' let seq_four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') = let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_LE x in generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a); () let seq_four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') = let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) = seq_four_to_seq_BE x in generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a); () let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') = seq_four_to_seq_LE_injective a let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) : Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') = seq_four_to_seq_BE_injective a let four_to_seq_LE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) let four_to_seq_BE_injective (a:eqtype) : Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x') = generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) let four_to_nat_8_injective () : Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x') = generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat let nat_to_four_8_injective () : Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x') = generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 (* let seq_to_four_LE_injective () : Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x') = generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE *) let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) : Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
[]
Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_LE
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} -> y: FStar.Seq.Base.seq a {FStar.Seq.Base.length y % 4 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_to_seq_four_LE (x @| y) == Vale.Def.Words.Seq_s.seq_to_seq_four_LE x @| Vale.Def.Words.Seq_s.seq_to_seq_four_LE y)
{ "end_col": 4, "end_line": 235, "start_col": 2, "start_line": 233 }
FStar.Pervasives.Lemma
val four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; ()
val four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] let four_to_nat_to_four_8 (x: natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] =
false
null
true
let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_norm", "Prims.pow2", "Prims.unit", "Vale.Def.Words.Seq.lemma_fundamental_div_mod_4", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "Prims.l_or", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.int", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words_s.int_to_natN", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words_s.Mkfour", "Prims.op_Modulus", "Prims.op_Division", "Prims.pos", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))]
[]
Vale.Def.Words.Seq.four_to_nat_to_four_8
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.nat_to_four 8 x) == x) [SMTPat (Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.nat_to_four 8 x))]
{ "end_col": 4, "end_line": 81, "start_col": 3, "start_line": 65 }
FStar.Pervasives.Lemma
val nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))]
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1)); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; ()
val nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] let nat_to_four_to_nat (x: four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))] =
false
null
true
let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let x' = four_to_nat 8 x in assert_norm (nat_to_four 8 x' == Mkfour (x' % n1) ((x' / n1) % n1) ((x' / n2) % n1) ((x' / n3) % n1) ); let Mkfour x0 x1 x2 x3 = x in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 x == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x'; ()
{ "checked_file": "Vale.Def.Words.Seq.fst.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Vale.Def.Words.Seq.fst" }
[ "lemma" ]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_norm", "Prims.unit", "Vale.Def.Words.Seq.lemma_fundamental_div_mod_4", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "Prims.l_or", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.int", "Prims.pow2", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words_s.int_to_natN", "FStar.Pervasives.normalize_term", "Prims.pos", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words_s.Mkfour", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Multiply", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.Def.Words.Seq open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open FStar.Mul open Vale.Lib.Meta open Vale.Lib.Seqs_s open Vale.Lib.Seqs let two_to_seq_to_two_LE #a x = assert (equal (two_to_seq_LE (seq_to_two_LE x)) x) let seq_to_two_to_seq_LE #a x = () let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x) [SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))] = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); let bytes = seq_four_to_seq_LE x in let fours = seq_to_seq_four_LE bytes in assert (equal fours x); () let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) : Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x) [SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))] = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x); () let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x); () let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) : Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x); () unfold let pow2_24 = 16777216 //normalize_term (pow2 24) #reset-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'" let lemma_fundamental_div_mod_4 (x:nat32) : Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8)) = () #reset-options "--z3rlimit 30" let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) : Lemma (four_to_nat 8 (nat_to_four 8 x) == x) [SMTPat (four_to_nat 8 (nat_to_four 8 x))] = let size = 8 in let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in assert_norm (pow2 8 == 256); assert_norm (pow2 16 == 0x10000); assert_norm (pow2 24 == 0x1000000); assert_norm (pow2 32 == 0x100000000); let fourX = nat_to_four 8 x in assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1)); let Mkfour x0 x1 x2 x3 = fourX in let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)); lemma_fundamental_div_mod_4 x; () #reset-options "--z3rlimit 400 --using_facts_from 'Vale.Def.Words_s Prims'" let nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
false
false
Vale.Def.Words.Seq.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 400, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat_to_four_to_nat (x:four (natN (pow2_norm 8))) : Lemma (nat_to_four 8 (four_to_nat 8 x) == x) [SMTPat (nat_to_four 8 (four_to_nat 8 x))]
[]
Vale.Def.Words.Seq.nat_to_four_to_nat
{ "file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8)) -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Four_s.nat_to_four 8 (Vale.Def.Words.Four_s.four_to_nat 8 x) == x) [SMTPat (Vale.Def.Words.Four_s.nat_to_four 8 (Vale.Def.Words.Four_s.four_to_nat 8 x))]
{ "end_col": 4, "end_line": 103, "start_col": 3, "start_line": 87 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
let felem5 =
false
null
false
uint64 & uint64 & uint64 & uint64 & uint64
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem5 : Type0
[]
Hacl.Spec.K256.Field52.Definitions.felem5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 55, "end_line": 21, "start_col": 13, "start_line": 21 }
Prims.Tot
val mk_nat5 (x: nat) : nat5
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
val mk_nat5 (x: nat) : nat5 let mk_nat5 (x: nat) : nat5 =
false
null
false
(x, x, x, x, x)
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Definitions.nat5" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536}
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_nat5 (x: nat) : nat5
[]
Hacl.Spec.K256.Field52.Definitions.mk_nat5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Prims.nat -> Hacl.Spec.K256.Field52.Definitions.nat5
{ "end_col": 40, "end_line": 81, "start_col": 29, "start_line": 81 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem4 = uint64 & uint64 & uint64 & uint64
let felem4 =
false
null
false
uint64 & uint64 & uint64 & uint64
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.uint64" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem4 : Type0
[]
Hacl.Spec.K256.Field52.Definitions.felem4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 46, "end_line": 12, "start_col": 13, "start_line": 12 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scale64 = x:nat{x <= 4096}
let scale64 =
false
null
false
x: nat{x <= 4096}
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scale64 : Type0
[]
Hacl.Spec.K256.Field52.Definitions.scale64
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 30, "end_line": 78, "start_col": 14, "start_line": 78 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat5 = nat & nat & nat & nat & nat
let nat5 =
false
null
false
nat & nat & nat & nat & nat
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple5", "Prims.nat" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096}
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat5 : Type0
[]
Hacl.Spec.K256.Field52.Definitions.nat5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 38, "end_line": 80, "start_col": 11, "start_line": 80 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scale64_last = x:nat{x <= 65536}
let scale64_last =
false
null
false
x: nat{x <= 65536}
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scale64_last : Type0
[]
Hacl.Spec.K256.Field52.Definitions.scale64_last
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 36, "end_line": 79, "start_col": 19, "start_line": 79 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let scale64_5 =
false
null
false
x: nat5 { let x0, x1, x2, x3, x4 = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536 }
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.nat5", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scale64_5 : Type0
[]
Hacl.Spec.K256.Field52.Definitions.scale64_5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 70, "end_line": 84, "start_col": 16, "start_line": 83 }
Prims.Tot
val max52:pos
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let max52 : pos = assert_norm (pow2 52 - 1 > 0); pow2 52 - 1
val max52:pos let max52:pos =
false
null
false
assert_norm (pow2 52 - 1 > 0); pow2 52 - 1
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_GreaterThan" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4) let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) noextract
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val max52:pos
[]
Hacl.Spec.K256.Field52.Definitions.max52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.pos
{ "end_col": 13, "end_line": 106, "start_col": 2, "start_line": 105 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem_fits1 (x:uint64) (m:scale64) = v x <= m * max52
let felem_fits1 (x: uint64) (m: scale64) =
false
null
false
v x <= m * max52
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Definitions.scale64", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims.bool" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4) let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) noextract let max52 : pos = assert_norm (pow2 52 - 1 > 0); pow2 52 - 1 noextract let max48 : pos = assert_norm (pow2 48 - 1 > 0); pow2 48 - 1
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem_fits1 : x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64 -> Prims.bool
[]
Hacl.Spec.K256.Field52.Definitions.felem_fits1
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64 -> Prims.bool
{ "end_col": 18, "end_line": 115, "start_col": 2, "start_line": 115 }
Prims.Tot
val max48:pos
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let max48 : pos = assert_norm (pow2 48 - 1 > 0); pow2 48 - 1
val max48:pos let max48:pos =
false
null
false
assert_norm (pow2 48 - 1 > 0); pow2 48 - 1
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_GreaterThan" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4) let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) noextract let max52 : pos = assert_norm (pow2 52 - 1 > 0); pow2 52 - 1 noextract
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val max48:pos
[]
Hacl.Spec.K256.Field52.Definitions.max48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.pos
{ "end_col": 13, "end_line": 111, "start_col": 2, "start_line": 110 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
let as_nat4 (f: felem4) =
false
null
false
let f0, f1, f2, f3 = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem4", "Lib.IntTypes.uint64", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "Prims.int" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_nat4 : f: Hacl.Spec.K256.Field52.Definitions.felem4 -> Prims.int
[]
Hacl.Spec.K256.Field52.Definitions.as_nat4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.K256.Field52.Definitions.felem4 -> Prims.int
{ "end_col": 59, "end_line": 17, "start_col": 24, "start_line": 15 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem_fits_last1 (x:uint64) (m:scale64_last) = v x <= m * max48
let felem_fits_last1 (x: uint64) (m: scale64_last) =
false
null
false
v x <= m * max48
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Definitions.scale64_last", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.bool" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4) let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) noextract let max52 : pos = assert_norm (pow2 52 - 1 > 0); pow2 52 - 1 noextract let max48 : pos = assert_norm (pow2 48 - 1 > 0); pow2 48 - 1 let felem_fits1 (x:uint64) (m:scale64) = v x <= m * max52
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem_fits_last1 : x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_last -> Prims.bool
[]
Hacl.Spec.K256.Field52.Definitions.felem_fits_last1
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_last -> Prims.bool
{ "end_col": 18, "end_line": 118, "start_col": 2, "start_line": 118 }
Prims.Tot
val feval5 (f: felem5) : S.felem
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
val feval5 (f: felem5) : S.felem let feval5 (f: felem5) : S.felem =
false
null
false
as_nat5 f % S.prime
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.op_Modulus", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Spec.K256.PointOps.prime", "Spec.K256.PointOps.felem" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val feval5 (f: felem5) : S.felem
[]
Hacl.Spec.K256.Field52.Definitions.feval5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.K256.Field52.Definitions.felem5 -> Spec.K256.PointOps.felem
{ "end_col": 53, "end_line": 75, "start_col": 34, "start_line": 75 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem_fits5 (f:felem5) (m:scale64_5) = let (f0,f1,f2,f3,f4) = f in let (m0,m1,m2,m3,m4) = m in felem_fits1 f0 m0 /\ felem_fits1 f1 m1 /\ felem_fits1 f2 m2 /\ felem_fits1 f3 m3 /\ felem_fits_last1 f4 m4
let felem_fits5 (f: felem5) (m: scale64_5) =
false
null
false
let f0, f1, f2, f3, f4 = f in let m0, m1, m2, m3, m4 = m in felem_fits1 f0 m0 /\ felem_fits1 f1 m1 /\ felem_fits1 f2 m2 /\ felem_fits1 f3 m3 /\ felem_fits_last1 f4 m4
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem5", "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Lib.IntTypes.uint64", "Prims.nat", "Prims.l_and", "Prims.b2t", "Hacl.Spec.K256.Field52.Definitions.felem_fits1", "Hacl.Spec.K256.Field52.Definitions.felem_fits_last1", "Prims.logical" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4) let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) noextract let max52 : pos = assert_norm (pow2 52 - 1 > 0); pow2 52 - 1 noextract let max48 : pos = assert_norm (pow2 48 - 1 > 0); pow2 48 - 1 let felem_fits1 (x:uint64) (m:scale64) = v x <= m * max52 let felem_fits_last1 (x:uint64) (m:scale64_last) = v x <= m * max48
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem_fits5 : f: Hacl.Spec.K256.Field52.Definitions.felem5 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> Prims.logical
[]
Hacl.Spec.K256.Field52.Definitions.felem_fits5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.K256.Field52.Definitions.felem5 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> Prims.logical
{ "end_col": 24, "end_line": 127, "start_col": 42, "start_line": 120 }
Prims.Tot
val op_Plus_Star (x y: nat5) : nat5
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
val op_Plus_Star (x y: nat5) : nat5 let op_Plus_Star (x y: nat5) : nat5 =
false
null
false
let x0, x1, x2, x3, x4 = x in let y0, y1, y2, y3, y4 = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.nat5", "Prims.nat", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Star (x y: nat5) : nat5
[]
Hacl.Spec.K256.Field52.Definitions.op_Plus_Star
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.K256.Field52.Definitions.nat5 -> y: Hacl.Spec.K256.Field52.Definitions.nat5 -> Hacl.Spec.K256.Field52.Definitions.nat5
{ "end_col": 47, "end_line": 95, "start_col": 30, "start_line": 92 }
Prims.Tot
val mask48:x: uint64{v x == pow2 48 - 1}
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff
val mask48:x: uint64{v x == pow2 48 - 1} let mask48:x: uint64{v x == pow2 48 - 1} =
false
null
false
assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.u64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mask48:x: uint64{v x == pow2 48 - 1}
[]
Hacl.Spec.K256.Field52.Definitions.mask48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 48 - 1}
{ "end_col": 20, "end_line": 41, "start_col": 2, "start_line": 40 }
Prims.Tot
val mask52:x: uint64{v x == pow2 52 - 1}
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff
val mask52:x: uint64{v x == pow2 52 - 1} let mask52:x: uint64{v x == pow2 52 - 1} =
false
null
false
assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.u64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mask52:x: uint64{v x == pow2 52 - 1}
[]
Hacl.Spec.K256.Field52.Definitions.mask52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 52 - 1}
{ "end_col": 21, "end_line": 35, "start_col": 2, "start_line": 34 }
Prims.Tot
val pow52:(pow52: pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52})
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52
val pow52:(pow52: pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) let pow52:(pow52: pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
false
null
false
let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = (16777216 * pow52) * pow52); pow52
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "FStar.Mul.op_Star", "Prims.pos", "FStar.Pervasives.normalize_term" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow52:(pow52: pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52})
[]
Hacl.Spec.K256.Field52.Definitions.pow52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pow52: Prims.pos { Prims.pow2 64 == 4096 * pow52 /\ Prims.pow2 128 == (16777216 * pow52) * pow52 /\ Prims.pow2 52 == pow52 }
{ "end_col": 7, "end_line": 29, "start_col": 109, "start_line": 24 }
Prims.Tot
val pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52})
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104
val pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) let pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
false
null
false
let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.pos", "Prims.pow2", "FStar.Pervasives.normalize_term" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52})
[]
Hacl.Spec.K256.Field52.Definitions.pow104
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pow104: Prims.pos { Prims.pow2 104 == pow104 /\ pow104 == Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52 }
{ "end_col": 8, "end_line": 49, "start_col": 73, "start_line": 45 }
Prims.Tot
val as_nat5 (f: felem5) : nat
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
val as_nat5 (f: felem5) : nat let as_nat5 (f: felem5) : nat =
false
null
false
let f0, f1, f2, f3, f4 = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem5", "Lib.IntTypes.uint64", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Prims.nat" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_nat5 (f: felem5) : nat
[]
Hacl.Spec.K256.Field52.Definitions.as_nat5
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.K256.Field52.Definitions.felem5 -> Prims.nat
{ "end_col": 69, "end_line": 72, "start_col": 30, "start_line": 70 }
Prims.Tot
val op_Star_Star (x y: nat5) : nat5
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( ** ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
val op_Star_Star (x y: nat5) : nat5 let op_Star_Star (x y: nat5) : nat5 =
false
null
false
let x0, x1, x2, x3, x4 = x in let y0, y1, y2, y3, y4 = y in (x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Field52.Definitions.nat5", "Prims.nat", "FStar.Pervasives.Native.Mktuple5", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156 [@"opaque_to_smt"] let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208 noextract let as_nat5 (f:felem5) : nat = let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 noextract let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime let scale64 = x:nat{x <= 4096} let scale64_last = x:nat{x <= 65536} let nat5 = nat & nat & nat & nat & nat let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} let ( <=* ) (x y:nat5) : Type = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4 let ( +* ) (x y:nat5) : nat5 = let (x0,x1,x2,x3,x4) = x in let (y0,y1,y2,y3,y4) = y in (x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
false
true
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Star (x y: nat5) : nat5
[]
Hacl.Spec.K256.Field52.Definitions.op_Star_Star
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.K256.Field52.Definitions.nat5 -> y: Hacl.Spec.K256.Field52.Definitions.nat5 -> Hacl.Spec.K256.Field52.Definitions.nat5
{ "end_col": 47, "end_line": 100, "start_col": 30, "start_line": 97 }
Prims.Tot
val pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52})
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156
val pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) let pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
false
null
false
let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.pos", "Prims.pow2", "FStar.Pervasives.normalize_term" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52})
[]
Hacl.Spec.K256.Field52.Definitions.pow156
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pow156: Prims.pos { Prims.pow2 156 == pow156 /\ pow156 == (Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52) * Hacl.Spec.K256.Field52.Definitions.pow52 }
{ "end_col": 8, "end_line": 57, "start_col": 81, "start_line": 52 }
Prims.Tot
val pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52})
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) = let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208
val pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) let pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
false
null
false
let pow208:pos = normalize_term (pow2 208) in assert_norm (pow208 = pow2 208); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; Math.Lemmas.pow2_plus 156 52; pow208
{ "checked_file": "Hacl.Spec.K256.Field52.Definitions.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.pos", "Prims.pow2", "FStar.Pervasives.normalize_term" ]
[]
module Hacl.Spec.K256.Field52.Definitions open FStar.Mul open Lib.IntTypes module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let felem4 = uint64 & uint64 & uint64 & uint64 noextract let as_nat4 (f:felem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 [@"opaque_to_smt"] let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) = let pow52:pos = normalize_term (pow2 52) in assert_norm (pow52 = pow2 52); assert_norm (pow2 64 = 4096 * pow52); assert_norm (pow2 128 = 16777216 * pow52 * pow52); pow52 inline_for_extraction noextract let mask52: x:uint64{v x == pow2 52 - 1} = assert_norm (pow2 52 - 1 = 0xfffffffffffff); u64 0xfffffffffffff inline_for_extraction noextract let mask48: x:uint64{v x == pow2 48 - 1} = assert_norm (pow2 48 - 1 = 0xffffffffffff); u64 0xffffffffffff [@"opaque_to_smt"] let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) = let pow104:pos = normalize_term (pow2 104) in assert_norm (pow104 = pow2 104); Math.Lemmas.pow2_plus 52 52; pow104 [@"opaque_to_smt"] let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) = let pow156:pos = normalize_term (pow2 156) in assert_norm (pow156 = pow2 156); Math.Lemmas.pow2_plus 52 52; Math.Lemmas.pow2_plus 104 52; pow156
false
false
Hacl.Spec.K256.Field52.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52})
[]
Hacl.Spec.K256.Field52.Definitions.pow208
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pow208: Prims.pos { Prims.pow2 208 == pow208 /\ pow208 == ((Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52) * Hacl.Spec.K256.Field52.Definitions.pow52) * Hacl.Spec.K256.Field52.Definitions.pow52 }
{ "end_col": 8, "end_line": 66, "start_col": 89, "start_line": 60 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let legacy_alg = a:hash_alg { a == MD5 \/ a == SHA1 }
let legacy_alg =
false
null
false
a: hash_alg{a == MD5 \/ a == SHA1}
{ "checked_file": "Hacl.Hash.MD.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Hash.MD.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.l_or", "Prims.eq2", "Spec.Hash.Definitions.MD5", "Spec.Hash.Definitions.SHA1" ]
[]
module Hacl.Hash.MD open Hacl.Hash.Definitions open Spec.Hash.Definitions module U32 = FStar.UInt32
false
true
Hacl.Hash.MD.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val legacy_alg : Type0
[]
Hacl.Hash.MD.legacy_alg
{ "file_name": "code/hash/Hacl.Hash.MD.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 53, "end_line": 8, "start_col": 17, "start_line": 8 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u51 = n:nat{n < 0x8000000000000}
let u51 =
false
null
false
n: nat{n < 0x8000000000000}
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false)
false
true
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u51 : Type0
[]
Hacl.Impl.Ed25519.PointEqual.u51
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 36, "end_line": 52, "start_col": 10, "start_line": 52 }
FStar.HyperStack.ST.Stack
val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) )
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false)
val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) let gte_q s =
true
null
false
let h0 = ST.get () in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false)
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "FStar.UInt64.op_Greater_Hat", "Lib.RawIntTypes.u64_to_UInt64", "FStar.UInt64.__uint_to_t", "Prims.bool", "FStar.UInt64.op_Less_Hat", "FStar.UInt64.op_Greater_Equals_Hat", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Spec.Ed25519.q", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) )
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) )
[]
Hacl.Impl.Ed25519.PointEqual.gte_q
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 13, "end_line": 50, "start_col": 13, "start_line": 32 }
FStar.HyperStack.ST.Stack
val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) )
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq a b = let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let b0 = b.(0ul) in let b1 = b.(1ul) in let b2 = b.(2ul) in let b3 = b.(3ul) in let b4 = b.(4ul) in assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); let h0 = ST.get() in lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4); let open Lib.RawIntTypes in let open FStar.UInt64 in (u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 && u64_to_UInt64 a2 =^ u64_to_UInt64 b2 && u64_to_UInt64 a3 =^ u64_to_UInt64 b3 && u64_to_UInt64 a4 =^ u64_to_UInt64 b4)
val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) ) let eq a b =
true
null
false
let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let b0 = b.(0ul) in let b1 = b.(1ul) in let b2 = b.(2ul) in let b3 = b.(3ul) in let b4 = b.(4ul) in assert_norm (pow2 51 = 0x8000000000000); assert_norm (pow2 102 = 0x40000000000000000000000000); assert_norm (pow2 153 = 0x200000000000000000000000000000000000000); assert_norm (pow2 204 = 0x1000000000000000000000000000000000000000000000000000); assert_norm (pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); let h0 = ST.get () in lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4); let open Lib.RawIntTypes in let open FStar.UInt64 in (u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 && u64_to_UInt64 a2 =^ u64_to_UInt64 b2 && u64_to_UInt64 a3 =^ u64_to_UInt64 b3 && u64_to_UInt64 a4 =^ u64_to_UInt64 b4)
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[]
[ "Hacl.Bignum25519.felem", "Prims.op_AmpAmp", "FStar.UInt64.op_Equals_Hat", "Lib.RawIntTypes.u64_to_UInt64", "Prims.unit", "Hacl.Impl.Ed25519.PointEqual.lemma_equality1", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.bool", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) let u51 = n:nat{n < 0x8000000000000} val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) open FStar.Calc #push-options "--z3rlimit 100" let lemma_equality1 a b c d e a' b' c' d' e' = assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc (==) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102) } (a + pow2 51 * b) % (pow2 102); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp () val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) )
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) )
[]
Hacl.Impl.Ed25519.PointEqual.eq
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Bignum25519.felem -> b: Hacl.Bignum25519.felem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 40, "end_line": 216, "start_col": 12, "start_line": 192 }
FStar.HyperStack.ST.Stack
val point_equal: p:point -> q:point -> Stack bool (requires fun h -> live h p /\ live h q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)) )
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_equal p q = push_frame(); let tmp = create 20ul (u64 0) in let b = point_equal_1 p q tmp in let res = if b then point_equal_2 p q tmp else false in pop_frame(); res
val point_equal: p:point -> q:point -> Stack bool (requires fun h -> live h p /\ live h q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)) ) let point_equal p q =
true
null
false
push_frame (); let tmp = create 20ul (u64 0) in let b = point_equal_1 p q tmp in let res = if b then point_equal_2 p q tmp else false in pop_frame (); res
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[]
[ "Hacl.Bignum25519.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Ed25519.PointEqual.point_equal_2", "Hacl.Impl.Ed25519.PointEqual.point_equal_1", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.u64", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) let u51 = n:nat{n < 0x8000000000000} val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) open FStar.Calc #push-options "--z3rlimit 100" let lemma_equality1 a b c d e a' b' c' d' e' = assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc (==) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102) } (a + pow2 51 * b) % (pow2 102); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp () val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) ) [@CInline] let eq a b = let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let b0 = b.(0ul) in let b1 = b.(1ul) in let b2 = b.(2ul) in let b3 = b.(3ul) in let b4 = b.(4ul) in assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); let h0 = ST.get() in lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4); let open Lib.RawIntTypes in let open FStar.UInt64 in (u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 && u64_to_UInt64 a2 =^ u64_to_UInt64 b2 && u64_to_UInt64 a3 =^ u64_to_UInt64 b3 && u64_to_UInt64 a4 =^ u64_to_UInt64 b4) inline_for_extraction noextract val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) ) let point_equal_1 p q tmp = let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in let h0 = ST.get() in fmul pxqz (getx p) (getz q); reduce pxqz; fmul qxpz (getx q) (getz p); reduce qxpz; eq pxqz qxpz inline_for_extraction noextract val point_equal_2: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true)) ) let point_equal_2 p q tmp = let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in fmul pyqz (gety p) (getz q); reduce pyqz; fmul qypz (gety q) (getz p); reduce qypz; eq pyqz qypz val point_equal: p:point -> q:point -> Stack bool (requires fun h -> live h p /\ live h q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)) )
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_equal: p:point -> q:point -> Stack bool (requires fun h -> live h p /\ live h q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)) )
[]
Hacl.Impl.Ed25519.PointEqual.point_equal
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> q: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 296, "start_col": 2, "start_line": 291 }
FStar.HyperStack.ST.Stack
val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) )
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_equal_1 p q tmp = let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in let h0 = ST.get() in fmul pxqz (getx p) (getz q); reduce pxqz; fmul qxpz (getx q) (getz p); reduce qxpz; eq pxqz qxpz
val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) ) let point_equal_1 p q tmp =
true
null
false
let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in let h0 = ST.get () in fmul pxqz (getx p) (getz q); reduce pxqz; fmul qxpz (getx q) (getz p); reduce qxpz; eq pxqz qxpz
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Ed25519.PointEqual.eq", "Prims.bool", "Prims.unit", "Hacl.Bignum25519.reduce", "Hacl.Bignum25519.fmul", "Hacl.Bignum25519.felem", "Hacl.Bignum25519.getz", "Hacl.Bignum25519.getx", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) let u51 = n:nat{n < 0x8000000000000} val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) open FStar.Calc #push-options "--z3rlimit 100" let lemma_equality1 a b c d e a' b' c' d' e' = assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc (==) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102) } (a + pow2 51 * b) % (pow2 102); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp () val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) ) [@CInline] let eq a b = let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let b0 = b.(0ul) in let b1 = b.(1ul) in let b2 = b.(2ul) in let b3 = b.(3ul) in let b4 = b.(4ul) in assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); let h0 = ST.get() in lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4); let open Lib.RawIntTypes in let open FStar.UInt64 in (u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 && u64_to_UInt64 a2 =^ u64_to_UInt64 b2 && u64_to_UInt64 a3 =^ u64_to_UInt64 b3 && u64_to_UInt64 a4 =^ u64_to_UInt64 b4) inline_for_extraction noextract val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) )
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) )
[]
Hacl.Impl.Ed25519.PointEqual.point_equal_1
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> q: Hacl.Bignum25519.point -> tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 20ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 14, "end_line": 247, "start_col": 27, "start_line": 237 }
FStar.HyperStack.ST.Stack
val point_equal_2: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true)) )
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_equal_2 p q tmp = let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in fmul pyqz (gety p) (getz q); reduce pyqz; fmul qypz (gety q) (getz p); reduce qypz; eq pyqz qypz
val point_equal_2: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true)) ) let point_equal_2 p q tmp =
true
null
false
let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in fmul pyqz (gety p) (getz q); reduce pyqz; fmul qypz (gety q) (getz p); reduce qypz; eq pyqz qypz
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Ed25519.PointEqual.eq", "Prims.bool", "Prims.unit", "Hacl.Bignum25519.reduce", "Hacl.Bignum25519.fmul", "Hacl.Bignum25519.felem", "Hacl.Bignum25519.getz", "Hacl.Bignum25519.gety", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) let u51 = n:nat{n < 0x8000000000000} val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) open FStar.Calc #push-options "--z3rlimit 100" let lemma_equality1 a b c d e a' b' c' d' e' = assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc (==) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102) } (a + pow2 51 * b) % (pow2 102); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp () val eq: a:felem -> b:felem -> Stack bool (requires fun h -> live h a /\ live h b /\ F51.fevalh h a == F51.as_nat h a /\ F51.fevalh h b == F51.as_nat h b /\ F51.felem_fits h a (1, 1, 1, 1, 1) /\ F51.felem_fits h b (1, 1, 1, 1, 1) ) (ensures fun h0 r h1 -> h0 == h1 /\ (r <==> F51.fevalh h0 a == F51.fevalh h0 b) ) [@CInline] let eq a b = let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let b0 = b.(0ul) in let b1 = b.(1ul) in let b2 = b.(2ul) in let b3 = b.(3ul) in let b4 = b.(4ul) in assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); let h0 = ST.get() in lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4); let open Lib.RawIntTypes in let open FStar.UInt64 in (u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 && u64_to_UInt64 a2 =^ u64_to_UInt64 b2 && u64_to_UInt64 a3 =^ u64_to_UInt64 b3 && u64_to_UInt64 a4 =^ u64_to_UInt64 b4) inline_for_extraction noextract val point_equal_1: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\ live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz)) ) ) let point_equal_1 p q tmp = let pxqz = sub tmp 0ul 5ul in let qxpz = sub tmp 5ul 5ul in let pyqz = sub tmp 10ul 5ul in let qypz = sub tmp 15ul 5ul in let h0 = ST.get() in fmul pxqz (getx p) (getz q); reduce pxqz; fmul qxpz (getx q) (getz p); reduce qxpz; eq pxqz qxpz inline_for_extraction noextract val point_equal_2: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true)) )
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_equal_2: p:point -> q:point -> tmp:lbuffer uint64 20ul -> Stack bool (requires fun h -> live h p /\ live h q /\live h tmp /\ disjoint tmp p /\ disjoint tmp q /\ F51.point_inv_t h p /\ F51.point_inv_t h q ) (ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\ (let px, py, pz, pt = F51.point_eval h0 p in let qx, qy, qz, qt = F51.point_eval h0 q in z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true)) )
[]
Hacl.Impl.Ed25519.PointEqual.point_equal_2
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> q: Hacl.Bignum25519.point -> tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 20ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 14, "end_line": 276, "start_col": 27, "start_line": 267 }
FStar.Pervasives.Lemma
val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_equality1 a b c d e a' b' c' d' e' = assert_norm(pow2 51 = 0x8000000000000); assert_norm(pow2 102 = 0x40000000000000000000000000); assert_norm(pow2 153 = 0x200000000000000000000000000000000000000); assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc (==) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc (==) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102) } (a + pow2 51 * b) % (pow2 102); }; calc (==) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp ()
val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) let lemma_equality1 a b c d e a' b' c' d' e' =
false
null
true
assert_norm (pow2 51 = 0x8000000000000); assert_norm (pow2 102 = 0x40000000000000000000000000); assert_norm (pow2 153 = 0x200000000000000000000000000000000000000); assert_norm (pow2 204 = 0x1000000000000000000000000000000000000000000000000000); let lemma_l_imp () : Lemma (requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') (ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') = FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1); FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153); assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204); calc ( == ) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (pow2 204 * e) (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)) } (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204); }; calc ( == ) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') (pow2 204 * e') (pow2 204); FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)) } (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 204) (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d'); calc ( == ) { (a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c) (pow2 153 * d) (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)) } (a + pow2 51 * b + pow2 102 * c) % (pow2 153); }; calc ( == ) { (a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c') (pow2 153 * d') (pow2 153); FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)) } (a' + pow2 51 * b' + pow2 102 * c') % (pow2 153); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 153) (a + pow2 51 * b + pow2 102 * c) (a' + pow2 51 * b' + pow2 102 * c'); calc ( == ) { (a + pow2 51 * b + pow2 102 * c) % (pow2 102); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)) } (a + pow2 51 * b) % (pow2 102); }; calc ( == ) { (a' + pow2 51 * b' + pow2 102 * c') % (pow2 102); ( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b') (pow2 102 * c') (pow2 102); FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)) } (a' + pow2 51 * b') % (pow2 102); }; FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b'); FStar.Math.Lemmas.cancel_mul_mod b (pow2 51); FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51); FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a' in let lemma_r_imp () : Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') (ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') = () in Classical.move_requires lemma_l_imp (); Classical.move_requires lemma_r_imp ()
{ "checked_file": "Hacl.Impl.Ed25519.PointEqual.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.PointEqual.fst" }
[ "lemma" ]
[ "Hacl.Impl.Ed25519.PointEqual.u51", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.squash", "Prims.op_Multiply", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Math.Lemmas.lemma_mod_injective", "FStar.Math.Lemmas.cancel_mul_mod", "FStar.Calc.calc_finish", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_mult_le_left", "Prims.op_Equality" ]
[]
module Hacl.Impl.Ed25519.PointEqual module ST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S51 = Hacl.Spec.Curve25519.Field51.Definition module SC = Spec.Curve25519 #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" val gte_q: s:lbuffer uint64 5ul -> Stack bool (requires fun h -> live h s /\ F56.qelem_fits h s (1, 1, 1, 1, 1) ) (ensures fun h0 b h1 -> h0 == h1 /\ (b <==> F56.as_nat h0 s >= Spec.Ed25519.q) ) [@CInline] let gte_q s = let h0 = ST.get() in let s0 = s.(0ul) in let s1 = s.(1ul) in let s2 = s.(2ul) in let s3 = s.(3ul) in let s4 = s.(4ul) in assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); let open FStar.UInt64 in let open Lib.RawIntTypes in if u64_to_UInt64 s4 >^ 0x00000010000000uL then true else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) let u51 = n:nat{n < 0x8000000000000} val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) open FStar.Calc #push-options "--z3rlimit 100"
false
false
Hacl.Impl.Ed25519.PointEqual.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_equality1: a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 -> a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 -> Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\ a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51) (ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e == a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==> (a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
[]
Hacl.Impl.Ed25519.PointEqual.lemma_equality1
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Impl.Ed25519.PointEqual.u51 -> b: Hacl.Impl.Ed25519.PointEqual.u51 -> c: Hacl.Impl.Ed25519.PointEqual.u51 -> d: Hacl.Impl.Ed25519.PointEqual.u51 -> e: Hacl.Impl.Ed25519.PointEqual.u51 -> a': Hacl.Impl.Ed25519.PointEqual.u51 -> b': Hacl.Impl.Ed25519.PointEqual.u51 -> c': Hacl.Impl.Ed25519.PointEqual.u51 -> d': Hacl.Impl.Ed25519.PointEqual.u51 -> e': Hacl.Impl.Ed25519.PointEqual.u51 -> FStar.Pervasives.Lemma (requires a < Prims.pow2 51 /\ b < Prims.pow2 51 /\ c < Prims.pow2 51 /\ d < Prims.pow2 51 /\ e < Prims.pow2 51 /\ a' < Prims.pow2 51 /\ b' < Prims.pow2 51 /\ c' < Prims.pow2 51 /\ d' < Prims.pow2 51 /\ e' < Prims.pow2 51) (ensures a + Prims.pow2 51 * b + Prims.pow2 102 * c + Prims.pow2 153 * d + Prims.pow2 204 * e == a' + Prims.pow2 51 * b' + Prims.pow2 102 * c' + Prims.pow2 153 * d' + Prims.pow2 204 * e' <==> a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
{ "end_col": 40, "end_line": 174, "start_col": 2, "start_line": 69 }
Prims.Tot
val cs:S.ciphersuite
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cs:S.ciphersuite = (DH.DH_P256, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
val cs:S.ciphersuite let cs:S.ciphersuite =
false
null
false
(DH.DH_P256, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
{ "checked_file": "Hacl.HPKE.P256_CP128_SHA256.fsti.checked", "dependencies": [ "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.P256_CP128_SHA256.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple4", "Spec.Agile.DH.algorithm", "Spec.Agile.HPKE.hash_algorithm", "Spec.Agile.HPKE.aead", "Spec.Hash.Definitions.hash_alg", "Spec.Agile.DH.DH_P256", "Spec.Hash.Definitions.SHA2_256", "Spec.Agile.HPKE.Seal", "Spec.Agile.AEAD.CHACHA20_POLY1305" ]
[]
module Hacl.HPKE.P256_CP128_SHA256 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash
false
true
Hacl.HPKE.P256_CP128_SHA256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cs:S.ciphersuite
[]
Hacl.HPKE.P256_CP128_SHA256.cs
{ "file_name": "code/hpke/Hacl.HPKE.P256_CP128_SHA256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Agile.HPKE.ciphersuite
{ "end_col": 96, "end_line": 10, "start_col": 23, "start_line": 10 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let norm_steps = [delta_attr [`%Norm]; iota; zeta; primops]
let norm_steps =
false
null
false
[delta_attr [`%Norm]; iota; zeta; primops]
{ "checked_file": "LowParse.Norm.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Norm.fst" }
[ "total" ]
[ "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops" ]
[]
module LowParse.Norm noeq type norm_t : Type = | Norm
false
true
LowParse.Norm.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val norm_steps : Prims.list FStar.Pervasives.norm_step
[]
LowParse.Norm.norm_steps
{ "file_name": "src/lowparse/LowParse.Norm.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
Prims.list FStar.Pervasives.norm_step
{ "end_col": 59, "end_line": 6, "start_col": 17, "start_line": 6 }
Prims.Tot
val compute_blake2s_128:compute_st Blake2S
[ { "abbrev": false, "full_module": "Hacl.Hash.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.HMAC", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Hash.Definitions", "short_module": "D" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.HMAC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HMAC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compute_blake2s_128: compute_st Blake2S = mk_compute (D.mk_impl Blake2S Hacl.Impl.Blake2.Core.M128) hash_blake2s_128 alloca_blake2s_128 init_blake2s_128 update_multi_blake2s_128 update_last_blake2s_128 finish_blake2s_128
val compute_blake2s_128:compute_st Blake2S let compute_blake2s_128:compute_st Blake2S =
false
null
false
mk_compute (D.mk_impl Blake2S Hacl.Impl.Blake2.Core.M128) hash_blake2s_128 alloca_blake2s_128 init_blake2s_128 update_multi_blake2s_128 update_last_blake2s_128 finish_blake2s_128
{ "checked_file": "Hacl.HMAC.Blake2s_128.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.HMAC.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "EverCrypt.Helpers.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HMAC.Blake2s_128.fst" }
[ "total" ]
[ "Hacl.HMAC.mk_compute", "Hacl.Hash.Definitions.mk_impl", "Spec.Hash.Definitions.Blake2S", "Hacl.Impl.Blake2.Core.M128", "Hacl.Hash.Blake2.hash_blake2s_128", "Hacl.Hash.Blake2.alloca_blake2s_128", "Hacl.Hash.Blake2.init_blake2s_128", "Hacl.Hash.Blake2.update_multi_blake2s_128", "Hacl.Hash.Blake2.update_last_blake2s_128", "Hacl.Hash.Blake2.finish_blake2s_128" ]
[]
module Hacl.HMAC.Blake2s_128 module B = LowStar.Buffer module D = Hacl.Hash.Definitions open Spec.Agile.HMAC open Spec.Hash.Definitions open FStar.HyperStack.ST open Lib.IntTypes open EverCrypt.Helpers open Hacl.HMAC open Hacl.Hash.Blake2 #set-options "--z3rlimit 25 --fuel 0 --ifuel 0" [@@ Comment "Write the HMAC-BLAKE2s MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes. `dst` must point to 32 bytes of memory."]
false
true
Hacl.HMAC.Blake2s_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 25, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compute_blake2s_128:compute_st Blake2S
[]
Hacl.HMAC.Blake2s_128.compute_blake2s_128
{ "file_name": "code/hmac/Hacl.HMAC.Blake2s_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.HMAC.compute_st Spec.Hash.Definitions.Blake2S
{ "end_col": 80, "end_line": 25, "start_col": 2, "start_line": 23 }
Prims.Tot
val sel_curry (m: t) (f: flag) : flag_val_t
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Map16", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sel_curry (m:t) (f:flag) : flag_val_t = sel f m
val sel_curry (m: t) (f: flag) : flag_val_t let sel_curry (m: t) (f: flag) : flag_val_t =
false
null
false
sel f m
{ "checked_file": "Vale.X64.Flags.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Flags.fsti" }
[ "total" ]
[ "Vale.X64.Flags.t", "Vale.X64.Machine_s.flag", "Vale.X64.Flags.sel", "Vale.X64.Flags.flag_val_t" ]
[]
module Vale.X64.Flags open FStar.Mul // This interface should not refer to Semantics_s open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Lib.Map16 unfold let flag_val_t = option bool // HACK: this shouldn't have to be unfolded (it has to do with the lambda in FStar.FunctionalExtensionality.(^->)) val t : Type0 val sel (f:flag) (m:t) : flag_val_t val upd (f:flag) (v:flag_val_t) (m:t) : t
false
true
Vale.X64.Flags.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sel_curry (m: t) (f: flag) : flag_val_t
[]
Vale.X64.Flags.sel_curry
{ "file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Vale.X64.Flags.t -> f: Vale.X64.Machine_s.flag -> Vale.X64.Flags.flag_val_t
{ "end_col": 51, "end_line": 17, "start_col": 44, "start_line": 17 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Lib.Map16", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let flag_val_t = option bool
let flag_val_t =
false
null
false
option bool
{ "checked_file": "Vale.X64.Flags.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Flags.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.option", "Prims.bool" ]
[]
module Vale.X64.Flags open FStar.Mul // This interface should not refer to Semantics_s open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Lib.Map16
false
true
Vale.X64.Flags.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val flag_val_t : Type0
[]
Vale.X64.Flags.flag_val_t
{ "file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 35, "end_line": 9, "start_col": 24, "start_line": 9 }
Prims.Tot
val to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t))
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Map16", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_fun (m:t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) = FStar.FunctionalExtensionality.on flag (sel_curry m)
val to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) let to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) =
false
null
false
FStar.FunctionalExtensionality.on flag (sel_curry m)
{ "checked_file": "Vale.X64.Flags.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Flags.fsti" }
[ "total" ]
[ "Vale.X64.Flags.t", "FStar.FunctionalExtensionality.on", "Vale.X64.Machine_s.flag", "Vale.X64.Flags.flag_val_t", "Vale.X64.Flags.sel_curry", "FStar.FunctionalExtensionality.restricted_t" ]
[]
module Vale.X64.Flags open FStar.Mul // This interface should not refer to Semantics_s open Vale.Def.Prop_s open Vale.X64.Machine_s open Vale.Lib.Map16 unfold let flag_val_t = option bool // HACK: this shouldn't have to be unfolded (it has to do with the lambda in FStar.FunctionalExtensionality.(^->)) val t : Type0 val sel (f:flag) (m:t) : flag_val_t val upd (f:flag) (v:flag_val_t) (m:t) : t let sel_curry (m:t) (f:flag) : flag_val_t = sel f m
false
false
Vale.X64.Flags.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t))
[]
Vale.X64.Flags.to_fun
{ "file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Vale.X64.Flags.t -> FStar.FunctionalExtensionality.restricted_t Vale.X64.Machine_s.flag (fun _ -> Vale.X64.Flags.flag_val_t)
{ "end_col": 54, "end_line": 20, "start_col": 2, "start_line": 20 }
FStar.All.ML
val test_inline: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline () : FStar.All.ML unit = test_inline_mov_input (); test_inline_mov_add_input (); test_inline_mul_inputs (); test_inline_mov_mul_rax_100 (); test_inline_mov_mul_inputs (); // This test leads (rightfully) to a failure in the printer due to a gcc bug // test_inline_mov_add_input_dummy_mul (); test_inline_comment_add (); test_inline_same_line (); test_inline_same_line_newline (); ()
val test_inline: Prims.unit -> FStar.All.ML unit let test_inline () : FStar.All.ML unit =
true
null
false
test_inline_mov_input (); test_inline_mov_add_input (); test_inline_mul_inputs (); test_inline_mov_mul_rax_100 (); test_inline_mov_mul_inputs (); test_inline_comment_add (); test_inline_same_line (); test_inline_same_line_newline (); ()
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.test_inline_same_line_newline", "Vale.Test.TestInline.test_inline_same_line", "Vale.Test.TestInline.test_inline_comment_add", "Vale.Test.TestInline.test_inline_mov_mul_inputs", "Vale.Test.TestInline.test_inline_mov_mul_rax_100", "Vale.Test.TestInline.test_inline_mul_inputs", "Vale.Test.TestInline.test_inline_mov_add_input", "Vale.Test.TestInline.test_inline_mov_input" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c let test_inline_mov_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c // This test generates the correct inline assembly code, but only works with gcc >= 9 // On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly // allocate the output "result" into register rax (* let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Mul64 (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c *) let test_inline_comment_add () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let s = "This is a comment" in let c = Block [ Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_comment_add" (Some "result") args regs_mod c let test_inline_same_line () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_same_line" (Some "result") args regs_mod c let test_inline_same_line_newline () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr_annotate ins_Newline (AnnotateNewline ())); Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_same_line_newline" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 4, "end_line": 160, "start_col": 2, "start_line": 150 }
FStar.All.ML
val test_inline_mov_input: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c
val test_inline_mov_input: Prims.unit -> FStar.All.ML unit let test_inline_mov_input () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15))] in print_function "test_inline_mov_input" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rR15", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRdx", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in ()
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_mov_input: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_mov_input
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 72, "end_line": 39, "start_col": 50, "start_line": 31 }
FStar.All.ML
val print_function (name: string) (ret_val: option string) (args: list (string & td & reg_64)) (regs_mod: (reg_64 -> bool)) (c: code) : FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in ()
val print_function (name: string) (ret_val: option string) (args: list (string & td & reg_64)) (regs_mod: (reg_64 -> bool)) (c: code) : FStar.All.ML unit let print_function (name: string) (ret_val: option string) (args: list (string & td & reg_64)) (regs_mod: (reg_64 -> bool)) (c: code) : FStar.All.ML unit =
true
null
false
let len = List.length args in let arg_names n = match List.Tot.nth args n with | None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n: reg_nat len) : reg_64 = match List.Tot.nth args n with | None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in ()
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.string", "FStar.Pervasives.Native.option", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Vale.X64.Machine_Semantics_s.code", "Prims.unit", "Prims.int", "Vale.X64.Print_Inline_s.print_inline", "Prims.Nil", "Vale.Interop.X64.reg_nat", "FStar.List.Tot.Base.nth", "FStar.List.Tot.Base.map", "Prims.nat", "FStar.List.Tot.Base.length" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code)
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val print_function (name: string) (ret_val: option string) (args: list (string & td & reg_64)) (regs_mod: (reg_64 -> bool)) (c: code) : FStar.All.ML unit
[]
Vale.Test.TestInline.print_function
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
name: Prims.string -> ret_val: FStar.Pervasives.Native.option Prims.string -> args: Prims.list ((Prims.string * Vale.Interop.Base.td) * Vale.X64.Machine_s.reg_64) -> regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> c: Vale.X64.Machine_Semantics_s.code -> FStar.All.ML Prims.unit
{ "end_col": 4, "end_line": 29, "start_col": 3, "start_line": 21 }
FStar.All.ML
val test_inline_mul_inputs: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
val test_inline_mul_inputs: Prims.unit -> FStar.All.ML unit let test_inline_mul_inputs () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)) ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rRbx", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_IMul64", "Vale.X64.Machine_s.rR15", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRdx", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_mul_inputs: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_mul_inputs
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 73, "end_line": 62, "start_col": 51, "start_line": 52 }
FStar.All.ML
val test_inline_mov_add_input: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
val test_inline_mov_add_input: Prims.unit -> FStar.All.ML unit let test_inline_mov_add_input () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)) ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rR15", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Add64", "Vale.X64.Machine_s.OConst", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRdx", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_mov_add_input: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_mov_add_input
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 76, "end_line": 50, "start_col": 54, "start_line": 41 }
FStar.All.ML
val test_inline_same_line: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_same_line () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_same_line" (Some "result") args regs_mod c
val test_inline_same_line: Prims.unit -> FStar.All.ML unit let test_inline_same_line () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)) ] in print_function "test_inline_same_line" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Space", "Vale.X64.Machine_Semantics_s.AnnotateSpace", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Add64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rR15", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.rRax", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c let test_inline_mov_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c // This test generates the correct inline assembly code, but only works with gcc >= 9 // On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly // allocate the output "result" into register rax (* let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Mul64 (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c *) let test_inline_comment_add () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let s = "This is a comment" in let c = Block [ Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_comment_add" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_same_line: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_same_line
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 72, "end_line": 130, "start_col": 50, "start_line": 120 }
FStar.All.ML
val test_inline_comment_add: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_comment_add () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let s = "This is a comment" in let c = Block [ Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_comment_add" (Some "result") args regs_mod c
val test_inline_comment_add: Prims.unit -> FStar.All.ML unit let test_inline_comment_add () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rR15 || r = rRax) in let s = "This is a comment" in let c = Block [ Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)) ] in print_function "test_inline_comment_add" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Comment", "Vale.X64.Machine_Semantics_s.AnnotateComment", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Add64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rR15", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.rRax", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c let test_inline_mov_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c // This test generates the correct inline assembly code, but only works with gcc >= 9 // On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly // allocate the output "result" into register rax (* let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Mul64 (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c *)
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_comment_add: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_comment_add
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 74, "end_line": 118, "start_col": 52, "start_line": 107 }
FStar.All.ML
val test_inline_mov_mul_inputs: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_mov_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
val test_inline_mov_mul_inputs: Prims.unit -> FStar.All.ML unit let test_inline_mov_mul_inputs () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)) ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rR15", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_IMul64", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRdx", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_mov_mul_inputs: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_mov_mul_inputs
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 77, "end_line": 87, "start_col": 55, "start_line": 76 }
FStar.All.ML
val test_inline_mov_mul_rax_100: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
val test_inline_mov_mul_rax_100: Prims.unit -> FStar.All.ML unit let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rRbx)] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)) ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.OConst", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_IMul64", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Vale.X64.Machine_s.rRdx", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_mov_mul_rax_100: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_mov_mul_rax_100
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 78, "end_line": 74, "start_col": 56, "start_line": 64 }
FStar.All.ML
val test_inline_same_line_newline: Prims.unit -> FStar.All.ML unit
[ { "abbrev": false, "full_module": "Vale.X64.Print_Inline_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_inline_same_line_newline () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr_annotate ins_Newline (AnnotateNewline ())); Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_same_line_newline" (Some "result") args regs_mod c
val test_inline_same_line_newline: Prims.unit -> FStar.All.ML unit let test_inline_same_line_newline () : FStar.All.ML unit =
true
null
false
let args = [("first_arg", TD_Base TUInt64, rR15)] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr_annotate ins_Newline (AnnotateNewline ())); Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)) ] in print_function "test_inline_same_line_newline" (Some "result") args regs_mod c
{ "checked_file": "Vale.Test.TestInline.fst.checked", "dependencies": [ "Vale.X64.Print_Inline_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.Test.TestInline.fst" }
[ "ml" ]
[ "Prims.unit", "Vale.Test.TestInline.print_function", "FStar.Pervasives.Native.Some", "Prims.string", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.Machine_s.Block", "Prims.Cons", "Vale.X64.Machine_s.Ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Space", "Vale.X64.Machine_Semantics_s.AnnotateSpace", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rR15", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Add64", "Vale.X64.Instructions_s.ins_Newline", "Vale.X64.Machine_Semantics_s.AnnotateNewline", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "FStar.Pervasives.Native.tuple3", "Vale.Interop.Base.td", "FStar.Pervasives.Native.Mktuple3", "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Test.TestInline open FStar.Mul open FStar.IO open Vale.Arch.HeapTypes_s open Vale.X64.Machine_s open Vale.X64.Instructions_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.InsLemmas open Vale.Interop.Base open Vale.Interop.X64 open Vale.X64.Print_Inline_s let print_function (name:string) (ret_val:option string) (args:list (string & td & reg_64)) (regs_mod:reg_64 -> bool) (c:code) : FStar.All.ML unit = let len = List.length args in let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in let arg_types = List.Tot.map (fun (_, t, _) -> t) args in let arg_regs (n:reg_nat len) : reg_64 = match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r in let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in () let test_inline_mov_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mov_input" (Some "result") args regs_mod c let test_inline_mov_add_input () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input" (Some "result") args regs_mod c let test_inline_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_mul_inputs" (Some "result") args regs_mod c let test_inline_mov_mul_rax_100 () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c let test_inline_mov_mul_inputs () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx)); Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15)); Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx)); ] in print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c // This test generates the correct inline assembly code, but only works with gcc >= 9 // On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly // allocate the output "result" into register rax (* let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rRax || r = rRdx) in let c = Block [ Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Mul64 (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); Ins (make_instr ins_Add64 (OReg rRax) (OConst 1)); ] in print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c *) let test_inline_comment_add () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let s = "This is a comment" in let c = Block [ Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_comment_add" (Some "result") args regs_mod c let test_inline_same_line () : FStar.All.ML unit = let args = [ ("first_arg", TD_Base TUInt64, rR15); ] in let regs_mod r = (r = rR15 || r = rRax) in let c = Block [ Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0)); Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15)); Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15)); ] in print_function "test_inline_same_line" (Some "result") args regs_mod c
false
false
Vale.Test.TestInline.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_inline_same_line_newline: Prims.unit -> FStar.All.ML unit
[]
Vale.Test.TestInline.test_inline_same_line_newline
{ "file_name": "vale/code/test/Vale.Test.TestInline.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.unit
{ "end_col": 80, "end_line": 146, "start_col": 58, "start_line": 132 }
FStar.Pervasives.Lemma
val lemma_set_to_one_reverse_equality (q0 q1: quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
[ { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) = reveal_reverse_bytes_quad32 q0; reveal_reverse_bytes_quad32 q1; ()
val lemma_set_to_one_reverse_equality (q0 q1: quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) let lemma_set_to_one_reverse_equality (q0 q1: quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) =
false
null
true
reveal_reverse_bytes_quad32 q0; reveal_reverse_bytes_quad32 q1; ()
{ "checked_file": "Vale.AES.GCM.fst.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Types_s.reveal_reverse_bytes_quad32", "Prims.b2t", "Vale.AES.GCM.lower3_equal", "Prims.squash", "Prims.eq2", "Vale.AES.GCM.set_to_one_LE", "Vale.Def.Types_s.reverse_bytes_quad32", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCM open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_s open Vale.AES.AES_s open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GHash_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc open Vale.Def.Words.Four_s let lemma_set_to_one_equality (q0 q1:quad32) : Lemma (requires upper3_equal q0 q1) (ensures set_to_one_LE q0 == set_to_one_LE q1) = () let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
false
false
Vale.AES.GCM.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_set_to_one_reverse_equality (q0 q1: quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
[]
Vale.AES.GCM.lemma_set_to_one_reverse_equality
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q0: Vale.Def.Types_s.quad32 -> q1: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.GCM.lower3_equal q0 q1) (ensures Vale.AES.GCM.set_to_one_LE (Vale.Def.Types_s.reverse_bytes_quad32 q0) == Vale.AES.GCM.set_to_one_LE (Vale.Def.Types_s.reverse_bytes_quad32 q1))
{ "end_col": 5, "end_line": 32, "start_col": 3, "start_line": 30 }
FStar.Pervasives.Lemma
val append_distributes_le_seq_quad32_to_bytes (x y: seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
[ { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) = append_distributes_le_seq_quad32_to_bytes x y
val append_distributes_le_seq_quad32_to_bytes (x y: seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) let append_distributes_le_seq_quad32_to_bytes (x y: seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) =
false
null
true
append_distributes_le_seq_quad32_to_bytes x y
{ "checked_file": "Vale.AES.GCM.fst.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCM open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_s open Vale.AES.AES_s open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GHash_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc open Vale.Def.Words.Four_s let lemma_set_to_one_equality (q0 q1:quad32) : Lemma (requires upper3_equal q0 q1) (ensures set_to_one_LE q0 == set_to_one_LE q1) = () let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) = reveal_reverse_bytes_quad32 q0; reveal_reverse_bytes_quad32 q1; () let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) = let q0 = le_bytes_to_quad32 b0 in let q1 = le_bytes_to_quad32 b1 in le_bytes_to_quad32_reveal (); (* * AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this? *) reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) (slice (le_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_LE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in le_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q); // Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below calc (==) { slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; // Prove this so we can call lemma_set_to_one_reverse_equality below calc (==) { le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes)); == {} le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes)); == {} le_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one_LE (reverse_bytes_quad32 q); == { le_bytes_to_quad32_to_bytes q } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q))); == { lemma_le_seq_quad32_to_bytes_prefix_equality q; lemma_le_bytes_to_quad32_prefix_equality (le_quad32_to_bytes q) (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)); lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (le_quad32_to_bytes q)) (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))) } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))); == { lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))) (le_bytes_to_quad32 (pad_to_128_bits iv)); lemma_le_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv))); == {compute_iv_BE_reveal ()} compute_iv_BE h_LE iv; }; () open Vale.AES.GHash let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) 0 1) (8 * (length iv)) 0)) (ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) = assert (two_to_nat32 (Mktwo 0 0) == 0); let q0 = Mkfour 0 0 0 0 in lemma_insert_nat64_nat32s q0 0 0; assert (insert_nat64 q0 0 1 == q0); insert_nat64_reveal (); assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0)); ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\ cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\ length plain < pow2_32 /\ length auth < pow2_32 )) (ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = gcm_encrypt_LE_reveal () (* let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in be_bytes_to_quad32_to_bytes iv_BE; assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE); assert (s_iv_BE == iv_BE); assert (s_key_LE == key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key == gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key); () *) let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\ cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\ length_quad32 == reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\ (let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key) )) (ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = insert_nat64_reveal (); gcm_encrypt_LE_reveal () //be_bytes_to_quad32_to_bytes iv_BE; //let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in //() #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_LE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_LE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let cipher_bound:nat = length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in //cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let cipher_bound:nat = length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0) in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > (length p128x6 + length p128) * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128x6 + length p128)) (slice (append p128x6 p128) 0 (length p128x6 + length p128))); assert (equal (slice cipher 0 (length p128x6 + length p128)) (slice (append c128x6 c128) 0 (length p128x6 + length p128))); gctr_partial_opaque_ignores_postfix alg (length p128x6 + length p128) plain (append p128x6 p128) cipher (append c128x6 c128) key ctr_BE_2; assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2); gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_LE_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key); let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in assert (equal plain_bytes (le_seq_quad32_to_bytes plain)); assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher)); assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
false
false
Vale.AES.GCM.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_distributes_le_seq_quad32_to_bytes (x y: seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
[]
Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> y: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append x y) == FStar.Seq.Base.append (Vale.Def.Types_s.le_seq_quad32_to_bytes x) (Vale.Def.Types_s.le_seq_quad32_to_bytes y))
{ "end_col": 47, "end_line": 324, "start_col": 2, "start_line": 324 }
FStar.Pervasives.Lemma
val pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
[ { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
val pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) let pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) =
false
null
true
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
{ "checked_file": "Vale.AES.GCM.fst.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "Vale.AES.GCTR_s.pad_to_128_bits", "FStar.Seq.Base.append", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCM open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_s open Vale.AES.AES_s open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GHash_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc open Vale.Def.Words.Four_s let lemma_set_to_one_equality (q0 q1:quad32) : Lemma (requires upper3_equal q0 q1) (ensures set_to_one_LE q0 == set_to_one_LE q1) = () let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) = reveal_reverse_bytes_quad32 q0; reveal_reverse_bytes_quad32 q1; () let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) = let q0 = le_bytes_to_quad32 b0 in let q1 = le_bytes_to_quad32 b1 in le_bytes_to_quad32_reveal (); (* * AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this? *) reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) (slice (le_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_LE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in le_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q); // Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below calc (==) { slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; // Prove this so we can call lemma_set_to_one_reverse_equality below calc (==) { le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes)); == {} le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes)); == {} le_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one_LE (reverse_bytes_quad32 q); == { le_bytes_to_quad32_to_bytes q } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q))); == { lemma_le_seq_quad32_to_bytes_prefix_equality q; lemma_le_bytes_to_quad32_prefix_equality (le_quad32_to_bytes q) (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)); lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (le_quad32_to_bytes q)) (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))) } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))); == { lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))) (le_bytes_to_quad32 (pad_to_128_bits iv)); lemma_le_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv))); == {compute_iv_BE_reveal ()} compute_iv_BE h_LE iv; }; () open Vale.AES.GHash let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) 0 1) (8 * (length iv)) 0)) (ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) = assert (two_to_nat32 (Mktwo 0 0) == 0); let q0 = Mkfour 0 0 0 0 in lemma_insert_nat64_nat32s q0 0 0; assert (insert_nat64 q0 0 1 == q0); insert_nat64_reveal (); assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0)); ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\ cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\ length plain < pow2_32 /\ length auth < pow2_32 )) (ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = gcm_encrypt_LE_reveal () (* let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in be_bytes_to_quad32_to_bytes iv_BE; assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE); assert (s_iv_BE == iv_BE); assert (s_key_LE == key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key == gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key); assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key); () *) let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\ cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\ length_quad32 == reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\ (let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key) )) (ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = insert_nat64_reveal (); gcm_encrypt_LE_reveal () //be_bytes_to_quad32_to_bytes iv_BE; //let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in //() #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_LE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\ (let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_LE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let cipher_bound:nat = length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in //cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append p128x6 p128) p_bytes else append p128x6 p128 in let cipher:seq quad32 = if p_num_bytes > (length p128x6 + length p128) * 16 then append (append c128x6 c128) c_bytes else append c128x6 c128 in let cipher_bound:nat = length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0) in let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > (length p128x6 + length p128) * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128x6 + length p128)) (slice (append p128x6 p128) 0 (length p128x6 + length p128))); assert (equal (slice cipher 0 (length p128x6 + length p128)) (slice (append c128x6 c128) 0 (length p128x6 + length p128))); gctr_partial_opaque_ignores_postfix alg (length p128x6 + length p128) plain (append p128x6 p128) cipher (append c128x6 c128) key ctr_BE_2; assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2); gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_LE_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key); let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in assert (equal plain_bytes (le_seq_quad32_to_bytes plain)); assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher)); assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) : Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) = append_distributes_le_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
false
false
Vale.AES.GCM.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
[]
Vale.AES.GCM.pad_to_128_bits_multiple_append
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> y: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length x % 16 == 0) (ensures Vale.AES.GCTR_s.pad_to_128_bits (FStar.Seq.Base.append x y) == FStar.Seq.Base.append x (Vale.AES.GCTR_s.pad_to_128_bits y))
{ "end_col": 78, "end_line": 330, "start_col": 2, "start_line": 330 }
FStar.Pervasives.Lemma
val lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
[ { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) (slice (le_quad32_to_bytes q) 0 12)); ()
val lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) let lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) =
false
null
true
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) (slice (le_quad32_to_bytes q) 0 12)); ()
{ "checked_file": "Vale.AES.GCM.fst.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "FStar.Seq.Base.slice", "Vale.AES.GCTR_s.pad_to_128_bits", "Vale.Def.Types_s.le_quad32_to_bytes", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GCM open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_s open Vale.AES.AES_s open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GHash_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc open Vale.Def.Words.Four_s let lemma_set_to_one_equality (q0 q1:quad32) : Lemma (requires upper3_equal q0 q1) (ensures set_to_one_LE q0 == set_to_one_LE q1) = () let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma (requires lower3_equal q0 q1) (ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) = reveal_reverse_bytes_quad32 q0; reveal_reverse_bytes_quad32 q1; () let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) = let q0 = le_bytes_to_quad32 b0 in let q1 = le_bytes_to_quad32 b1 in le_bytes_to_quad32_reveal (); (* * AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this? *) reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
false
false
Vale.AES.GCM.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
[]
Vale.AES.GCM.lemma_le_seq_quad32_to_bytes_prefix_equality
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes q) 0 12 == FStar.Seq.Base.slice (Vale.AES.GCTR_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes q) 0 12)) 0 12)
{ "end_col": 4, "end_line": 55, "start_col": 2, "start_line": 53 }