effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Pervasives.Lemma | val slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
() | val slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
let slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = | false | null | true | assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.append",
"Prims.op_Subtraction",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) | [] | Vale.AES.GCM.slice_append_back | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: FStar.Seq.Base.seq a -> y: FStar.Seq.Base.seq a -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length x <= i /\ i <= FStar.Seq.Base.length x + FStar.Seq.Base.length y)
(ensures
FStar.Seq.Base.slice (FStar.Seq.Base.append x y) 0 i ==
FStar.Seq.Base.append x (FStar.Seq.Base.slice y 0 (i - FStar.Seq.Base.length x))) | {
"end_col": 4,
"end_line": 319,
"start_col": 2,
"start_line": 318
} |
FStar.Pervasives.Lemma | val lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
() | val lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
let lemma_compute_iv_hard (iv: supported_iv_LE) (quads: seq quad32) (length_quad h_LE j0: quad32)
: Lemma
(requires
~(length iv == 96 / 8) /\ quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) 0 1) (8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) = | false | null | true | assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.AES.GCM_s.compute_iv_BE_reveal",
"Vale.AES.GHash.ghash_incremental_to_ghash",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.insert_nat64_reveal",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.insert_nat64",
"Vale.Arch.Types.lemma_insert_nat64_nat32s",
"Vale.Def.Words_s.nat32",
"Prims.int",
"Vale.Arch.Types.two_to_nat32",
"Vale.Def.Words_s.Mktwo",
"Prims.l_and",
"Prims.l_not",
"Prims.op_Division",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.AES.GHash.ghash_incremental",
"Prims.squash",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) | [] | Vale.AES.GCM.lemma_compute_iv_hard | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
iv: Vale.AES.GCM_s.supported_iv_LE ->
quads: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32 ->
h_LE: Vale.Def.Types_s.quad32 ->
j0: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
~(FStar.Seq.Base.length iv == 96 / 8) /\
quads == Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits iv) /\
j0 ==
Vale.AES.GHash.ghash_incremental h_LE
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(FStar.Seq.Base.append quads (FStar.Seq.Base.create 1 length_quad)) /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
0
1)
(8 * FStar.Seq.Base.length iv)
0))
(ensures Vale.Def.Types_s.reverse_bytes_quad32 j0 == Vale.AES.GCM_s.compute_iv_BE h_LE iv) | {
"end_col": 4,
"end_line": 147,
"start_col": 2,
"start_line": 139
} |
FStar.Pervasives.Lemma | val gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal () | val gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
let gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = | false | null | true | gcm_encrypt_LE_reveal () | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.unit",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.eq2",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.AES.GCTR.make_gctr_plain_LE",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | [] | Vale.AES.GCM.gcm_encrypt_LE_fst_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
iv: Vale.AES.GCM_s.supported_iv_LE ->
iv_enc: Vale.Def.Types_s.quad32 ->
iv_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
iv_enc == Vale.AES.GCTR_s.inc32 (Vale.AES.GCM_s.compute_iv_BE h_LE iv) 1 /\
cipher ==
Vale.AES.GCTR_s.gctr_encrypt_LE iv_enc (Vale.AES.GCTR.make_gctr_plain_LE plain) alg key /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32))
(ensures
cipher ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth)) | {
"end_col": 26,
"end_line": 160,
"start_col": 2,
"start_line": 160
} |
FStar.Pervasives.Lemma | val lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
() | val lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
let lemma_gcm_encrypt_decrypt_equiv
(alg: algorithm)
(key: seq nat32)
(iv: supported_iv_LE)
(j0_BE: quad32)
(plain cipher auth alleged_tag: seq nat8)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth))
(ensures
plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) = | false | null | true | gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.unit",
"Vale.AES.GCM_s.gcm_decrypt_LE_reveal",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.b2t",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.squash",
"Prims.bool",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) | [] | Vale.AES.GCM.lemma_gcm_encrypt_decrypt_equiv | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv) /\
FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
plain ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
cipher
auth))
(ensures
plain ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_decrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
cipher
auth
alleged_tag)) | {
"end_col": 4,
"end_line": 728,
"start_col": 2,
"start_line": 726
} |
FStar.Pervasives.Lemma | val lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i)) | val lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
let lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) = | false | null | true | let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i: int).
(0 <= i /\ i < 12) ==>
(index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Prims._assert",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"FStar.Seq.Base.slice",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"Prims.op_Modulus",
"Vale.Def.Words_s.four",
"Prims.op_Division",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"Vale.Def.Types_s.le_bytes_to_quad32_reveal",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Prims.squash",
"Vale.AES.GCM.lower3_equal",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) | [] | Vale.AES.GCM.lemma_le_bytes_to_quad32_prefix_equality | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b0: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b0 == 16} ->
b1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b1 == 16}
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.slice b0 0 12 == FStar.Seq.Base.slice b1 0 12)
(ensures
Vale.AES.GCM.lower3_equal (Vale.Def.Types_s.le_bytes_to_quad32 b0)
(Vale.Def.Types_s.le_bytes_to_quad32 b1)) | {
"end_col": 80,
"end_line": 48,
"start_col": 3,
"start_line": 37
} |
FStar.Pervasives.Lemma | val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
) | val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
let lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat)
: Lemma
(requires
t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1)
(ensures
slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) = | false | null | true | if num_bytes > (length s) * 16
then (())
else
(calc ( == ) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
( == ) { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
( == ) { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s)
(le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
( == ) { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()) | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Prims.bool",
"Prims.unit",
"FStar.Calc.calc_finish",
"Vale.Def.Types_s.nat8",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes",
"Prims.squash",
"Vale.Lib.Seqs.lemma_slice_first_exactly_in_append",
"Prims._assert",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.int",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | [] | Vale.AES.GCM.lemma_length_simplifier | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
t: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
t ==
(match num_bytes > FStar.Seq.Base.length s * 16 with
| true -> FStar.Seq.Base.append s bytes
| _ -> s) /\
(num_bytes <= FStar.Seq.Base.length s * 16 ==> num_bytes == FStar.Seq.Base.length s * 16) /\
FStar.Seq.Base.length s * 16 <= num_bytes /\ num_bytes < FStar.Seq.Base.length s * 16 + 16 /\
FStar.Seq.Base.length bytes == 1)
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes t) 0 num_bytes ==
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append s bytes
))
0
num_bytes) | {
"end_col": 3,
"end_line": 611,
"start_col": 2,
"start_line": 598
} |
FStar.Pervasives.Lemma | val gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal () | val gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
let gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) = | false | null | true | insert_nat64_reveal ();
gcm_encrypt_LE_reveal () | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.unit",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.b2t",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.AES.AES_s.aes_encrypt_LE",
"Prims.squash",
"FStar.Pervasives.Native.snd",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | [] | Vale.AES.GCM.gcm_encrypt_LE_snd_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
length_quad32: Vale.Def.Types_s.quad32 ->
hash: Vale.Def.Types_s.quad32 ->
mac: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
cipher ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth) /\
length_quad32 ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * FStar.Seq.Base.length auth)
1)
(8 * FStar.Seq.Base.length plain)
0) /\
(let auth_padded_quads =
Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits auth)
in
let cipher_padded_quads =
Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits cipher)
in
hash ==
Vale.AES.GHash_s.ghash_LE h_LE
(FStar.Seq.Base.append auth_padded_quads
(FStar.Seq.Base.append cipher_padded_quads (FStar.Seq.Base.create 1 length_quad32)
)) /\
Vale.Def.Types_s.le_quad32_to_bytes mac ==
Vale.AES.GCTR_s.gctr_encrypt_LE j0_BE (Vale.Def.Types_s.le_quad32_to_bytes hash) alg key
)))
(ensures
Vale.Def.Types_s.le_quad32_to_bytes mac ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth)) | {
"end_col": 26,
"end_line": 198,
"start_col": 2,
"start_line": 197
} |
FStar.Pervasives.Lemma | val decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad)))
=
gcm_decrypt_LE_reveal ();
insert_nat64_reveal ();
(*
let b = snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad)) in
let (_, ct) = gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad) in
assert (b = (ct = (le_quad32_to_bytes alleged_tag_quad)));
assert (ct == le_quad32_to_bytes computed_tag);
assert (b == (le_quad32_to_bytes computed_tag = le_quad32_to_bytes alleged_tag_quad));
*)
le_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag;
(*
assert (b == (computed_tag = alleged_tag_quad));
assert ((rax = 0) == (computed_tag = alleged_tag_quad));
*)
() | val decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad)))
let decrypt_helper
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth: seq nat8)
(rax: nat64)
(alleged_tag_quad computed_tag: quad32)
: Lemma
(requires
is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth)
(ensures
(rax = 0) ==
snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) = | false | null | true | gcm_decrypt_LE_reveal ();
insert_nat64_reveal ();
le_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag;
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Words_s.nat64",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Arch.Types.le_quad32_to_bytes_injective_specific",
"Vale.Def.Types_s.insert_nat64_reveal",
"Vale.AES.GCM_s.gcm_decrypt_LE_reveal",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_GreaterThan",
"Prims.logical",
"Prims.eq2",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCM.gcm_decrypt_LE_tag",
"Prims.squash",
"FStar.Pervasives.Native.snd",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
()
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
()
#reset-options "--z3rlimit 60"
let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
insert_nat64_reveal ();
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
//gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes j0_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append p128x6 p128) p_bytes in
calc (==) {
append (append (append auth_quads p128x6) p128) p_bytes;
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) p_bytes;
== { append_assoc auth_quads (append p128x6 p128) p_bytes }
append auth_quads (append (append p128x6 p128) p_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads p128x6) p128) p_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append p128x6 p128) p_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== { assert(equal (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes) plain_bytes) }
append (le_seq_quad32_to_bytes auth_quads) plain_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) plain_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) plain_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
()
) else (
calc (==) {
append (append (append auth_quads p128x6) p128) (create 1 length_quad);
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) (create 1 length_quad);
== { append_assoc auth_quads (append p128x6 p128) (create 1 length_quad) }
append auth_quads (append (append p128x6 p128) (create 1 length_quad));
};
let c = append p128x6 p128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
()
);
()
#reset-options ""
let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
gcm_blocks_dec_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) | [] | Vale.AES.GCM.decrypt_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
rax: Vale.Def.Words_s.nat64 ->
alleged_tag_quad: Vale.Def.Types_s.quad32 ->
computed_tag: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_common_s.is_aes_key alg key /\
FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
(match alleged_tag_quad = computed_tag with
| true -> rax = 0
| _ -> rax > 0) /\
Vale.Def.Types_s.le_quad32_to_bytes computed_tag ==
Vale.AES.GCM.gcm_decrypt_LE_tag alg key iv cipher auth)
(ensures
rax = 0 ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_decrypt_LE alg
key
iv
cipher
auth
(Vale.Def.Types_s.le_quad32_to_bytes alleged_tag_quad))) | {
"end_col": 4,
"end_line": 1174,
"start_col": 2,
"start_line": 1159
} |
FStar.Pervasives.Lemma | val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag))) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
() | val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
let gcm_blocks_helper_dec_simplified
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes alleged_tag: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2))
(ensures
(let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_decrypt_LE alg
(seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes
alleged_tag))) = | false | null | true | gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv
j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.lemma_gcm_encrypt_decrypt_equiv",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Vale.AES.GCM.lemma_length_simplifier",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCM.gcm_blocks_helper_enc",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.int",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR_s.inc32",
"Prims.squash",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
()
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag))) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag))) | [] | Vale.AES.GCM.gcm_blocks_helper_dec_simplified | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
p_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\
(let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2))
(ensures
(let plain_raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher_raw_quads =
FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads)
0
p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_decrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes
alleged_tag))) | {
"end_col": 4,
"end_line": 798,
"start_col": 2,
"start_line": 778
} |
FStar.Pervasives.Lemma | val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
let gcm_blocks_helper_simplified
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) = | false | null | true | gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes
a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.lemma_length_simplifier",
"FStar.Seq.Base.append",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCM.gcm_blocks_helper",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Prims.int",
"Vale.AES.AES_s.is_aes_key_LE",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.op_Equality",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR_s.inc32",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Vale.Def.Types_s.le_quad32_to_bytes",
"FStar.Pervasives.Native.snd",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
) | [] | Vale.AES.GCM.gcm_blocks_helper_simplified | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_num_bytes: Prims.nat ->
a_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
h: Vale.Def.Types_s.quad32 ->
enc_hash: Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\
a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\
j0_BE == Vale.AES.GCM_s.compute_iv_BE h iv /\
h = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\
p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * a_num_bytes)
1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1 = j0_BE in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let auth_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in
let auth_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append auth_quads c128x6) c128 in
let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in
let raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true ->
let raw_quads = FStar.Seq.Base.append raw_quads c_bytes in
let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads)
0
total_bytes
in
let input_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in
Vale.Def.Types_s.le_bytes_to_seq_quad32 input_padded_bytes
| _ -> raw_quads)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let final_quads =
FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad)
in
enc_hash ==
Vale.AES.GCTR_s.gctr_encrypt_block ctr_BE_1
(Vale.AES.GHash_s.ghash_LE h final_quads)
alg
key
0)))
(ensures
(let auth_raw_quads = FStar.Seq.Base.append a128 a_bytes in
let auth_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let plain_raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher_raw_quads =
FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads)
0
p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes) /\
Vale.Def.Types_s.le_quad32_to_bytes enc_hash ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes))) | {
"end_col": 4,
"end_line": 712,
"start_col": 2,
"start_line": 695
} |
FStar.Pervasives.Lemma | val gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
gcm_blocks_dec_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | val gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
let gcm_blocks_dec_helper_simplified
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash ==
gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) = | false | null | true | gcm_blocks_dec_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes
a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.lemma_length_simplifier",
"FStar.Seq.Base.append",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCM.gcm_blocks_dec_helper",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Prims.int",
"Vale.AES.AES_s.is_aes_key_LE",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.op_Equality",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR_s.inc32",
"Prims.squash",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCM.gcm_decrypt_LE_tag",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
()
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
()
#reset-options "--z3rlimit 60"
let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
insert_nat64_reveal ();
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
//gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes j0_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append p128x6 p128) p_bytes in
calc (==) {
append (append (append auth_quads p128x6) p128) p_bytes;
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) p_bytes;
== { append_assoc auth_quads (append p128x6 p128) p_bytes }
append auth_quads (append (append p128x6 p128) p_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads p128x6) p128) p_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append p128x6 p128) p_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== { assert(equal (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes) plain_bytes) }
append (le_seq_quad32_to_bytes auth_quads) plain_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) plain_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) plain_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
()
) else (
calc (==) {
append (append (append auth_quads p128x6) p128) (create 1 length_quad);
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) (create 1 length_quad);
== { append_assoc auth_quads (append p128x6 p128) (create 1 length_quad) }
append auth_quads (append (append p128x6 p128) (create 1 length_quad));
};
let c = append p128x6 p128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
()
);
()
#reset-options ""
let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)) | [] | Vale.AES.GCM.gcm_blocks_dec_helper_simplified | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_num_bytes: Prims.nat ->
a_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
h: Vale.Def.Types_s.quad32 ->
enc_hash: Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\
a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\
j0_BE == Vale.AES.GCM_s.compute_iv_BE h iv /\
h = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\
p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * a_num_bytes)
1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1 = j0_BE in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let auth_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in
let auth_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append auth_quads p128x6) p128 in
let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in
let raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true ->
let raw_quads = FStar.Seq.Base.append raw_quads p_bytes in
let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads)
0
total_bytes
in
let input_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in
Vale.Def.Types_s.le_bytes_to_seq_quad32 input_padded_bytes
| _ -> raw_quads)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let final_quads =
FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad)
in
enc_hash ==
Vale.AES.GCTR_s.gctr_encrypt_block ctr_BE_1
(Vale.AES.GHash_s.ghash_LE h final_quads)
alg
key
0)))
(ensures
(let auth_raw_quads = FStar.Seq.Base.append a128 a_bytes in
let auth_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let plain_raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher_raw_quads =
FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads)
0
p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.Def.Types_s.le_quad32_to_bytes enc_hash ==
Vale.AES.GCM.gcm_decrypt_LE_tag alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes)) | {
"end_col": 4,
"end_line": 1145,
"start_col": 2,
"start_line": 1128
} |
FStar.Pervasives.Lemma | val gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
() | val gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
let gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) = | false | null | true | let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16
then
(gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix alg
(length p128x6 + length p128)
plain
(append p128x6 p128)
cipher
(append c128x6 c128)
key
ctr_BE_2;
assert (gctr_partial alg
(length p128x6 + length p128)
(append p128x6 p128)
(append c128x6 c128)
key
ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert (index cipher num_blocks ==
quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert (gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
else
(gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher ==
gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key));
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.gcm_encrypt_LE_fst_helper",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.AES.GCTR.gctr_partial_to_full_advanced",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"FStar.Seq.Base.index",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCTR.gctr_encrypt_block_offset",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Prims.int",
"Prims.op_Division",
"Vale.AES.GCTR.gctr_partial_opaque_completed",
"FStar.Seq.Base.append",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR.gctr_partial_opaque_ignores_postfix",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.AES.GCTR.gctr_partial_reveal",
"Prims.bool",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR.gctr_partial_to_full_basic",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | [] | Vale.AES.GCM.gcm_blocks_helper_enc | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
p_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\
(let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain) 0 p_num_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 p_num_bytes
in
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes))) | {
"end_col": 4,
"end_line": 311,
"start_col": 3,
"start_line": 259
} |
FStar.Pervasives.Lemma | val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
() | val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
let lemma_compute_iv_easy
(iv_b iv_extra_b: seq quad32)
(iv: supported_iv_LE)
(num_bytes: nat64)
(h_LE j0: quad32)
: Lemma
(requires
length iv_extra_b == 1 /\ length iv_b * (128 / 8) <= num_bytes /\
num_bytes < length iv_b * (128 / 8) + 128 / 8 /\ num_bytes == 96 / 8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv)) (ensures j0 == compute_iv_BE h_LE iv) = | false | null | true | assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
calc ( == ) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
( == ) { () }
slice (pad_to_128_bits iv) 0 12;
};
calc ( == ) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
( == ) { () }
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
( == ) { () }
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc ( == ) {
j0;
( == ) { () }
set_to_one_LE (reverse_bytes_quad32 q);
( == ) { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
( == ) { (lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality (le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes
q)
0
12))));
( == ) { (lemma_set_to_one_reverse_equality (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes
q)
0
12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv)) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
( == ) { compute_iv_BE_reveal () }
compute_iv_BE h_LE iv;
};
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Words_s.nat64",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.AES.GCM.set_to_one_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Vale.Arch.Types.le_bytes_to_quad32_to_bytes",
"Vale.AES.GCM.lemma_set_to_one_reverse_equality",
"Vale.AES.GCM.lemma_le_bytes_to_quad32_prefix_equality",
"Vale.AES.GCM.lemma_le_seq_quad32_to_bytes_prefix_equality",
"Vale.AES.GCM_s.compute_iv_BE_reveal",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.create",
"Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton",
"FStar.Seq.Base.index",
"FStar.Seq.Base.append",
"FStar.Seq.Base.append_empty_l",
"FStar.Seq.Base.lemma_empty",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_LessThan",
"Prims.op_Addition",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.nat8",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv) | [] | Vale.AES.GCM.lemma_compute_iv_easy | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
iv_b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
iv_extra_b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
num_bytes: Vale.Def.Words_s.nat64 ->
h_LE: Vale.Def.Types_s.quad32 ->
j0: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length iv_extra_b == 1 /\ FStar.Seq.Base.length iv_b * (128 / 8) <= num_bytes /\
num_bytes < FStar.Seq.Base.length iv_b * (128 / 8) + 128 / 8 /\ num_bytes == 96 / 8 /\
(let iv_BE = Vale.Def.Types_s.reverse_bytes_quad32 (FStar.Seq.Base.index iv_extra_b 0) in
j0 ==
Vale.Def.Words_s.Mkfour 1 (Mkfour?.lo1 iv_BE) (Mkfour?.hi2 iv_BE) (Mkfour?.hi3 iv_BE)) /\
(let raw_quads = FStar.Seq.Base.append iv_b iv_extra_b in
let iv_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 num_bytes
in
iv_bytes == iv)) (ensures j0 == Vale.AES.GCM_s.compute_iv_BE h_LE iv) | {
"end_col": 4,
"end_line": 121,
"start_col": 2,
"start_line": 69
} |
FStar.Pervasives.Lemma | val gcm_blocks_dec_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash ==
gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
insert_nat64_reveal ();
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
//gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes j0_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append p128x6 p128) p_bytes in
calc (==) {
append (append (append auth_quads p128x6) p128) p_bytes;
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) p_bytes;
== { append_assoc auth_quads (append p128x6 p128) p_bytes }
append auth_quads (append (append p128x6 p128) p_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads p128x6) p128) p_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append p128x6 p128) p_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== { assert(equal (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes) plain_bytes) }
append (le_seq_quad32_to_bytes auth_quads) plain_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) plain_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) plain_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
()
) else (
calc (==) {
append (append (append auth_quads p128x6) p128) (create 1 length_quad);
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) (create 1 length_quad);
== { append_assoc auth_quads (append p128x6 p128) (create 1 length_quad) }
append auth_quads (append (append p128x6 p128) (create 1 length_quad));
};
let c = append p128x6 p128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
()
);
() | val gcm_blocks_dec_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash ==
gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))
let gcm_blocks_dec_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash ==
gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) = | false | null | true | insert_nat64_reveal ();
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
calc ( == ) {
enc_hash;
( == ) { () }
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
( == ) { () }
gctr_encrypt_block ctr_BE_1 hash alg key 0;
( == ) { () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
( == ) { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
( == ) { () }
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc ( == ) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
( == ) { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
( == ) { () }
le_seq_quad32_to_bytes (create 1 enc_hash);
( == ) { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16
then
(let c = append (append p128x6 p128) p_bytes in
calc ( == ) {
append (append (append auth_quads p128x6) p128) p_bytes;
( == ) { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) p_bytes;
( == ) { append_assoc auth_quads (append p128x6 p128) p_bytes }
append auth_quads (append (append p128x6 p128) p_bytes);
( == ) { () }
append auth_quads c;
};
calc ( == ) {
append (append (append (append auth_quads p128x6) p128) p_bytes) (create 1 length_quad);
( = ) { () }
append (append auth_quads (append (append p128x6 p128) p_bytes)) (create 1 length_quad);
( == ) { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc ( == ) {
raw_quads;
( == ) { () }
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old)
0
total_bytes));
( == ) { calc ( == ) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
( == ) { calc ( == ) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
( == ) { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c))
0
total_bytes;
( == ) { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads)
(slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
( == ) { assert (equal (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes) plain_bytes) }
append (le_seq_quad32_to_bytes auth_quads) plain_bytes;
} }
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) plain_bytes);
( == ) { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) plain_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes);
} }
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes));
( == ) { append_distributes_le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads))
(le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
( == ) { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in
calc ( == ) {
append raw_quads (create 1 length_quad);
( == ) { () }
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)))
(create 1 length_quad);
( == ) { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
( == ) { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
())
else
(calc ( == ) {
append (append (append auth_quads p128x6) p128) (create 1 length_quad);
( == ) { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) (create 1 length_quad);
( == ) { append_assoc auth_quads (append p128x6 p128) (create 1 length_quad) }
append auth_quads (append (append p128x6 p128) (create 1 length_quad));
};
let c = append p128x6 p128 in
calc ( == ) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
( == ) { assert (equal (le_seq_quad32_to_bytes c)
(slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
( == ) { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
( == ) { le_bytes_to_seq_quad32_to_bytes c }
c;
};
());
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append_assoc",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes",
"Vale.AES.GCM.slice_append_back",
"Vale.AES.GCM.pad_to_128_bits_multiple_append",
"Vale.Arch.Types.append_distributes_le_bytes_to_seq_quad32",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Vale.AES.GCTR.gctr_encrypt_one_block",
"Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Vale.AES.GHash_s.ghash_LE",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.Def.Words_s.nat8",
"Prims.int",
"Vale.AES.GCTR_s.inc32",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.insert_nat64",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCM.gcm_decrypt_LE_tag",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
()
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
()
#reset-options "--z3rlimit 60"
let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_dec_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash ==
gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) | [] | Vale.AES.GCM.gcm_blocks_dec_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_num_bytes: Prims.nat ->
a_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
h: Vale.Def.Types_s.quad32 ->
enc_hash: Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\
a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\
j0_BE = Vale.AES.GCM_s.compute_iv_BE h iv /\
h = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\
p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * a_num_bytes)
1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1 = j0_BE in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let auth_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in
let auth_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append auth_quads p128x6) p128 in
let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in
let raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true ->
let raw_quads = FStar.Seq.Base.append raw_quads p_bytes in
let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads)
0
total_bytes
in
let input_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in
Vale.Def.Types_s.le_bytes_to_seq_quad32 input_padded_bytes
| _ -> raw_quads)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let final_quads =
FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad)
in
enc_hash ==
Vale.AES.GCTR_s.gctr_encrypt_block ctr_BE_1
(Vale.AES.GHash_s.ghash_LE h final_quads)
alg
key
0)))
(ensures
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let plain_raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.Def.Types_s.le_quad32_to_bytes enc_hash ==
Vale.AES.GCM.gcm_decrypt_LE_tag alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes)) | {
"end_col": 4,
"end_line": 1047,
"start_col": 2,
"start_line": 890
} |
FStar.Pervasives.Lemma | val gcm_blocks_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
() | val gcm_blocks_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
let gcm_blocks_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) = | false | null | true | let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes
iv j0_BE;
calc ( == ) {
enc_hash;
( == ) { () }
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
( == ) { () }
gctr_encrypt_block ctr_BE_1 hash alg key 0;
( == ) { () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
( == ) { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
( == ) { () }
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc ( == ) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
( == ) { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
( == ) { () }
le_seq_quad32_to_bytes (create 1 enc_hash);
( == ) { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16
then
(let c = append (append c128x6 c128) c_bytes in
calc ( == ) {
append (append (append auth_quads c128x6) c128) c_bytes;
( == ) { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
( == ) { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
( == ) { () }
append auth_quads c;
};
calc ( == ) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
( = ) { () }
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
( == ) { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc ( == ) {
raw_quads;
( == ) { () }
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old)
0
total_bytes));
( == ) { calc ( == ) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
( == ) { calc ( == ) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
( == ) { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c))
0
total_bytes;
( == ) { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads)
(slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
( == ) { () }
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
} }
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
( == ) { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
} }
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes));
( == ) { append_distributes_le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads))
(le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
( == ) { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc ( == ) {
append raw_quads (create 1 length_quad);
( == ) { () }
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)))
(create 1 length_quad);
( == ) { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
( == ) { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes
cipher_bytes alg key;
())
else
(calc ( == ) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
( == ) { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
( == ) { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc ( == ) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
( == ) { assert (equal (le_seq_quad32_to_bytes c)
(slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
( == ) { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
( == ) { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes
cipher_bytes alg key;
());
() | {
"checked_file": "Vale.AES.GCM.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Vale.AES.GCM.gcm_encrypt_LE_snd_helper",
"Vale.Def.Types_s.insert_nat64_reveal",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append_assoc",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes",
"Vale.AES.GCM.slice_append_back",
"Vale.AES.GCM.pad_to_128_bits_multiple_append",
"Vale.Arch.Types.append_distributes_le_bytes_to_seq_quad32",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Vale.AES.GCTR.gctr_encrypt_one_block",
"Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Vale.AES.GHash_s.ghash_LE",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.AES.GCM.gcm_blocks_helper_enc",
"Vale.Def.Words_s.nat8",
"Prims.int",
"Vale.AES.GCTR_s.inc32",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.insert_nat64",
"Vale.AES.GCTR.gctr_partial",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"FStar.Pervasives.Native.snd",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) | false | false | Vale.AES.GCM.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_blocks_helper
(alg: algorithm)
(key: seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(p_num_bytes a_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE h enc_hash length_quad: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\ length p128 == length c128 /\ length p_bytes == 1 /\
length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0)))
(ensures
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | [] | Vale.AES.GCM.gcm_blocks_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_num_bytes: Prims.nat ->
a_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
h: Vale.Def.Types_s.quad32 ->
enc_hash: Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\
a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_s.is_aes_key_LE alg key /\
j0_BE = Vale.AES.GCM_s.compute_iv_BE h iv /\
h = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\
p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * a_num_bytes)
1)
(8 * p_num_bytes)
0) /\
(let ctr_BE_1 = j0_BE in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let auth_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in
let auth_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append auth_quads c128x6) c128 in
let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in
let raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true ->
let raw_quads = FStar.Seq.Base.append raw_quads c_bytes in
let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads)
0
total_bytes
in
let input_padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in
Vale.Def.Types_s.le_bytes_to_seq_quad32 input_padded_bytes
| _ -> raw_quads)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let final_quads =
FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad)
in
enc_hash ==
Vale.AES.GCTR_s.gctr_encrypt_block ctr_BE_1
(Vale.AES.GHash_s.ghash_LE h final_quads)
alg
key
0)))
(ensures
(let auth_raw_quads =
(match a_num_bytes > FStar.Seq.Base.length a128 * 16 with
| true -> FStar.Seq.Base.append a128 a_bytes
| _ -> a128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let auth_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads)
0
a_num_bytes
in
let plain_raw_quads =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes) /\
Vale.Def.Types_s.le_quad32_to_bytes enc_hash ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes))) | {
"end_col": 4,
"end_line": 585,
"start_col": 3,
"start_line": 424
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let reseed_interval = pow2 10 | let reseed_interval = | false | null | false | pow2 10 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Prims.pow2"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a } | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val reseed_interval : Prims.pos | [] | Spec.HMAC_DRBG.reseed_interval | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 47,
"end_line": 24,
"start_col": 40,
"start_line": 24
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_output_length = pow2 16 | let max_output_length = | false | null | false | pow2 16 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Prims.pow2"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a } | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_output_length : Prims.pos | [] | Spec.HMAC_DRBG.max_output_length | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 47,
"end_line": 25,
"start_col": 40,
"start_line": 25
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | let is_supported_alg = | false | null | false | function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.bool"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0" | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_supported_alg : _: Spec.Hash.Definitions.hash_alg -> Prims.bool | [] | Spec.HMAC_DRBG.is_supported_alg | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.hash_alg -> Prims.bool | {
"end_col": 14,
"end_line": 20,
"start_col": 23,
"start_line": 18
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let supported_alg = a:hash_alg{ is_supported_alg a } | let supported_alg = | false | null | false | a: hash_alg{is_supported_alg a} | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.HMAC_DRBG.is_supported_alg"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val supported_alg : Type0 | [] | Spec.HMAC_DRBG.supported_alg | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 52,
"end_line": 22,
"start_col": 20,
"start_line": 22
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_length = pow2 16 | let max_length = | false | null | false | pow2 16 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Prims.pow2"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a }
let reseed_interval = pow2 10 | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_length : Prims.pos | [] | Spec.HMAC_DRBG.max_length | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 47,
"end_line": 26,
"start_col": 40,
"start_line": 26
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_personalization_string_length = pow2 16 | let max_personalization_string_length = | false | null | false | pow2 16 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Prims.pow2"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a }
let reseed_interval = pow2 10
let max_output_length = pow2 16 | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_personalization_string_length : Prims.pos | [] | Spec.HMAC_DRBG.max_personalization_string_length | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 47,
"end_line": 27,
"start_col": 40,
"start_line": 27
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_additional_input_length = pow2 16 | let max_additional_input_length = | false | null | false | pow2 16 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Prims.pow2"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a }
let reseed_interval = pow2 10
let max_output_length = pow2 16
let max_length = pow2 16 | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_additional_input_length : Prims.pos | [] | Spec.HMAC_DRBG.max_additional_input_length | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 47,
"end_line": 28,
"start_col": 40,
"start_line": 28
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let min_length (a:supported_alg) =
match a with
| SHA1 -> 16
| SHA2_256 | SHA2_384 | SHA2_512 -> 32 | let min_length (a: supported_alg) = | false | null | false | match a with
| SHA1 -> 16
| SHA2_256 | SHA2_384 | SHA2_512 -> 32 | {
"checked_file": "Spec.HMAC_DRBG.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.fsti"
} | [
"total"
] | [
"Spec.HMAC_DRBG.supported_alg",
"Prims.int"
] | [] | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
/// HMAC-DRBG
///
/// See 10.1.2 in
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
#set-options "--max_fuel 0 --max_ifuel 0"
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a }
let reseed_interval = pow2 10
let max_output_length = pow2 16
let max_length = pow2 16
let max_personalization_string_length = pow2 16
let max_additional_input_length = pow2 16
/// See p.54
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf | false | true | Spec.HMAC_DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val min_length : a: Spec.HMAC_DRBG.supported_alg -> Prims.int | [] | Spec.HMAC_DRBG.min_length | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.HMAC_DRBG.supported_alg -> Prims.int | {
"end_col": 40,
"end_line": 35,
"start_col": 2,
"start_line": 33
} |
|
Prims.Tot | val le_to_n (s:Seq.seq u8) : Tot nat | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_to_n s = E.le_to_n s | val le_to_n (s:Seq.seq u8) : Tot nat
let le_to_n s = | false | null | false | E.le_to_n s | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"LowStar.PrefixFreezableBuffer.u8",
"FStar.Endianness.le_to_n",
"Prims.nat"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0" | false | true | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_to_n (s:Seq.seq u8) : Tot nat | [] | LowStar.PrefixFreezableBuffer.le_to_n | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 -> Prims.nat | {
"end_col": 27,
"end_line": 43,
"start_col": 16,
"start_line": 43
} |
Prims.Tot | val prefix_freezable_preorder : srel u8 | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let prefix_freezable_preorder = pre | val prefix_freezable_preorder : srel u8
let prefix_freezable_preorder = | false | null | false | pre | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [
"total"
] | [
"LowStar.PrefixFreezableBuffer.pre"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s | false | true | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val prefix_freezable_preorder : srel u8 | [] | LowStar.PrefixFreezableBuffer.prefix_freezable_preorder | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | LowStar.Monotonic.Buffer.srel LowStar.PrefixFreezableBuffer.u8 | {
"end_col": 35,
"end_line": 45,
"start_col": 32,
"start_line": 45
} |
FStar.HyperStack.ST.Stack | val recall_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` frozen_until_at_least n)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least n (as_seq h1 b)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let recall_frozen_until b n =
recall_p b (frozen_until_at_least n) | val recall_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` frozen_until_at_least n)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least n (as_seq h1 b))
let recall_frozen_until b n = | true | null | false | recall_p b (frozen_until_at_least n) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"Prims.nat",
"LowStar.Monotonic.Buffer.recall_p",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i))
let frozen_until_st b = LE.load32_le_i b 0ul
let witness_slice b i j snap =
witness_p b (slice_is i j snap)
let recall_slice b i j snap =
recall_p b (slice_is i j snap)
let witness_frozen_until b n =
witness_p b (frozen_until_at_least n) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val recall_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` frozen_until_at_least n)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least n (as_seq h1 b)) | [] | LowStar.PrefixFreezableBuffer.recall_frozen_until | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.PrefixFreezableBuffer.buffer -> n: Prims.nat -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 38,
"end_line": 145,
"start_col": 2,
"start_line": 145
} |
FStar.HyperStack.ST.Stack | val recall_frozen_until_default (b:buffer)
: Stack
unit
(requires fun h -> recallable b \/ live h b)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least 4 (as_seq h1 b)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let recall_frozen_until_default b =
recall_p b (frozen_until_at_least 4) | val recall_frozen_until_default (b:buffer)
: Stack
unit
(requires fun h -> recallable b \/ live h b)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least 4 (as_seq h1 b))
let recall_frozen_until_default b = | true | null | false | recall_p b (frozen_until_at_least 4) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.Monotonic.Buffer.recall_p",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i))
let frozen_until_st b = LE.load32_le_i b 0ul
let witness_slice b i j snap =
witness_p b (slice_is i j snap)
let recall_slice b i j snap =
recall_p b (slice_is i j snap)
let witness_frozen_until b n =
witness_p b (frozen_until_at_least n)
let recall_frozen_until b n =
recall_p b (frozen_until_at_least n) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val recall_frozen_until_default (b:buffer)
: Stack
unit
(requires fun h -> recallable b \/ live h b)
(ensures fun h0 _ h1 ->
h0 == h1 /\
frozen_until_at_least 4 (as_seq h1 b)) | [] | LowStar.PrefixFreezableBuffer.recall_frozen_until_default | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.PrefixFreezableBuffer.buffer -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 38,
"end_line": 148,
"start_col": 2,
"start_line": 148
} |
FStar.HyperStack.ST.Stack | val recall_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` slice_is i j snap)
(ensures fun h0 _ h1 ->
h0 == h1 /\
slice_is i j snap (as_seq h1 b)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let recall_slice b i j snap =
recall_p b (slice_is i j snap) | val recall_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` slice_is i j snap)
(ensures fun h0 _ h1 ->
h0 == h1 /\
slice_is i j snap (as_seq h1 b))
let recall_slice b i j snap = | true | null | false | recall_p b (slice_is i j snap) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.PrefixFreezableBuffer.u32",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.Monotonic.Buffer.recall_p",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.slice_is",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i))
let frozen_until_st b = LE.load32_le_i b 0ul
let witness_slice b i j snap =
witness_p b (slice_is i j snap) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val recall_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h ->
(recallable b \/ live h b) /\
b `witnessed` slice_is i j snap)
(ensures fun h0 _ h1 ->
h0 == h1 /\
slice_is i j snap (as_seq h1 b)) | [] | LowStar.PrefixFreezableBuffer.recall_slice | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.PrefixFreezableBuffer.buffer ->
i: LowStar.PrefixFreezableBuffer.u32 ->
j: LowStar.PrefixFreezableBuffer.u32 ->
snap: FStar.Ghost.erased (FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 32,
"end_line": 139,
"start_col": 2,
"start_line": 139
} |
FStar.HyperStack.ST.Stack | val witness_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h -> frozen_until_at_least n (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` frozen_until_at_least n) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let witness_frozen_until b n =
witness_p b (frozen_until_at_least n) | val witness_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h -> frozen_until_at_least n (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` frozen_until_at_least n)
let witness_frozen_until b n = | true | null | false | witness_p b (frozen_until_at_least n) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"Prims.nat",
"LowStar.Monotonic.Buffer.witness_p",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i))
let frozen_until_st b = LE.load32_le_i b 0ul
let witness_slice b i j snap =
witness_p b (slice_is i j snap)
let recall_slice b i j snap =
recall_p b (slice_is i j snap) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val witness_frozen_until (b:buffer) (n:nat)
: Stack
unit
(requires fun h -> frozen_until_at_least n (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` frozen_until_at_least n) | [] | LowStar.PrefixFreezableBuffer.witness_frozen_until | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.PrefixFreezableBuffer.buffer -> n: Prims.nat -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 39,
"end_line": 142,
"start_col": 2,
"start_line": 142
} |
FStar.HyperStack.ST.Stack | val witness_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h -> slice_is i j snap (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` slice_is i j snap) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let witness_slice b i j snap =
witness_p b (slice_is i j snap) | val witness_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h -> slice_is i j snap (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` slice_is i j snap)
let witness_slice b i j snap = | true | null | false | witness_p b (slice_is i j snap) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.PrefixFreezableBuffer.u32",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.Monotonic.Buffer.witness_p",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.slice_is",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i))
let frozen_until_st b = LE.load32_le_i b 0ul | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val witness_slice (b:buffer) (i j:u32) (snap:G.erased (Seq.seq u8))
: Stack
unit
(requires fun h -> slice_is i j snap (as_seq h b))
(ensures fun h0 _ h1 ->
h0 == h1 /\
b `witnessed` slice_is i j snap) | [] | LowStar.PrefixFreezableBuffer.witness_slice | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.PrefixFreezableBuffer.buffer ->
i: LowStar.PrefixFreezableBuffer.u32 ->
j: LowStar.PrefixFreezableBuffer.u32 ->
snap: FStar.Ghost.erased (FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 33,
"end_line": 136,
"start_col": 2,
"start_line": 136
} |
FStar.HyperStack.ST.ST | val gcmalloc (r:HS.rid) (len:u32)
: ST (b:lbuffer len{frameOf b == r /\ recallable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | val gcmalloc (r:HS.rid) (len:u32)
: ST (b:lbuffer len{frameOf b == r /\ recallable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common)
let gcmalloc r len = | true | null | false | let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in
E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h);
update_frozen_until_alloc b;
b | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"FStar.Monotonic.HyperHeap.rid",
"LowStar.PrefixFreezableBuffer.u32",
"LowStar.PrefixFreezableBuffer.lbuffer",
"Prims.l_and",
"Prims.eq2",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"LowStar.PrefixFreezableBuffer.update_frozen_until_alloc",
"Prims._assert",
"LowStar.Monotonic.Buffer.fresh_loc",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Endianness.le_to_n_zeros",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.mgcmalloc",
"FStar.UInt8.__uint_to_t",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.lmbuffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcmalloc (r:HS.rid) (len:u32)
: ST (b:lbuffer len{frameOf b == r /\ recallable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common) | [] | LowStar.PrefixFreezableBuffer.gcmalloc | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | r: FStar.Monotonic.HyperHeap.rid -> len: LowStar.PrefixFreezableBuffer.u32
-> FStar.HyperStack.ST.ST
(b:
LowStar.PrefixFreezableBuffer.lbuffer len
{LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.recallable b}) | {
"end_col": 3,
"end_line": 74,
"start_col": 20,
"start_line": 65
} |
FStar.HyperStack.ST.StackInline | val alloca (len:u32)
: StackInline
(lbuffer len)
(requires fun _ -> alloca_pre len)
(ensures fun h0 b h1 ->
alloc_post_mem_common h0 b h1 /\ frameOf b == HS.get_tip h0) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | val alloca (len:u32)
: StackInline
(lbuffer len)
(requires fun _ -> alloca_pre len)
(ensures fun h0 b h1 ->
alloc_post_mem_common h0 b h1 /\ frameOf b == HS.get_tip h0)
let alloca len = | true | null | false | let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in
E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h);
update_frozen_until_alloc b;
b | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.u32",
"LowStar.PrefixFreezableBuffer.lbuffer",
"Prims.unit",
"LowStar.PrefixFreezableBuffer.update_frozen_until_alloc",
"Prims._assert",
"LowStar.Monotonic.Buffer.fresh_loc",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"FStar.Endianness.le_to_n_zeros",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.malloca",
"FStar.UInt8.__uint_to_t",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.lmbuffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val alloca (len:u32)
: StackInline
(lbuffer len)
(requires fun _ -> alloca_pre len)
(ensures fun h0 b h1 ->
alloc_post_mem_common h0 b h1 /\ frameOf b == HS.get_tip h0) | [] | LowStar.PrefixFreezableBuffer.alloca | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | len: LowStar.PrefixFreezableBuffer.u32
-> FStar.HyperStack.ST.StackInline (LowStar.PrefixFreezableBuffer.lbuffer len) | {
"end_col": 3,
"end_line": 96,
"start_col": 16,
"start_line": 87
} |
FStar.HyperStack.ST.Stack | val frozen_until_st (b:buffer)
: Stack
u32
(requires fun h -> live h b)
(ensures fun h0 r h1 ->
h0 == h1 /\
U32.v r == frozen_until (as_seq h1 b)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let frozen_until_st b = LE.load32_le_i b 0ul | val frozen_until_st (b:buffer)
: Stack
u32
(requires fun h -> live h b)
(ensures fun h0 r h1 ->
h0 == h1 /\
U32.v r == frozen_until (as_seq h1 b))
let frozen_until_st b = | true | null | false | LE.load32_le_i b 0ul | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.Endianness.load32_le_i",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u32",
"LowStar.PrefixFreezableBuffer.u32"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4)))
let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i)) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val frozen_until_st (b:buffer)
: Stack
u32
(requires fun h -> live h b)
(ensures fun h0 r h1 ->
h0 == h1 /\
U32.v r == frozen_until (as_seq h1 b)) | [] | LowStar.PrefixFreezableBuffer.frozen_until_st | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.PrefixFreezableBuffer.buffer
-> FStar.HyperStack.ST.Stack LowStar.PrefixFreezableBuffer.u32 | {
"end_col": 44,
"end_line": 133,
"start_col": 24,
"start_line": 133
} |
FStar.HyperStack.ST.ST | val malloc (r:HS.rid) (len:u32)
: ST
(b:lbuffer len{frameOf b == r /\ freeable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | val malloc (r:HS.rid) (len:u32)
: ST
(b:lbuffer len{frameOf b == r /\ freeable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common)
let malloc r len = | true | null | false | let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in
E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h);
update_frozen_until_alloc b;
b | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"FStar.Monotonic.HyperHeap.rid",
"LowStar.PrefixFreezableBuffer.u32",
"LowStar.PrefixFreezableBuffer.lbuffer",
"Prims.l_and",
"Prims.eq2",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.Monotonic.Buffer.freeable",
"Prims.unit",
"LowStar.PrefixFreezableBuffer.update_frozen_until_alloc",
"Prims._assert",
"LowStar.Monotonic.Buffer.fresh_loc",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Endianness.le_to_n_zeros",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.mmalloc",
"FStar.UInt8.__uint_to_t",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.lmbuffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val malloc (r:HS.rid) (len:u32)
: ST
(b:lbuffer len{frameOf b == r /\ freeable b})
(requires fun _ -> malloc_pre r len)
(ensures alloc_post_mem_common) | [] | LowStar.PrefixFreezableBuffer.malloc | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | r: FStar.Monotonic.HyperHeap.rid -> len: LowStar.PrefixFreezableBuffer.u32
-> FStar.HyperStack.ST.ST
(b:
LowStar.PrefixFreezableBuffer.lbuffer len
{LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.freeable b}) | {
"end_col": 3,
"end_line": 85,
"start_col": 18,
"start_line": 76
} |
FStar.HyperStack.ST.Stack | val update_frozen_until_alloc (b: mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack unit
(requires fun h -> live h b /\ length b >= 4 /\ frozen_until (as_seq h b) == 0)
(ensures
fun h0 _ h1 ->
live h1 b /\ modifies (loc_buffer b) h0 h1 /\ frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4) | val update_frozen_until_alloc (b: mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack unit
(requires fun h -> live h b /\ length b >= 4 /\ frozen_until (as_seq h b) == 0)
(ensures
fun h0 _ h1 ->
live h1 b /\ modifies (loc_buffer b) h0 h1 /\ frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
let update_frozen_until_alloc (b: mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack unit
(requires fun h -> live h b /\ length b >= 4 /\ frozen_until (as_seq h b) == 0)
(ensures
fun h0 _ h1 ->
live h1 b /\ modifies (loc_buffer b) h0 h1 /\ frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4)) = | true | null | false | LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.Monotonic.Buffer.witness_p",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least",
"Prims.unit",
"LowStar.Endianness.store32_le_i",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"LowStar.Monotonic.Buffer.length",
"Prims.eq2",
"Prims.int",
"LowStar.PrefixFreezableBuffer.frozen_until",
"LowStar.Monotonic.Buffer.as_seq",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.witnessed"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\ | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_frozen_until_alloc (b: mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack unit
(requires fun h -> live h b /\ length b >= 4 /\ frozen_until (as_seq h b) == 0)
(ensures
fun h0 _ h1 ->
live h1 b /\ modifies (loc_buffer b) h0 h1 /\ frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4)) | [] | LowStar.PrefixFreezableBuffer.update_frozen_until_alloc | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b:
LowStar.Monotonic.Buffer.mbuffer LowStar.PrefixFreezableBuffer.u8
LowStar.PrefixFreezableBuffer.prefix_freezable_preorder
LowStar.PrefixFreezableBuffer.prefix_freezable_preorder
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 41,
"end_line": 63,
"start_col": 4,
"start_line": 62
} |
FStar.HyperStack.ST.Stack | val upd (b:buffer) (i:u32) (v:u8)
: Stack
unit
(requires fun h ->
live h b /\ U32.v i < length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h0 b) == frozen_until (as_seq h1 b) /\
as_seq h1 b == Seq.upd (as_seq h0 b) (U32.v i) v) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v | val upd (b:buffer) (i:u32) (v:u8)
: Stack
unit
(requires fun h ->
live h b /\ U32.v i < length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h0 b) == frozen_until (as_seq h1 b) /\
as_seq h1 b == Seq.upd (as_seq h0 b) (U32.v i) v)
let upd b i v = | true | null | false | recall_p b (frozen_until_at_least 4);
upd b i v | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.PrefixFreezableBuffer.u32",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.Monotonic.Buffer.upd",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"Prims.unit",
"LowStar.Monotonic.Buffer.recall_p",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val upd (b:buffer) (i:u32) (v:u8)
: Stack
unit
(requires fun h ->
live h b /\ U32.v i < length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h0 b) == frozen_until (as_seq h1 b) /\
as_seq h1 b == Seq.upd (as_seq h0 b) (U32.v i) v) | [] | LowStar.PrefixFreezableBuffer.upd | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.PrefixFreezableBuffer.buffer ->
i: LowStar.PrefixFreezableBuffer.u32 ->
v: LowStar.PrefixFreezableBuffer.u8
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 11,
"end_line": 100,
"start_col": 2,
"start_line": 99
} |
FStar.Pervasives.Lemma | val le_pre_post_index (s1 s2: Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\ Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1)) (Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i: nat). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==> (Seq.index s1 i == Seq.index s2 i))) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4))) | val le_pre_post_index (s1 s2: Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\ Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1)) (Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i: nat). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==> (Seq.index s1 i == Seq.index s2 i)))
let le_pre_post_index (s1 s2: Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\ Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1)) (Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i: nat). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==> (Seq.index s1 i == Seq.index s2 i))) = | false | null | true | assert (forall (s: Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i: nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4))) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"LowStar.PrefixFreezableBuffer.u8",
"Prims._assert",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.length",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Seq.Base.equal",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==> | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_pre_post_index (s1 s2: Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\ Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1)) (Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i: nat). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==> (Seq.index s1 i == Seq.index s2 i))) | [] | LowStar.PrefixFreezableBuffer.le_pre_post_index | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
s1: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 ->
s2: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length s1 == FStar.Seq.Base.length s2 /\ FStar.Seq.Base.length s1 >= 4 /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 0 0) (FStar.Seq.Base.slice s2 0 0) /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 4 (FStar.Seq.Base.length s1))
(FStar.Seq.Base.slice s2 4 (FStar.Seq.Base.length s2)) ==>
(forall (i: Prims.nat). {:pattern FStar.Seq.Base.index s1 i; FStar.Seq.Base.index s2 i}
i >= 4 /\ i < FStar.Seq.Base.length s1 ==>
FStar.Seq.Base.index s1 i == FStar.Seq.Base.index s2 i)) | {
"end_col": 77,
"end_line": 125,
"start_col": 4,
"start_line": 121
} |
FStar.HyperStack.ST.Stack | val freeze (b:buffer) (i:u32)
: Stack
unit
(requires fun h ->
live h b /\
U32.v i <= length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h1 b) == U32.v i /\
b `witnessed` frozen_until_at_least (U32.v i) /\
(forall (k:nat).{:pattern (Seq.index (as_seq h1 b) k)} //contents from [4, len) remain same
(4 <= k /\ k < length b) ==>
(Seq.index (as_seq h1 b) k == Seq.index (as_seq h0 b) k))) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let freeze b i =
recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i)) | val freeze (b:buffer) (i:u32)
: Stack
unit
(requires fun h ->
live h b /\
U32.v i <= length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h1 b) == U32.v i /\
b `witnessed` frozen_until_at_least (U32.v i) /\
(forall (k:nat).{:pattern (Seq.index (as_seq h1 b) k)} //contents from [4, len) remain same
(4 <= k /\ k < length b) ==>
(Seq.index (as_seq h1 b) k == Seq.index (as_seq h0 b) k)))
let freeze b i = | true | null | false | recall_p b (frozen_until_at_least 4);
FStar.Classical.forall_intro_2 le_pre_post_index;
LE.store32_le_i b 0ul i;
witness_p b (frozen_until_at_least (U32.v i)) | {
"checked_file": "LowStar.PrefixFreezableBuffer.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Endianness.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.PrefixFreezableBuffer.fst"
} | [] | [
"LowStar.PrefixFreezableBuffer.buffer",
"LowStar.PrefixFreezableBuffer.u32",
"LowStar.Monotonic.Buffer.witness_p",
"LowStar.PrefixFreezableBuffer.u8",
"LowStar.PrefixFreezableBuffer.prefix_freezable_preorder",
"LowStar.PrefixFreezableBuffer.frozen_until_at_least",
"FStar.UInt32.v",
"Prims.unit",
"LowStar.Endianness.store32_le_i",
"FStar.UInt32.__uint_to_t",
"FStar.Classical.forall_intro_2",
"FStar.Seq.Base.seq",
"Prims.l_imp",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"LowStar.PrefixFreezableBuffer.le_pre_post_index",
"LowStar.Monotonic.Buffer.recall_p"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.PrefixFreezableBuffer
open FStar.HyperStack.ST
include LowStar.Monotonic.Buffer
module P = FStar.Preorder
module G = FStar.Ghost
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module Seq = FStar.Seq
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module E = FStar.Endianness
module LE = LowStar.Endianness
(*
* Implementation for LowStar.PrefixfreezableBuffer
*)
#set-options "--max_fuel 0 --max_ifuel 0"
let le_to_n s = E.le_to_n s
let prefix_freezable_preorder = pre
let prefix_freezable_preorder_elim _ _ = ()
private let update_frozen_until_alloc
(b:mbuffer u8 prefix_freezable_preorder prefix_freezable_preorder)
: Stack
unit
(requires fun h ->
live h b /\
length b >= 4 /\
frozen_until (as_seq h b) == 0)
(ensures fun h0 _ h1 ->
live h1 b /\
modifies (loc_buffer b) h0 h1 /\
frozen_until (as_seq h1 b) == 4 /\
witnessed b (frozen_until_at_least 4))
= LE.store32_le_i b 0ul 4ul;
witness_p b (frozen_until_at_least 4)
let gcmalloc r len =
let h0 = ST.get () in
let b = mgcmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let malloc r len =
let h0 = ST.get () in
let b = mmalloc #_ #prefix_freezable_preorder r 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let alloca len =
let h0 = ST.get () in
let b = malloca #_ #prefix_freezable_preorder 0uy (U32.add len 4ul) in
let h = ST.get () in E.le_to_n_zeros (Seq.slice (as_seq h b) 0 4);
assert (fresh_loc (loc_buffer b) h0 h); //TODO: necessary for firing modifies_remove_new_locs lemma?
update_frozen_until_alloc b;
b
let upd b i v =
recall_p b (frozen_until_at_least 4);
upd b i v
(*
* This lemma handles the mismatch between the style of the spec
* in LE.store_pre and LE.store_post, and the preorder of PrefixFreezableBuffers
* Basically the sequence library is missing a lemma that eliminates
* equality on two slices to some equality on the base sequences
*)
let le_pre_post_index
(s1 s2:Seq.seq u8)
: Lemma
(ensures
(Seq.length s1 == Seq.length s2 /\
Seq.length s1 >= 4 /\
Seq.equal (Seq.slice s1 0 0) (Seq.slice s2 0 0) /\
Seq.equal (Seq.slice s1 4 (Seq.length s1))
(Seq.slice s2 4 (Seq.length s2))) ==>
(forall (i:nat).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
(i >= 4 /\ i < Seq.length s1) ==>
(Seq.index s1 i == Seq.index s2 i)))
= assert (forall (s:Seq.seq u8).
Seq.length s >= 4 ==>
(forall (i:nat).
(i >= 4 /\ i < Seq.length s) ==>
Seq.index s i == Seq.index (Seq.slice s 4 (Seq.length s)) (i - 4))) | false | false | LowStar.PrefixFreezableBuffer.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val freeze (b:buffer) (i:u32)
: Stack
unit
(requires fun h ->
live h b /\
U32.v i <= length b /\
U32.v i >= frozen_until (as_seq h b))
(ensures fun h0 _ h1 ->
(not (g_is_null b)) /\
modifies (loc_buffer b) h0 h1 /\
live h1 b /\
frozen_until (as_seq h1 b) == U32.v i /\
b `witnessed` frozen_until_at_least (U32.v i) /\
(forall (k:nat).{:pattern (Seq.index (as_seq h1 b) k)} //contents from [4, len) remain same
(4 <= k /\ k < length b) ==>
(Seq.index (as_seq h1 b) k == Seq.index (as_seq h0 b) k))) | [] | LowStar.PrefixFreezableBuffer.freeze | {
"file_name": "ulib/LowStar.PrefixFreezableBuffer.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.PrefixFreezableBuffer.buffer -> i: LowStar.PrefixFreezableBuffer.u32
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 47,
"end_line": 131,
"start_col": 2,
"start_line": 128
} |
FStar.Pervasives.Lemma | val repeati_extensionality:
#a:Type0
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc))
(ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end | val repeati_extensionality:
#a:Type0
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc))
(ensures Loops.repeati n f acc0 == Loops.repeati n g acc0)
let rec repeati_extensionality #a n f g acc0 = | false | null | true | if n = 0
then
(Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0)
else
(Loops.unfold_repeati n f acc0 (n - 1);
Loops.unfold_repeati n g acc0 (n - 1);
repeati_extensionality #a (n - 1) f g acc0) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Lib.LoopCombinators.eq_repeati0",
"Prims.unit",
"Prims.bool",
"Lib.Sequence.Lemmas.repeati_extensionality",
"Prims.op_Subtraction",
"Lib.LoopCombinators.unfold_repeati"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'" | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeati_extensionality:
#a:Type0
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc))
(ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) | [
"recursion"
] | Lib.Sequence.Lemmas.repeati_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.nat ->
f: (i: Prims.nat{i < n} -> _: a -> a) ->
g: (i: Prims.nat{i < n} -> _: a -> a) ->
acc0: a
-> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < n}) (acc: a). f i acc == g i acc)
(ensures Lib.LoopCombinators.repeati n f acc0 == Lib.LoopCombinators.repeati n g acc0) | {
"end_col": 48,
"end_line": 19,
"start_col": 2,
"start_line": 13
} |
FStar.Pervasives.Lemma | val repeati_right_shift:
#a:Type
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < 1 + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc))
(ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0 | val repeati_right_shift:
#a:Type
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < 1 + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc))
(ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0)
let repeati_right_shift #a n f g acc0 = | false | null | true | let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
Loops.repeati_def n f acc1;
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"Lib.LoopCombinators.repeati_def",
"Prims.unit",
"Lib.LoopCombinators.eq_repeat_right",
"Lib.LoopCombinators.fixed_a",
"Lib.LoopCombinators.unfold_repeat_right",
"Lib.LoopCombinators.repeat_right_plus",
"Lib.Sequence.Lemmas.repeati_right_extensionality"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeati_right_shift:
#a:Type
-> n:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{i < 1 + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc))
(ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) | [] | Lib.Sequence.Lemmas.repeati_right_shift | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.nat ->
f: (i: Prims.nat{i < n} -> _: a -> a) ->
g: (i: Prims.nat{i < 1 + n} -> _: a -> a) ->
acc0: a
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.nat{i < n}) (acc: a). f i acc == g (i + 1) acc)
(ensures
Lib.LoopCombinators.repeati n f (g 0 acc0) == Lib.LoopCombinators.repeati (n + 1) g acc0) | {
"end_col": 34,
"end_line": 60,
"start_col": 39,
"start_line": 46
} |
FStar.Pervasives.Lemma | val split_len_lemma: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures
(let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
len % blocksize = len1 % blocksize /\
n0 * blocksize = len0 /\ n0 + n1 = n)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0 | val split_len_lemma: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures
(let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
len % blocksize = len1 % blocksize /\
n0 * blocksize = len0 /\ n0 + n1 = n))
let split_len_lemma blocksize len len0 = | false | null | true | let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
Math.Lemmas.lemma_div_exact len0 blocksize;
len0_div_bs blocksize len len0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Lib.Sequence.Lemmas.len0_div_bs",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_exact",
"FStar.Math.Lemmas.lemma_mod_sub_distr",
"Prims.int",
"Prims.op_Division",
"Prims.op_Subtraction"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val split_len_lemma: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures
(let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
len % blocksize = len1 % blocksize /\
n0 * blocksize = len0 /\ n0 + n1 = n)) | [] | Lib.Sequence.Lemmas.split_len_lemma | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | blocksize: Prims.pos -> len: Prims.nat -> len0: Prims.nat
-> FStar.Pervasives.Lemma (requires len0 <= len /\ len0 % blocksize = 0)
(ensures
(let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
len % blocksize = len1 % blocksize /\ n0 * blocksize = len0 /\ n0 + n1 = n)) | {
"end_col": 32,
"end_line": 159,
"start_col": 40,
"start_line": 147
} |
FStar.Pervasives.Lemma | val repeati_right_extensionality:
#a:Type
-> n:nat
-> lo_g:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 ==
Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0 | val repeati_right_extensionality:
#a:Type
-> n:nat
-> lo_g:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 ==
Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0)
let repeati_right_extensionality #a n lo_g f g acc0 = | false | null | true | repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.Lemmas.repeat_gen_right_extensionality",
"Lib.LoopCombinators.fixed_a",
"Prims.unit"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeati_right_extensionality:
#a:Type
-> n:nat
-> lo_g:nat
-> f:(i:nat{i < n} -> a -> a)
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a)
-> acc0:a ->
Lemma
(requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 ==
Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) | [] | Lib.Sequence.Lemmas.repeati_right_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.nat ->
lo_g: Prims.nat ->
f: (i: Prims.nat{i < n} -> _: a -> a) ->
g: (i: Prims.nat{lo_g <= i /\ i < lo_g + n} -> _: a -> a) ->
acc0: a
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.nat{i < n}) (acc: a). f i acc == g (lo_g + i) acc)
(ensures
Lib.LoopCombinators.repeat_right 0 n (Lib.LoopCombinators.fixed_a a) f acc0 ==
Lib.LoopCombinators.repeat_right lo_g (lo_g + n) (Lib.LoopCombinators.fixed_a a) g acc0) | {
"end_col": 85,
"end_line": 43,
"start_col": 2,
"start_line": 43
} |
FStar.Pervasives.Lemma | val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize) | val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 = | false | null | true | Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Prims.op_Division",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_le"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize) | [] | Lib.Sequence.Lemmas.len0_le_len_fraction | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | blocksize: Prims.pos -> len: Prims.nat -> len0: Prims.nat
-> FStar.Pervasives.Lemma (requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= (len / blocksize) * blocksize) | {
"end_col": 80,
"end_line": 392,
"start_col": 2,
"start_line": 391
} |
FStar.Pervasives.Lemma | val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat ->
Lemma
(requires len0 <= n * blocksize /\ len0 % blocksize = 0)
(ensures
(let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\
n0 * blocksize = len0 /\ n1 * blocksize = len1)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0 | val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat ->
Lemma
(requires len0 <= n * blocksize /\ len0 % blocksize = 0)
(ensures
(let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\
n0 * blocksize = len0 /\ n1 * blocksize = len1))
let split_len_lemma0 blocksize n len0 = | false | null | true | let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
Math.Lemmas.lemma_div_exact len0 blocksize;
Math.Lemmas.lemma_div_exact len1 blocksize;
len0_div_bs blocksize len len0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Lib.Sequence.Lemmas.len0_div_bs",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_exact",
"FStar.Math.Lemmas.lemma_mod_sub_distr",
"FStar.Math.Lemmas.cancel_mul_mod",
"Prims.int",
"Prims.op_Division",
"Prims.op_Subtraction",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat ->
Lemma
(requires len0 <= n * blocksize /\ len0 % blocksize = 0)
(ensures
(let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\
n0 * blocksize = len0 /\ n1 * blocksize = len1)) | [] | Lib.Sequence.Lemmas.split_len_lemma0 | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | blocksize: Prims.pos -> n: Prims.nat -> len0: Prims.nat
-> FStar.Pervasives.Lemma (requires len0 <= n * blocksize /\ len0 % blocksize = 0)
(ensures
(let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\ n0 * blocksize = len0 /\
n1 * blocksize = len1)) | {
"end_col": 32,
"end_line": 143,
"start_col": 39,
"start_line": 126
} |
Prims.Tot | val repeat_gen_blocks_multi:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
a (mi + n) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0 | val repeat_gen_blocks_multi:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
a (mi + n)
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = | false | null | false | Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.LoopCombinators.repeat_right",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_multi:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
a (mi + n) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_multi | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp: Lib.Sequence.seq inp_t {Lib.Sequence.length inp == n * blocksize} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
acc0: a mi
-> a (mi + n) | {
"end_col": 87,
"end_line": 64,
"start_col": 2,
"start_line": 64
} |
Prims.Tot | val map_blocks_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
seq a | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0 | val map_blocks_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
seq a
let map_blocks_acc #a blocksize mi hi inp f l acc0 = | false | null | false | repeat_gen_blocks #a
blocksize
mi
hi
inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l)
acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.Lemmas.repeat_gen_blocks",
"Lib.Sequence.Lemmas.repeat_gen_blocks_map_f",
"Lib.Sequence.Lemmas.repeat_gen_blocks_map_l"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
seq a | [] | Lib.Sequence.Lemmas.map_blocks_acc | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
inp: Lib.Sequence.seq a {mi + Lib.Sequence.length inp / blocksize <= hi} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
l:
(i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem) ->
acc0: Lib.Sequence.map_blocks_a a blocksize hi mi
-> Lib.Sequence.seq a | {
"end_col": 49,
"end_line": 655,
"start_col": 2,
"start_line": 652
} |
FStar.Pervasives.Lemma | val len0_div_bs: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize == 0)
(ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
} | val len0_div_bs: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize == 0)
(ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize)
let len0_div_bs blocksize len len0 = | false | null | true | let k = len0 / blocksize in
calc ( == ) {
k + (len - len0) / blocksize;
( == ) { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
( == ) { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
( == ) { () }
len / blocksize;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_exact",
"Prims.squash",
"FStar.Math.Lemmas.division_sub_lemma"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val len0_div_bs: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize == 0)
(ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) | [] | Lib.Sequence.Lemmas.len0_div_bs | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | blocksize: Prims.pos -> len: Prims.nat -> len0: Prims.nat
-> FStar.Pervasives.Lemma (requires len0 <= len /\ len0 % blocksize == 0)
(ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) | {
"end_col": 3,
"end_line": 123,
"start_col": 36,
"start_line": 113
} |
Prims.Tot | val map_blocks_multi_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
out:seq a {length out == length acc0 + length inp} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0 | val map_blocks_multi_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
out:seq a {length out == length acc0 + length inp}
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 = | false | null | false | repeat_gen_blocks_multi #a
blocksize
mi
hi
n
inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Lib.Sequence.Lemmas.repeat_gen_blocks_map_f"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = () | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi_acc:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
out:seq a {length out == length acc0 + length inp} | [] | Lib.Sequence.Lemmas.map_blocks_multi_acc | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == n * blocksize} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
acc0: Lib.Sequence.map_blocks_a a blocksize hi mi
-> out:
Lib.Sequence.seq a
{Lib.Sequence.length out == Lib.Sequence.length acc0 + Lib.Sequence.length inp} | {
"end_col": 49,
"end_line": 648,
"start_col": 2,
"start_line": 646
} |
Prims.Tot | val repeat_gen_blocks:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq inp_t{mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acci:a mi ->
c | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc | val repeat_gen_blocks:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq inp_t{mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acci:a mi ->
c
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = | false | null | false | let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Prims.unit",
"FStar.Math.Lemmas.cancel_mul_div",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.int",
"Prims.op_Modulus"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = () | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq inp_t{mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acci:a mi ->
c | [] | Lib.Sequence.Lemmas.repeat_gen_blocks | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
inp: Lib.Sequence.seq inp_t {mi + Lib.Sequence.length inp / blocksize <= hi} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
l:
(
i: Prims.nat{i <= hi} ->
len: Prims.nat{len < blocksize} ->
_: Lib.Sequence.lseq inp_t len ->
_: a i
-> c) ->
acci: a mi
-> c | {
"end_col": 26,
"end_line": 78,
"start_col": 64,
"start_line": 70
} |
FStar.Pervasives.Lemma | val repeat_blocks_multi_extensionality:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> g:(lseq a blocksize -> b -> b)
-> init:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f block acc == g block acc))
(ensures
repeat_blocks_multi blocksize inp f init ==
repeat_blocks_multi blocksize inp g init) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init | val repeat_blocks_multi_extensionality:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> g:(lseq a blocksize -> b -> b)
-> init:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f block acc == g block acc))
(ensures
repeat_blocks_multi blocksize inp f init ==
repeat_blocks_multi blocksize inp g init)
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init = | false | null | true | let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i: nat{i < nb}) (acc: b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize)
in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Lib.Sequence.Lemmas.repeati_extensionality",
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Prims.nat",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Seq.Properties.slice_slice",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Lib.Sequence.lemma_repeat_blocks_multi",
"Lib.Sequence.repeat_blocks_f",
"Prims.op_Division"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_multi_extensionality:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> g:(lseq a blocksize -> b -> b)
-> init:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f block acc == g block acc))
(ensures
repeat_blocks_multi blocksize inp f init ==
repeat_blocks_multi blocksize inp g init) | [] | Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp % blocksize = 0} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
g: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
init: b
-> FStar.Pervasives.Lemma
(requires forall (block: Lib.Sequence.lseq a blocksize) (acc: b). f block acc == g block acc)
(ensures
Lib.Sequence.repeat_blocks_multi blocksize inp f init ==
Lib.Sequence.repeat_blocks_multi blocksize inp g init) | {
"end_col": 44,
"end_line": 605,
"start_col": 69,
"start_line": 591
} |
FStar.Pervasives.Lemma | val repeat_blocks_is_repeat_gen_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(repeat_blocks #a #b #c blocksize inp f l acc0 ==
repeat_gen_blocks #a #c blocksize 0 hi inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
} | val repeat_blocks_is_repeat_gen_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(repeat_blocks #a #b #c blocksize inp f l acc0 ==
repeat_gen_blocks #a #c blocksize 0 hi inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0)
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 = | false | null | true | let len = length inp in
let nb = len / blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc ( == ) {
repeat_blocks_multi blocksize blocks f acc0;
( == ) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Sequence.repeat_blocks_multi",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Lib.LoopCombinators.fixed_a",
"Lib.LoopCombinators.fixed_i",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.repeat_blocks_multi_is_repeat_gen_blocks_multi",
"Prims.squash",
"Lib.Sequence.Lemmas.lemma_repeat_blocks_via_multi",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.cancel_mul_mod",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.int"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_is_repeat_gen_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(repeat_blocks #a #b #c blocksize inp f l acc0 ==
repeat_gen_blocks #a #c blocksize 0 hi inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) | [] | Lib.Sequence.Lemmas.repeat_blocks_is_repeat_gen_blocks | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
hi: Prims.nat ->
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp / blocksize <= hi} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
l: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
acc0: b
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.repeat_blocks blocksize inp f l acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks blocksize
0
hi
inp
(Lib.LoopCombinators.fixed_a b)
(Lib.LoopCombinators.fixed_i f)
(Lib.LoopCombinators.fixed_i l)
acc0) | {
"end_col": 5,
"end_line": 515,
"start_col": 75,
"start_line": 501
} |
FStar.Pervasives.Lemma | val repeat_blocks_extensionality:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f1:(lseq a blocksize -> b -> b)
-> f2:(lseq a blocksize -> b -> b)
-> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\
(forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc))
(ensures
repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0 | val repeat_blocks_extensionality:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f1:(lseq a blocksize -> b -> b)
-> f2:(lseq a blocksize -> b -> b)
-> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\
(forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc))
(ensures
repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0)
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 = | false | null | true | let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i: nat{i < nb}) (acc: b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize)
in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.Lemmas.repeati_extensionality",
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Prims.eq2",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Seq.Properties.slice_slice",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Lib.Sequence.lemma_repeat_blocks",
"Lib.LoopCombinators.repeati",
"Lib.Sequence.repeat_blocks_f",
"Prims.int",
"Prims.op_Division",
"Lib.Sequence.length"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
//////////////////////// | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_extensionality:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f1:(lseq a blocksize -> b -> b)
-> f2:(lseq a blocksize -> b -> b)
-> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(requires
(forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\
(forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc))
(ensures
repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) | [] | Lib.Sequence.Lemmas.repeat_blocks_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a ->
f1: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
f2: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
l1: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
l2: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
acc0: b
-> FStar.Pervasives.Lemma
(requires
(forall (block: Lib.Sequence.lseq a blocksize) (acc: b). f1 block acc == f2 block acc) /\
(forall (rem: Prims.nat{rem < blocksize}) (last: Lib.Sequence.lseq a rem) (acc: b).
l1 rem last acc == l2 rem last acc))
(ensures
Lib.Sequence.repeat_blocks blocksize inp f1 l1 acc0 ==
Lib.Sequence.repeat_blocks blocksize inp f2 l2 acc0) | {
"end_col": 46,
"end_line": 451,
"start_col": 74,
"start_line": 434
} |
FStar.Pervasives.Lemma | val map_blocks_extensionality:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem)
-> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Lemma
(requires
(let n = length inp / blocksize in
(forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\
(forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v)))
(ensures
map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g | val map_blocks_extensionality:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem)
-> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Lemma
(requires
(let n = length inp / blocksize in
(forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\
(forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v)))
(ensures
map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g)
let map_blocks_extensionality #a blocksize inp f l_f g l_g = | false | null | true | let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Lib.Sequence.block",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Lib.Sequence.last",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.Lemmas.map_blocks_multi_extensionality",
"Prims.unit",
"Lib.Sequence.lemma_map_blocks",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.int",
"Prims.op_Division",
"Prims.nat"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_extensionality:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem)
-> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Lemma
(requires
(let n = length inp / blocksize in
(forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\
(forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v)))
(ensures
map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) | [] | Lib.Sequence.Lemmas.map_blocks_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a ->
f:
(_: Lib.Sequence.block (Lib.Sequence.length inp) blocksize -> _: Lib.Sequence.lseq a blocksize
-> Lib.Sequence.lseq a blocksize) ->
l_f:
(
_: Lib.Sequence.last (Lib.Sequence.length inp) blocksize ->
rem: Lib.IntTypes.size_nat{rem < blocksize} ->
s: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem) ->
g:
(_: Lib.Sequence.block (Lib.Sequence.length inp) blocksize -> _: Lib.Sequence.lseq a blocksize
-> Lib.Sequence.lseq a blocksize) ->
l_g:
(
_: Lib.Sequence.last (Lib.Sequence.length inp) blocksize ->
rem: Lib.IntTypes.size_nat{rem < blocksize} ->
s: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem)
-> FStar.Pervasives.Lemma
(requires
(let n = Lib.Sequence.length inp / blocksize in
(forall (i: Prims.nat{i < n}) (b_v: Lib.Sequence.lseq a blocksize). f i b_v == g i b_v) /\
(forall (rem: Prims.nat{rem < blocksize}) (b_v: Lib.Sequence.lseq a rem).
l_f n rem b_v == l_g n rem b_v)))
(ensures
Lib.Sequence.map_blocks blocksize inp f l_f == Lib.Sequence.map_blocks blocksize inp g l_g) | {
"end_col": 61,
"end_line": 639,
"start_col": 60,
"start_line": 632
} |
FStar.Pervasives.Lemma | val lemma_repeat_blocks_via_multi:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_mod nb blocksize;
let acc = repeat_blocks_multi blocksize blocks f acc0 in
repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
} | val lemma_repeat_blocks_via_multi:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_mod nb blocksize;
let acc = repeat_blocks_multi blocksize blocks f acc0 in
repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc)
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 = | false | null | true | let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i: nat{i < nb}) (acc: b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize)
in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc ( == ) {
Loops.repeati nb f_rep acc0;
( == ) { (Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep f_rep_b acc0) }
Loops.repeati nb f_rep_b acc0;
( == ) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.LoopCombinators.repeati",
"Lib.Sequence.repeat_blocks_multi",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.repeati_extensionality",
"FStar.Classical.forall_intro_2",
"Prims.squash",
"Lib.Sequence.lemma_repeat_blocks_multi",
"Lib.Sequence.lemma_repeat_blocks",
"Prims.l_True",
"FStar.Pervasives.pattern",
"FStar.Seq.Properties.slice_slice",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Lib.Sequence.repeat_blocks_f",
"FStar.Math.Lemmas.cancel_mul_mod",
"FStar.Math.Lemmas.cancel_mul_div",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.int",
"Prims.op_Division",
"Lib.Sequence.length"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_repeat_blocks_via_multi:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_mod nb blocksize;
let acc = repeat_blocks_multi blocksize blocks f acc0 in
repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) | [] | Lib.Sequence.Lemmas.lemma_repeat_blocks_via_multi | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
l: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
acc0: b
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = FStar.Seq.Base.slice inp 0 (nb * blocksize) in
let last = FStar.Seq.Base.slice inp (nb * blocksize) len in
[@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_mod nb blocksize in
let acc = Lib.Sequence.repeat_blocks_multi blocksize blocks f acc0 in
Lib.Sequence.repeat_blocks blocksize inp f l acc0 == l rem last acc)) | {
"end_col": 3,
"end_line": 476,
"start_col": 67,
"start_line": 454
} |
FStar.Pervasives.Lemma | val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc) | val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc ( <= ) {
i_b1 * blocksize + blocksize;
( <= ) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
( == ) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc ( == ) {
len0 + i_b1 * blocksize;
( == ) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
( == ) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.l_and",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Prims.op_Division",
"Prims._assert",
"Prims.unit",
"FStar.Seq.Properties.slice_slice",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.div_exact_r",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Prims.op_Subtraction",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Lib.Sequence.Lemmas.split_len_lemma0"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc) | [] | Lib.Sequence.Lemmas.aux_repeat_bf_s1 | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize == 0} ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp:
Lib.Sequence.seq inp_t
{len0 <= Lib.Sequence.length inp /\ Lib.Sequence.length inp == n * blocksize} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
i: Prims.nat{mi + len0 / blocksize <= i /\ i < mi + n} ->
acc: a i
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma0 blocksize n len0
in
let t1 = FStar.Seq.Base.slice inp len0 len in
let repeat_bf_s1 =
Lib.Sequence.Lemmas.repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f
in
let repeat_bf_t = Lib.Sequence.Lemmas.repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)) | {
"end_col": 46,
"end_line": 267,
"start_col": 66,
"start_line": 233
} |
FStar.Pervasives.Lemma | val repeat_blocks_multi_is_repeat_gen_blocks_multi:
#a:Type0
-> #b:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let n = length inp / blocksize in
Math.Lemmas.div_exact_r (length inp) blocksize;
repeat_blocks_multi #a #b blocksize inp f acc0 ==
repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
} | val repeat_blocks_multi_is_repeat_gen_blocks_multi:
#a:Type0
-> #b:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let n = length inp / blocksize in
Math.Lemmas.div_exact_r (length inp) blocksize;
repeat_blocks_multi #a #b blocksize inp f acc0 ==
repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0)
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 = | false | null | true | let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i: nat{i < n}) (acc: b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc ( == ) {
repeat_blocks_multi #a #b blocksize inp f acc0;
( == ) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
( == ) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
( == ) { (Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0) }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.length",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Sequence.repeat_blocks_multi",
"Lib.LoopCombinators.repeat_right",
"Lib.LoopCombinators.fixed_a",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeati",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.lemma_repeat_blocks_multi",
"Prims.squash",
"Lib.LoopCombinators.repeati_def",
"Lib.Sequence.repeat_blocks_f",
"Lib.Sequence.Lemmas.repeat_gen_right_extensionality",
"FStar.Classical.forall_intro_2",
"Prims.op_LessThan",
"Prims.l_True",
"FStar.Pervasives.pattern",
"Prims.op_Addition",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Lib.LoopCombinators.fixed_i",
"FStar.Math.Lemmas.div_exact_r"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_multi_is_repeat_gen_blocks_multi:
#a:Type0
-> #b:Type0
-> hi:nat
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let n = length inp / blocksize in
Math.Lemmas.div_exact_r (length inp) blocksize;
repeat_blocks_multi #a #b blocksize inp f acc0 ==
repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) | [] | Lib.Sequence.Lemmas.repeat_blocks_multi_is_repeat_gen_blocks_multi | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
hi: Prims.nat ->
blocksize: Lib.IntTypes.size_pos ->
inp:
Lib.Sequence.seq a
{Lib.Sequence.length inp % blocksize = 0 /\ Lib.Sequence.length inp / blocksize <= hi} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
acc0: b
-> FStar.Pervasives.Lemma
(ensures
(let n = Lib.Sequence.length inp / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
FStar.Math.Lemmas.div_exact_r (Lib.Sequence.length inp) blocksize
in
Lib.Sequence.repeat_blocks_multi blocksize inp f acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize
0
hi
n
inp
(Lib.LoopCombinators.fixed_a b)
(Lib.LoopCombinators.fixed_i f)
acc0)) | {
"end_col": 5,
"end_line": 498,
"start_col": 82,
"start_line": 479
} |
FStar.Pervasives.Lemma | val map_blocks_acc_is_map_blocks0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks_acc #a blocksize 0 hi inp f l Seq.empty `Seq.equal` map_blocks #a blocksize inp f l) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_acc_is_map_blocks0 #a blocksize hi inp f l =
let len = length inp in
let n = len / blocksize in
let f_sh = f_shift blocksize 0 hi n f in
let l_sh = l_shift blocksize 0 hi n l in
calc (==) {
map_blocks_acc #a blocksize 0 hi inp f l Seq.empty;
(==) { map_blocks_acc_is_map_blocks blocksize 0 hi inp f l Seq.empty }
Seq.append Seq.empty (map_blocks #a blocksize inp f_sh l_sh);
(==) { Seq.Base.append_empty_l (map_blocks #a blocksize inp f_sh l_sh) }
map_blocks #a blocksize inp f_sh l_sh;
(==) { map_blocks_extensionality #a blocksize inp f l f_sh l_sh }
map_blocks #a blocksize inp f l;
} | val map_blocks_acc_is_map_blocks0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks_acc #a blocksize 0 hi inp f l Seq.empty `Seq.equal` map_blocks #a blocksize inp f l)
let map_blocks_acc_is_map_blocks0 #a blocksize hi inp f l = | false | null | true | let len = length inp in
let n = len / blocksize in
let f_sh = f_shift blocksize 0 hi n f in
let l_sh = l_shift blocksize 0 hi n l in
calc ( == ) {
map_blocks_acc #a blocksize 0 hi inp f l Seq.empty;
( == ) { map_blocks_acc_is_map_blocks blocksize 0 hi inp f l Seq.empty }
Seq.append Seq.empty (map_blocks #a blocksize inp f_sh l_sh);
( == ) { Seq.Base.append_empty_l (map_blocks #a blocksize inp f_sh l_sh) }
map_blocks #a blocksize inp f_sh l_sh;
( == ) { map_blocks_extensionality #a blocksize inp f l f_sh l_sh }
map_blocks #a blocksize inp f l;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Sequence.Lemmas.map_blocks_acc",
"FStar.Seq.Base.empty",
"Lib.Sequence.map_blocks",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Seq.Base.append",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.map_blocks_acc_is_map_blocks",
"Prims.squash",
"FStar.Seq.Base.append_empty_l",
"Lib.Sequence.Lemmas.map_blocks_extensionality",
"Lib.Sequence.Lemmas.l_shift",
"Lib.Sequence.Lemmas.f_shift",
"Prims.int"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end
#pop-options
let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 =
let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc (==) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
(==) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
(==) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
(==) { }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
}
let map_blocks_acc_is_map_blocks #a blocksize mi hi inp f l acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let f_sh = f_shift blocksize mi hi n f in
let l_sh = l_shift blocksize mi hi n l in
lemma_map_blocks #a blocksize inp f_sh l_sh;
map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n blocks f acc0
let map_blocks_multi_acc_is_map_blocks_multi0 #a blocksize hi n inp f =
let f_sh = f_shift blocksize 0 hi n f in
let a_map = map_blocks_a a blocksize n in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty;
(==) { map_blocks_multi_acc_is_map_blocks_multi #a blocksize 0 hi n inp f Seq.empty }
Seq.append Seq.empty (map_blocks_multi blocksize n n inp f_sh);
(==) { Seq.Base.append_empty_l (map_blocks_multi blocksize n n inp f_sh) }
map_blocks_multi blocksize n n inp f_sh;
(==) { map_blocks_multi_extensionality blocksize n n inp f_sh f }
map_blocks_multi blocksize n n inp f;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_acc_is_map_blocks0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks_acc #a blocksize 0 hi inp f l Seq.empty `Seq.equal` map_blocks #a blocksize inp f l) | [] | Lib.Sequence.Lemmas.map_blocks_acc_is_map_blocks0 | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
hi: Prims.nat ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp / blocksize <= hi} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
l:
(i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem)
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (Lib.Sequence.Lemmas.map_blocks_acc blocksize
0
hi
inp
f
l
FStar.Seq.Base.empty)
(Lib.Sequence.map_blocks blocksize inp f l)) | {
"end_col": 5,
"end_line": 783,
"start_col": 59,
"start_line": 769
} |
FStar.Pervasives.Lemma | val repeat_gen_blocks_multi_extensionality_zero:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{length inp == n * blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc))
(ensures
repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 ==
repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0 | val repeat_gen_blocks_multi_extensionality_zero:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{length inp == n * blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc))
(ensures
repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 ==
repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0)
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 = | false | null | true | let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.Lemmas.repeat_gen_right_extensionality",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Prims.unit"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = () | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_multi_extensionality_zero:
#inp_t:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{length inp == n * blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc))
(ensures
repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 ==
repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_multi_extensionality_zero | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi_f: Prims.nat ->
hi_g: Prims.nat ->
n: Prims.nat{mi + n <= hi_f /\ n <= hi_g} ->
inp: Lib.Sequence.seq inp_t {Lib.Sequence.length inp == n * blocksize} ->
a_f: (i: Prims.nat{i <= hi_f} -> Type) ->
a_g: (i: Prims.nat{i <= hi_g} -> Type) ->
f: (i: Prims.nat{i < hi_f} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a_f i -> a_f (i + 1)) ->
g: (i: Prims.nat{i < hi_g} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a_g i -> a_g (i + 1)) ->
acc0: a_f mi
-> FStar.Pervasives.Lemma
(requires
(forall (i: Prims.nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i: Prims.nat{i < n})
(block: Lib.Sequence.lseq inp_t blocksize)
(acc: a_f (mi + i)).
f (mi + i) block acc == g i block acc))
(ensures
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) | {
"end_col": 63,
"end_line": 87,
"start_col": 102,
"start_line": 84
} |
FStar.Pervasives.Lemma | val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc) | val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc = | false | null | true | let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.l_and",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Prims.op_Division",
"Prims._assert",
"Prims.unit",
"FStar.Seq.Properties.slice_slice",
"FStar.Math.Lemmas.lemma_mult_le_right",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Lib.Sequence.Lemmas.split_len_lemma0"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc) | [] | Lib.Sequence.Lemmas.aux_repeat_bf_s0 | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize == 0} ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp:
Lib.Sequence.seq inp_t
{len0 <= Lib.Sequence.length inp /\ Lib.Sequence.length inp == n * blocksize} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
i: Prims.nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} ->
acc: a i
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let n0 = len0 / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma0 blocksize n len0
in
let t0 = FStar.Seq.Base.slice inp 0 len0 in
let repeat_bf_s0 = Lib.Sequence.Lemmas.repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = Lib.Sequence.Lemmas.repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)) | {
"end_col": 46,
"end_line": 205,
"start_col": 66,
"start_line": 189
} |
FStar.Pervasives.Lemma | val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0 | val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 = | false | null | true | let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_Addition",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_split",
"Prims.unit",
"Lib.Sequence.Lemmas.split_len_lemma0",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.Sequence.Lemmas.split_len_lemma"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_multi_split_slice | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize == 0} ->
mi: Prims.nat ->
hi: Prims.nat ->
inp:
Lib.Sequence.seq inp_t
{ len0 <= (Lib.Sequence.length inp / blocksize) * blocksize /\
mi + Lib.Sequence.length inp / blocksize <= hi } ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
acc0: a mi
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma blocksize len len0
in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma0 blocksize n len0
in
let blocks = FStar.Seq.Base.slice inp 0 (n * blocksize) in
let t0 = FStar.Seq.Base.slice inp 0 len0 in
let t1 = FStar.Seq.Base.slice inp len0 (n * blocksize) in
let acc1 = Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)) | {
"end_col": 70,
"end_line": 347,
"start_col": 82,
"start_line": 341
} |
FStar.Pervasives.Lemma | val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1 | val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc ( == ) {
len0 + n1 * blocksize;
( == ) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
( == ) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
( == ) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.seq",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"FStar.Seq.Properties.slice_slice",
"FStar.Mul.op_Star",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.len0_div_bs",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.div_exact_r",
"Prims.op_Division"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len) | [] | Lib.Sequence.Lemmas.slice_slice_last | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize = 0} ->
inp: Lib.Sequence.seq inp_t {len0 <= Lib.Sequence.length inp}
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = FStar.Seq.Base.slice inp len0 len in
FStar.Seq.Base.equal (FStar.Seq.Base.slice t1 (n1 * blocksize) len1)
(FStar.Seq.Base.slice inp (n * blocksize) len))) | {
"end_col": 52,
"end_line": 382,
"start_col": 48,
"start_line": 364
} |
FStar.Pervasives.Lemma | val map_blocks_multi_acc_is_map_blocks_multi0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> n:nat{n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) ->
Lemma (map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty `Seq.equal` map_blocks_multi blocksize n n inp f) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_multi_acc_is_map_blocks_multi0 #a blocksize hi n inp f =
let f_sh = f_shift blocksize 0 hi n f in
let a_map = map_blocks_a a blocksize n in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty;
(==) { map_blocks_multi_acc_is_map_blocks_multi #a blocksize 0 hi n inp f Seq.empty }
Seq.append Seq.empty (map_blocks_multi blocksize n n inp f_sh);
(==) { Seq.Base.append_empty_l (map_blocks_multi blocksize n n inp f_sh) }
map_blocks_multi blocksize n n inp f_sh;
(==) { map_blocks_multi_extensionality blocksize n n inp f_sh f }
map_blocks_multi blocksize n n inp f;
} | val map_blocks_multi_acc_is_map_blocks_multi0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> n:nat{n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) ->
Lemma (map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty `Seq.equal` map_blocks_multi blocksize n n inp f)
let map_blocks_multi_acc_is_map_blocks_multi0 #a blocksize hi n inp f = | false | null | true | let f_sh = f_shift blocksize 0 hi n f in
let a_map = map_blocks_a a blocksize n in
let acc0:a_map 0 = Seq.empty #a in
calc ( == ) {
map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty;
( == ) { map_blocks_multi_acc_is_map_blocks_multi #a blocksize 0 hi n inp f Seq.empty }
Seq.append Seq.empty (map_blocks_multi blocksize n n inp f_sh);
( == ) { Seq.Base.append_empty_l (map_blocks_multi blocksize n n inp f_sh) }
map_blocks_multi blocksize n n inp f_sh;
( == ) { map_blocks_multi_extensionality blocksize n n inp f_sh f }
map_blocks_multi blocksize n n inp f;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Prims.op_Addition",
"FStar.Seq.Base.empty",
"Lib.Sequence.Lemmas.map_blocks_multi_acc",
"Lib.Sequence.map_blocks_multi",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Seq.Base.append",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi",
"Prims.squash",
"FStar.Seq.Base.append_empty_l",
"Lib.Sequence.Lemmas.map_blocks_multi_extensionality",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.Lemmas.f_shift"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end
#pop-options
let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 =
let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc (==) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
(==) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
(==) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
(==) { }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
}
let map_blocks_acc_is_map_blocks #a blocksize mi hi inp f l acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let f_sh = f_shift blocksize mi hi n f in
let l_sh = l_shift blocksize mi hi n l in
lemma_map_blocks #a blocksize inp f_sh l_sh;
map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n blocks f acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi_acc_is_map_blocks_multi0:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> n:nat{n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) ->
Lemma (map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty `Seq.equal` map_blocks_multi blocksize n n inp f) | [] | Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi0 | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
hi: Prims.nat ->
n: Prims.nat{n <= hi} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == n * blocksize} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize)
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (Lib.Sequence.Lemmas.map_blocks_multi_acc blocksize
0
hi
n
inp
f
FStar.Seq.Base.empty)
(Lib.Sequence.map_blocks_multi blocksize n n inp f)) | {
"end_col": 5,
"end_line": 766,
"start_col": 71,
"start_line": 753
} |
FStar.Pervasives.Lemma | val repeat_gen_right_extensionality:
n:nat
-> lo_g:nat
-> a_f:(i:nat{i <= n} -> Type)
-> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type)
-> f:(i:nat{i < n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f 0 ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\
(forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n a_f f acc0 ==
Loops.repeat_right lo_g (lo_g + n) a_g g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end | val repeat_gen_right_extensionality:
n:nat
-> lo_g:nat
-> a_f:(i:nat{i <= n} -> Type)
-> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type)
-> f:(i:nat{i < n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f 0 ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\
(forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n a_f f acc0 ==
Loops.repeat_right lo_g (lo_g + n) a_g g acc0)
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 = | false | null | true | if n = 0
then
(Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g + n) a_g g acc0)
else
(Loops.unfold_repeat_right 0 n a_f f acc0 (n - 1);
Loops.unfold_repeat_right lo_g (lo_g + n) a_g g acc0 (lo_g + n - 1);
repeat_gen_right_extensionality (n - 1) lo_g a_f a_g f g acc0) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_and",
"Prims.op_Addition",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Lib.LoopCombinators.eq_repeat_right",
"Prims.unit",
"Prims.bool",
"Lib.Sequence.Lemmas.repeat_gen_right_extensionality",
"Prims.op_Subtraction",
"Lib.LoopCombinators.unfold_repeat_right"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_right_extensionality:
n:nat
-> lo_g:nat
-> a_f:(i:nat{i <= n} -> Type)
-> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type)
-> f:(i:nat{i < n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f 0 ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\
(forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc))
(ensures
Loops.repeat_right 0 n a_f f acc0 ==
Loops.repeat_right lo_g (lo_g + n) a_g g acc0) | [
"recursion"
] | Lib.Sequence.Lemmas.repeat_gen_right_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.nat ->
lo_g: Prims.nat ->
a_f: (i: Prims.nat{i <= n} -> Type) ->
a_g: (i: Prims.nat{lo_g <= i /\ i <= lo_g + n} -> Type) ->
f: (i: Prims.nat{i < n} -> _: a_f i -> a_f (i + 1)) ->
g: (i: Prims.nat{lo_g <= i /\ i < lo_g + n} -> _: a_g i -> a_g (i + 1)) ->
acc0: a_f 0
-> FStar.Pervasives.Lemma
(requires
(forall (i: Prims.nat{i <= n}). a_f i == a_g (lo_g + i)) /\
(forall (i: Prims.nat{i < n}) (acc: a_f i). f i acc == g (lo_g + i) acc))
(ensures
Lib.LoopCombinators.repeat_right 0 n a_f f acc0 ==
Lib.LoopCombinators.repeat_right lo_g (lo_g + n) a_g g acc0) | {
"end_col": 67,
"end_line": 39,
"start_col": 2,
"start_line": 33
} |
FStar.Pervasives.Lemma | val map_blocks_multi_acc_is_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(map_blocks_multi_acc blocksize mi hi n inp f acc0 `Seq.equal`
Seq.append acc0 (map_blocks_multi blocksize n n inp (f_shift blocksize mi hi n f))) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 =
let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc (==) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
(==) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
(==) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
(==) { }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
} | val map_blocks_multi_acc_is_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(map_blocks_multi_acc blocksize mi hi n inp f acc0 `Seq.equal`
Seq.append acc0 (map_blocks_multi blocksize n n inp (f_shift blocksize mi hi n f)))
let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 = | false | null | true | let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc ( == ) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
( == ) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
( == ) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
( == ) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
( == ) { () }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"FStar.Calc.calc_finish",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append",
"Lib.Sequence.map_blocks_multi",
"Lib.Sequence.Lemmas.map_blocks_multi_acc",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeat_right",
"FStar.Seq.Base.empty",
"Lib.LoopCombinators.repeat_gen",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.lemma_map_blocks_multi",
"Prims.squash",
"Lib.LoopCombinators.repeat_gen_def",
"Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi_",
"Lib.Sequence.map_blocks_f",
"Lib.Sequence.Lemmas.f_shift",
"Prims.l_and",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Lib.Sequence.Lemmas.repeat_gen_blocks_map_f"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end
#pop-options | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi_acc_is_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq a{length inp == n * blocksize}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(map_blocks_multi_acc blocksize mi hi n inp f acc0 `Seq.equal`
Seq.append acc0 (map_blocks_multi blocksize n n inp (f_shift blocksize mi hi n f))) | [] | Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == n * blocksize} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
acc0: Lib.Sequence.map_blocks_a a blocksize hi mi
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (Lib.Sequence.Lemmas.map_blocks_multi_acc blocksize mi hi n inp f acc0)
(FStar.Seq.Base.append acc0
(Lib.Sequence.map_blocks_multi blocksize
n
n
inp
(Lib.Sequence.Lemmas.f_shift blocksize mi hi n f)))) | {
"end_col": 3,
"end_line": 738,
"start_col": 78,
"start_line": 719
} |
FStar.Pervasives.Lemma | val map_blocks_acc_is_map_blocks:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(let n = length inp / blocksize in
map_blocks_acc #a blocksize mi hi inp f l acc0 `Seq.equal`
Seq.append acc0 (map_blocks #a blocksize inp (f_shift blocksize mi hi n f) (l_shift blocksize mi hi n l))) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_acc_is_map_blocks #a blocksize mi hi inp f l acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let f_sh = f_shift blocksize mi hi n f in
let l_sh = l_shift blocksize mi hi n l in
lemma_map_blocks #a blocksize inp f_sh l_sh;
map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n blocks f acc0 | val map_blocks_acc_is_map_blocks:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(let n = length inp / blocksize in
map_blocks_acc #a blocksize mi hi inp f l acc0 `Seq.equal`
Seq.append acc0 (map_blocks #a blocksize inp (f_shift blocksize mi hi n f) (l_shift blocksize mi hi n l)))
let map_blocks_acc_is_map_blocks #a blocksize mi hi inp f l acc0 = | false | null | true | let len = length inp in
let n = len / blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let f_sh = f_shift blocksize mi hi n f in
let l_sh = l_shift blocksize mi hi n l in
lemma_map_blocks #a blocksize inp f_sh l_sh;
map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n blocks f acc0 | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi",
"Prims.unit",
"Lib.Sequence.lemma_map_blocks",
"Lib.Sequence.Lemmas.l_shift",
"Lib.Sequence.Lemmas.f_shift",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.int"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end
#pop-options
let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 =
let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc (==) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
(==) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
(==) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
(==) { }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_acc_is_map_blocks:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi:nat
-> inp:seq a{mi + length inp / blocksize <= hi}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)
-> acc0:map_blocks_a a blocksize hi mi ->
Lemma
(let n = length inp / blocksize in
map_blocks_acc #a blocksize mi hi inp f l acc0 `Seq.equal`
Seq.append acc0 (map_blocks #a blocksize inp (f_shift blocksize mi hi n f) (l_shift blocksize mi hi n l))) | [] | Lib.Sequence.Lemmas.map_blocks_acc_is_map_blocks | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi: Prims.nat ->
inp: Lib.Sequence.seq a {mi + Lib.Sequence.length inp / blocksize <= hi} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
l:
(i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem) ->
acc0: Lib.Sequence.map_blocks_a a blocksize hi mi
-> FStar.Pervasives.Lemma
(ensures
(let n = Lib.Sequence.length inp / blocksize in
FStar.Seq.Base.equal (Lib.Sequence.Lemmas.map_blocks_acc blocksize mi hi inp f l acc0)
(FStar.Seq.Base.append acc0
(Lib.Sequence.map_blocks blocksize
inp
(Lib.Sequence.Lemmas.f_shift blocksize mi hi n f)
(Lib.Sequence.Lemmas.l_shift blocksize mi hi n l))))) | {
"end_col": 77,
"end_line": 750,
"start_col": 66,
"start_line": 741
} |
FStar.Pervasives.Lemma | val repeat_right_extensionality:
n:nat
-> lo:nat
-> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f lo ->
Lemma
(requires
(forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\
(forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc))
(ensures
Loops.repeat_right lo (lo + n) a_f f acc0 ==
Loops.repeat_right lo (lo + n) a_g g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end | val repeat_right_extensionality:
n:nat
-> lo:nat
-> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f lo ->
Lemma
(requires
(forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\
(forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc))
(ensures
Loops.repeat_right lo (lo + n) a_f f acc0 ==
Loops.repeat_right lo (lo + n) a_g g acc0)
let rec repeat_right_extensionality n lo a_f a_g f g acc0 = | false | null | true | if n = 0
then
(Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0)
else
(Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0) | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Lib.LoopCombinators.eq_repeat_right",
"Prims.unit",
"Prims.bool",
"Lib.Sequence.Lemmas.repeat_right_extensionality",
"Prims.op_Subtraction",
"Lib.LoopCombinators.unfold_repeat_right"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_right_extensionality:
n:nat
-> lo:nat
-> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type)
-> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1))
-> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1))
-> acc0:a_f lo ->
Lemma
(requires
(forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\
(forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc))
(ensures
Loops.repeat_right lo (lo + n) a_f f acc0 ==
Loops.repeat_right lo (lo + n) a_g g acc0) | [
"recursion"
] | Lib.Sequence.Lemmas.repeat_right_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.nat ->
lo: Prims.nat ->
a_f: (i: Prims.nat{lo <= i /\ i <= lo + n} -> Type) ->
a_g: (i: Prims.nat{lo <= i /\ i <= lo + n} -> Type) ->
f: (i: Prims.nat{lo <= i /\ i < lo + n} -> _: a_f i -> a_f (i + 1)) ->
g: (i: Prims.nat{lo <= i /\ i < lo + n} -> _: a_g i -> a_g (i + 1)) ->
acc0: a_f lo
-> FStar.Pervasives.Lemma
(requires
(forall (i: Prims.nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\
(forall (i: Prims.nat{lo <= i /\ i < lo + n}) (acc: a_f i). f i acc == g i acc))
(ensures
Lib.LoopCombinators.repeat_right lo (lo + n) a_f f acc0 ==
Lib.LoopCombinators.repeat_right lo (lo + n) a_g g acc0) | {
"end_col": 63,
"end_line": 29,
"start_col": 2,
"start_line": 23
} |
FStar.Pervasives.Lemma | val repeat_gen_blocks_extensionality_zero:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{n == length inp / blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c)
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c)
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc) /\
(forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)).
l_f (mi + i) len block acc == l_g i len block acc))
(ensures
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 ==
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
} | val repeat_gen_blocks_extensionality_zero:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{n == length inp / blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c)
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c)
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc) /\
(forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)).
l_f (mi + i) len block acc == l_g i len block acc))
(ensures
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 ==
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0)
let repeat_gen_blocks_extensionality_zero
#inp_t
#c
blocksize
mi
hi_f
hi_g
n
inp
a_f
a_g
f
l_f
g
l_g
acc0
= | false | null | true | let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc ( == ) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
( == ) { () }
l_f (mi + n) rem block_l acc_f;
( == ) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f
a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
( == ) { () }
l_g n rem block_l acc_g;
( == ) { () }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Lib.Sequence.Lemmas.repeat_gen_blocks",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_extensionality_zero",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.cancel_mul_mod",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.op_Modulus"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0 | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_extensionality_zero:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + n <= hi_f /\ n <= hi_g}
-> inp:seq inp_t{n == length inp / blocksize}
-> a_f:(i:nat{i <= hi_f} -> Type)
-> a_g:(i:nat{i <= hi_g} -> Type)
-> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1))
-> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c)
-> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1))
-> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c)
-> acc0:a_f mi ->
Lemma
(requires
(forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)).
f (mi + i) block acc == g i block acc) /\
(forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)).
l_f (mi + i) len block acc == l_g i len block acc))
(ensures
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 ==
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_extensionality_zero | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi_f: Prims.nat ->
hi_g: Prims.nat ->
n: Prims.nat{mi + n <= hi_f /\ n <= hi_g} ->
inp: Lib.Sequence.seq inp_t {n == Lib.Sequence.length inp / blocksize} ->
a_f: (i: Prims.nat{i <= hi_f} -> Type) ->
a_g: (i: Prims.nat{i <= hi_g} -> Type) ->
f: (i: Prims.nat{i < hi_f} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a_f i -> a_f (i + 1)) ->
l_f:
(
i: Prims.nat{i <= hi_f} ->
len: Prims.nat{len < blocksize} ->
_: Lib.Sequence.lseq inp_t len ->
_: a_f i
-> c) ->
g: (i: Prims.nat{i < hi_g} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a_g i -> a_g (i + 1)) ->
l_g:
(
i: Prims.nat{i <= hi_g} ->
len: Prims.nat{len < blocksize} ->
_: Lib.Sequence.lseq inp_t len ->
_: a_g i
-> c) ->
acc0: a_f mi
-> FStar.Pervasives.Lemma
(requires
(forall (i: Prims.nat{i <= n}). a_f (mi + i) == a_g i) /\
(forall (i: Prims.nat{i < n})
(block: Lib.Sequence.lseq inp_t blocksize)
(acc: a_f (mi + i)).
f (mi + i) block acc == g i block acc) /\
(forall (i: Prims.nat{i <= n})
(len: Prims.nat{len < blocksize})
(block: Lib.Sequence.lseq inp_t len)
(acc: a_f (mi + i)).
l_f (mi + i) len block acc == l_g i len block acc))
(ensures
Lib.Sequence.Lemmas.repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) | {
"end_col": 5,
"end_line": 110,
"start_col": 107,
"start_line": 90
} |
FStar.Pervasives.Lemma | val map_blocks_is_empty:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp == 0}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks #a blocksize inp f l == Seq.empty) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_is_empty #a blocksize hi inp f l =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
assert (rem == 0);
calc (==) {
map_blocks blocksize inp f l;
(==) { lemma_map_blocks blocksize inp f l }
map_blocks_multi #a blocksize nb nb blocks f;
(==) { lemma_map_blocks_multi blocksize nb nb blocks f }
Loops.repeat_gen nb (map_blocks_a a blocksize nb) (map_blocks_f #a blocksize nb inp f) Seq.empty;
(==) { Loops.eq_repeat_gen0 nb (map_blocks_a a blocksize nb) (map_blocks_f #a blocksize nb inp f) Seq.empty }
Seq.empty;
} | val map_blocks_is_empty:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp == 0}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks #a blocksize inp f l == Seq.empty)
let map_blocks_is_empty #a blocksize hi inp f l = | false | null | true | let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
assert (rem == 0);
calc ( == ) {
map_blocks blocksize inp f l;
( == ) { lemma_map_blocks blocksize inp f l }
map_blocks_multi #a blocksize nb nb blocks f;
( == ) { lemma_map_blocks_multi blocksize nb nb blocks f }
Loops.repeat_gen nb (map_blocks_a a blocksize nb) (map_blocks_f #a blocksize nb inp f) Seq.empty;
( == ) { Loops.eq_repeat_gen0 nb
(map_blocks_a a blocksize nb)
(map_blocks_f #a blocksize nb inp f)
Seq.empty }
Seq.empty;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Prims.op_LessThanOrEqual",
"FStar.Calc.calc_finish",
"Lib.Sequence.map_blocks",
"FStar.Seq.Base.empty",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeat_gen",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.map_blocks_f",
"Lib.Sequence.map_blocks_multi",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.lemma_map_blocks",
"Prims.squash",
"Lib.Sequence.lemma_map_blocks_multi",
"Lib.LoopCombinators.eq_repeat_gen0",
"Prims._assert",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.op_Division"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end
#pop-options
let map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n inp f acc0 =
let f_map = repeat_gen_blocks_map_f blocksize hi f in
let a_map = map_blocks_a a blocksize hi in
let f_gen = repeat_gen_blocks_f blocksize mi hi n inp a_map f_map in
let f_map_s = f_shift blocksize mi hi n f in
let a_map_s = map_blocks_a a blocksize n in
let f_gen_s = map_blocks_f #a blocksize n inp f_map_s in
calc (==) {
Seq.append acc0 (map_blocks_multi blocksize n n inp f_map_s);
(==) { lemma_map_blocks_multi blocksize n n inp f_map_s }
Seq.append acc0 (Loops.repeat_gen n a_map_s f_gen_s (Seq.empty #a));
(==) { Loops.repeat_gen_def n a_map_s f_gen_s (Seq.empty #a) }
Seq.append acc0 (Loops.repeat_right 0 n a_map_s f_gen_s (Seq.empty #a));
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi n n inp f acc0 }
Loops.repeat_right mi (mi + n) a_map f_gen acc0;
(==) { }
map_blocks_multi_acc #a blocksize mi hi n inp f acc0;
}
let map_blocks_acc_is_map_blocks #a blocksize mi hi inp f l acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let f_sh = f_shift blocksize mi hi n f in
let l_sh = l_shift blocksize mi hi n l in
lemma_map_blocks #a blocksize inp f_sh l_sh;
map_blocks_multi_acc_is_map_blocks_multi #a blocksize mi hi n blocks f acc0
let map_blocks_multi_acc_is_map_blocks_multi0 #a blocksize hi n inp f =
let f_sh = f_shift blocksize 0 hi n f in
let a_map = map_blocks_a a blocksize n in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi_acc blocksize 0 hi n inp f Seq.empty;
(==) { map_blocks_multi_acc_is_map_blocks_multi #a blocksize 0 hi n inp f Seq.empty }
Seq.append Seq.empty (map_blocks_multi blocksize n n inp f_sh);
(==) { Seq.Base.append_empty_l (map_blocks_multi blocksize n n inp f_sh) }
map_blocks_multi blocksize n n inp f_sh;
(==) { map_blocks_multi_extensionality blocksize n n inp f_sh f }
map_blocks_multi blocksize n n inp f;
}
let map_blocks_acc_is_map_blocks0 #a blocksize hi inp f l =
let len = length inp in
let n = len / blocksize in
let f_sh = f_shift blocksize 0 hi n f in
let l_sh = l_shift blocksize 0 hi n l in
calc (==) {
map_blocks_acc #a blocksize 0 hi inp f l Seq.empty;
(==) { map_blocks_acc_is_map_blocks blocksize 0 hi inp f l Seq.empty }
Seq.append Seq.empty (map_blocks #a blocksize inp f_sh l_sh);
(==) { Seq.Base.append_empty_l (map_blocks #a blocksize inp f_sh l_sh) }
map_blocks #a blocksize inp f_sh l_sh;
(==) { map_blocks_extensionality #a blocksize inp f l f_sh l_sh }
map_blocks #a blocksize inp f l;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_is_empty:
#a:Type0
-> blocksize:size_pos
-> hi:nat
-> inp:seq a{length inp == 0}
-> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)
-> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) ->
Lemma (map_blocks #a blocksize inp f l == Seq.empty) | [] | Lib.Sequence.Lemmas.map_blocks_is_empty | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
hi: Prims.nat ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == 0} ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
l:
(i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem)
-> FStar.Pervasives.Lemma
(ensures Lib.Sequence.map_blocks blocksize inp f l == FStar.Seq.Base.empty) | {
"end_col": 5,
"end_line": 801,
"start_col": 49,
"start_line": 786
} |
FStar.Pervasives.Lemma | val repeat_gen_blocks_split:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> hi:nat
-> mi:nat{mi <= hi}
-> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acc0:a mi ->
Lemma
(let len = length inp in
let n = len / blocksize in
let n0 = len0 / blocksize in
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks blocksize mi hi inp a f l acc0 ==
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
} | val repeat_gen_blocks_split:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> hi:nat
-> mi:nat{mi <= hi}
-> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acc0:a mi ->
Lemma
(let len = length inp in
let n = len / blocksize in
let n0 = len0 / blocksize in
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks blocksize mi hi inp a f l acc0 ==
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc)
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc ( == ) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
( == ) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc ( == ) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
( == ) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
( == ) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
( == ) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.l_and",
"Lib.Sequence.length",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Lib.Sequence.Lemmas.repeat_gen_blocks",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.len0_div_bs",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_sub_distr",
"Lib.Sequence.Lemmas.slice_slice_last",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_split_slice",
"FStar.Math.Lemmas.cancel_mul_mod",
"FStar.Seq.Base.seq",
"Lib.Sequence.Lemmas.split_len_lemma0",
"Lib.Sequence.Lemmas.split_len_lemma",
"Lib.Sequence.Lemmas.len0_le_len_fraction",
"Prims.op_Subtraction"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_split:
#inp_t:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> hi:nat
-> mi:nat{mi <= hi}
-> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c)
-> acc0:a mi ->
Lemma
(let len = length inp in
let n = len / blocksize in
let n0 = len0 / blocksize in
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks blocksize mi hi inp a f l acc0 ==
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_split | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize == 0} ->
hi: Prims.nat ->
mi: Prims.nat{mi <= hi} ->
inp:
Lib.Sequence.seq inp_t
{len0 <= Lib.Sequence.length inp /\ mi + Lib.Sequence.length inp / blocksize <= hi} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
l:
(
i: Prims.nat{i <= hi} ->
len: Prims.nat{len < blocksize} ->
_: Lib.Sequence.lseq inp_t len ->
_: a i
-> c) ->
acc0: a mi
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let n = len / blocksize in
let n0 = len0 / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma blocksize len len0
in
let t0 = FStar.Seq.Base.slice inp 0 len0 in
let t1 = FStar.Seq.Base.slice inp len0 len in
let acc = Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
Lib.Sequence.Lemmas.repeat_gen_blocks blocksize mi hi inp a f l acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc)) | {
"end_col": 5,
"end_line": 427,
"start_col": 75,
"start_line": 395
} |
FStar.Pervasives.Lemma | val map_blocks_multi_extensionality:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Lemma
(requires
(forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v))
(ensures
map_blocks_multi blocksize max n inp f ==
map_blocks_multi blocksize max n inp g) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
} | val map_blocks_multi_extensionality:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Lemma
(requires
(forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v))
(ensures
map_blocks_multi blocksize max n inp f ==
map_blocks_multi blocksize max n inp g)
let map_blocks_multi_extensionality #a blocksize max n inp f g = | false | null | true | let a_map = map_blocks_a a blocksize max in
let acc0:a_map 0 = Seq.empty #a in
calc ( == ) {
map_blocks_multi blocksize max n inp f;
( == ) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
( == ) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
( == ) { repeat_right_extensionality n
0
a_map
a_map
(map_blocks_f #a blocksize max inp f)
(map_blocks_f #a blocksize max inp g)
acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
( == ) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
( == ) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Lib.Sequence.map_blocks_multi",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeat_gen",
"Lib.Sequence.map_blocks_f",
"Lib.LoopCombinators.repeat_right",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.lemma_map_blocks_multi",
"Prims.squash",
"Lib.LoopCombinators.repeat_gen_def",
"Lib.Sequence.Lemmas.repeat_right_extensionality",
"FStar.Seq.Base.empty",
"Lib.Sequence.map_blocks_a"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
//////////////////////// | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi_extensionality:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Lemma
(requires
(forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v))
(ensures
map_blocks_multi blocksize max n inp f ==
map_blocks_multi blocksize max n inp g) | [] | Lib.Sequence.Lemmas.map_blocks_multi_extensionality | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
max: Prims.nat ->
n: Prims.nat{n <= max} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == max * blocksize} ->
f: (i: Prims.nat{i < max} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
g: (i: Prims.nat{i < max} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize)
-> FStar.Pervasives.Lemma
(requires
forall (i: Prims.nat{i < max}) (b_v: Lib.Sequence.lseq a blocksize). f i b_v == g i b_v)
(ensures
Lib.Sequence.map_blocks_multi blocksize max n inp f ==
Lib.Sequence.map_blocks_multi blocksize max n inp g) | {
"end_col": 5,
"end_line": 629,
"start_col": 64,
"start_line": 612
} |
FStar.Pervasives.Lemma | val repeat_blocks_multi_split:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let len = length inp in
Math.Lemmas.lemma_div_exact len blocksize;
split_len_lemma0 blocksize (len / blocksize) len0;
Math.Lemmas.swap_mul blocksize (len / blocksize);
repeat_blocks_multi blocksize inp f acc0 ==
repeat_blocks_multi blocksize (Seq.slice inp len0 len) f
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
} | val repeat_blocks_multi_split:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let len = length inp in
Math.Lemmas.lemma_div_exact len blocksize;
split_len_lemma0 blocksize (len / blocksize) len0;
Math.Lemmas.swap_mul blocksize (len / blocksize);
repeat_blocks_multi blocksize inp f acc0 ==
repeat_blocks_multi blocksize (Seq.slice inp len0 len) f
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0))
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc ( == ) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
( == ) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0 (Loops.fixed_a b)
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
( == ) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc ( == ) {
repeat_blocks_multi blocksize inp f acc0;
( == ) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
( == ) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b)
(Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
( == ) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1 (Loops.fixed_a b)
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
( == ) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Sequence.repeat_blocks_multi",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Lib.LoopCombinators.fixed_a",
"Lib.LoopCombinators.fixed_i",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.repeat_blocks_multi_is_repeat_gen_blocks_multi",
"Prims.squash",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_split",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_extensionality_zero",
"Prims.op_Addition",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.Sequence.Lemmas.split_len_lemma0",
"Lib.Sequence.Lemmas.len0_le_len_fraction",
"Prims.op_Division",
"Prims.op_Subtraction"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_multi_split:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> acc0:b ->
Lemma
(let len = length inp in
Math.Lemmas.lemma_div_exact len blocksize;
split_len_lemma0 blocksize (len / blocksize) len0;
Math.Lemmas.swap_mul blocksize (len / blocksize);
repeat_blocks_multi blocksize inp f acc0 ==
repeat_blocks_multi blocksize (Seq.slice inp len0 len) f
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) | [] | Lib.Sequence.Lemmas.repeat_blocks_multi_split | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize = 0} ->
inp:
Lib.Sequence.seq a
{len0 <= Lib.Sequence.length inp /\ Lib.Sequence.length inp % blocksize = 0} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
acc0: b
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
[@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.lemma_div_exact len blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma0 blocksize (len / blocksize) len0
in
[@@ FStar.Pervasives.inline_let ]let _ =
FStar.Math.Lemmas.swap_mul blocksize (len / blocksize)
in
Lib.Sequence.repeat_blocks_multi blocksize inp f acc0 ==
Lib.Sequence.repeat_blocks_multi blocksize
(FStar.Seq.Base.slice inp len0 len)
f
(Lib.Sequence.repeat_blocks_multi blocksize (FStar.Seq.Base.slice inp 0 len0) f acc0))) | {
"end_col": 5,
"end_line": 551,
"start_col": 63,
"start_line": 518
} |
FStar.Pervasives.Lemma | val repeat_blocks_split:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
split_len_lemma blocksize len len0;
repeat_blocks blocksize inp f l acc0 ==
repeat_blocks blocksize (Seq.slice inp len0 len) f l
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
} | val repeat_blocks_split:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
split_len_lemma blocksize len len0;
repeat_blocks blocksize inp f l acc0 ==
repeat_blocks blocksize (Seq.slice inp len0 len) f l
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0))
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc ( == ) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
( == ) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0 (Loops.fixed_a b)
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
( == ) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc ( == ) {
repeat_blocks blocksize inp f l acc0;
( == ) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
( == ) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp (Loops.fixed_a b) (Loops.fixed_i f)
(Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
( == ) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1 (Loops.fixed_a b)
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) (Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
( == ) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.seq",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Sequence.repeat_blocks",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.Sequence.Lemmas.repeat_gen_blocks",
"Lib.LoopCombinators.fixed_a",
"Lib.LoopCombinators.fixed_i",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.Sequence.Lemmas.repeat_blocks_is_repeat_gen_blocks",
"Prims.squash",
"Lib.Sequence.Lemmas.repeat_gen_blocks_split",
"Lib.Sequence.Lemmas.repeat_gen_blocks_extensionality_zero",
"Prims.op_Addition",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Lib.Sequence.repeat_blocks_multi",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi_extensionality_zero",
"Lib.Sequence.Lemmas.repeat_blocks_multi_is_repeat_gen_blocks_multi",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.Sequence.Lemmas.split_len_lemma",
"Lib.Sequence.Lemmas.len0_le_len_fraction",
"Prims.op_Division",
"Prims.op_Subtraction"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
} | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_split:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq a{len0 <= length inp}
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> acc0:b ->
Lemma
(let len = length inp in
split_len_lemma blocksize len len0;
repeat_blocks blocksize inp f l acc0 ==
repeat_blocks blocksize (Seq.slice inp len0 len) f l
(repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) | [] | Lib.Sequence.Lemmas.repeat_blocks_split | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize = 0} ->
inp: Lib.Sequence.seq a {len0 <= Lib.Sequence.length inp} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
l: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
acc0: b
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma blocksize len len0
in
Lib.Sequence.repeat_blocks blocksize inp f l acc0 ==
Lib.Sequence.repeat_blocks blocksize
(FStar.Seq.Base.slice inp len0 len)
f
l
(Lib.Sequence.repeat_blocks_multi blocksize (FStar.Seq.Base.slice inp 0 len0) f acc0))) | {
"end_col": 5,
"end_line": 589,
"start_col": 62,
"start_line": 554
} |
FStar.Pervasives.Lemma | val repeat_gen_blocks_multi_split:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
} | val repeat_gen_blocks_multi_split:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 = | false | null | true | let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1:a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
calc ( == ) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
( == ) { () }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
( == ) { (Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0) }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc ( == ) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
( == ) { () }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
( == ) { (Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1) }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
( == ) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
( == ) { () }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.l_and",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"FStar.Calc.calc_finish",
"Lib.Sequence.Lemmas.repeat_gen_blocks_multi",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeat_right",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Lib.Sequence.Lemmas.repeat_right_extensionality",
"FStar.Classical.forall_intro_2",
"Prims.op_Division",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Prims.op_Subtraction",
"FStar.Seq.Base.slice",
"Lib.Sequence.Lemmas.aux_repeat_bf_s1",
"Lib.LoopCombinators.repeat_right_plus",
"Lib.Sequence.Lemmas.aux_repeat_bf_s0",
"FStar.Seq.Base.seq",
"Lib.Sequence.Lemmas.split_len_lemma0"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_gen_blocks_multi_split:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) | [] | Lib.Sequence.Lemmas.repeat_gen_blocks_multi_split | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
len0: Prims.nat{len0 % blocksize == 0} ->
mi: Prims.nat ->
hi: Prims.nat ->
n: Prims.nat{mi + n <= hi} ->
inp:
Lib.Sequence.seq inp_t
{len0 <= Lib.Sequence.length inp /\ Lib.Sequence.length inp == n * blocksize} ->
a: (i: Prims.nat{i <= hi} -> Type) ->
f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) ->
acc0: a mi
-> FStar.Pervasives.Lemma
(ensures
(let len = Lib.Sequence.length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
[@@ FStar.Pervasives.inline_let ]let _ =
Lib.Sequence.Lemmas.split_len_lemma0 blocksize n len0
in
let t0 = FStar.Seq.Base.slice inp 0 len0 in
let t1 = FStar.Seq.Base.slice inp len0 len in
let acc = Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 ==
Lib.Sequence.Lemmas.repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc)) | {
"end_col": 3,
"end_line": 307,
"start_col": 78,
"start_line": 270
} |
FStar.Pervasives.Lemma | val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a))) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 =
let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0 then begin
Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0 end
else begin
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc (==) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
(==) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
(==) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
(==) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} end | val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a)))
let rec map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g n inp f acc0 = | false | null | true | let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_sh = f_shift blocksize mi hi_f hi_g f in
let f_map = map_blocks_f #a blocksize hi_g inp f_sh in
let lp = Loops.repeat_right mi (mi + n) a_f f_gen acc0 in
let rp = Loops.repeat_right 0 n a_g f_map (Seq.empty #a) in
if n = 0
then
(Loops.eq_repeat_right mi (mi + n) a_f f_gen acc0;
Loops.eq_repeat_right 0 n a_g f_map (Seq.empty #a);
Seq.Base.append_empty_r acc0)
else
let lp1 = Loops.repeat_right mi (mi + n - 1) a_f f_gen acc0 in
let rp1 = Loops.repeat_right 0 (n - 1) a_g f_map (Seq.empty #a) in
let block = Seq.slice inp ((n - 1) * blocksize) (n * blocksize) in
Loops.unfold_repeat_right 0 n a_g f_map (Seq.empty #a) (n - 1);
assert (rp == f_map (n - 1) rp1);
assert (rp == Seq.append rp1 (f (mi + n - 1) block));
calc ( == ) {
Loops.repeat_right mi (mi + n) a_f f_gen acc0;
( == ) { Loops.unfold_repeat_right mi (mi + n) a_f f_gen acc0 (mi + n - 1) }
Seq.append lp1 (f (mi + n - 1) block);
( == ) { map_blocks_multi_acc_is_map_blocks_multi_ #a blocksize mi hi_f hi_g (n - 1) inp f acc0 }
Seq.append (Seq.append acc0 rp1) (f (mi + n - 1) block);
( == ) { Seq.Base.append_assoc acc0 rp1 (f (mi + n - 1) block) }
Seq.append acc0 (Seq.append rp1 (f (mi + n - 1) block));
} | {
"checked_file": "Lib.Sequence.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"Prims.op_Equality",
"FStar.Seq.Base.append_empty_r",
"Prims.unit",
"Lib.LoopCombinators.eq_repeat_right",
"FStar.Seq.Base.empty",
"Prims.bool",
"FStar.Calc.calc_finish",
"Lib.LoopCombinators.repeat_right",
"FStar.Seq.Base.append",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.LoopCombinators.unfold_repeat_right",
"Prims.squash",
"Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi_",
"FStar.Seq.Base.append_assoc",
"Prims._assert",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.Sequence.map_blocks_f",
"Lib.Sequence.Lemmas.f_shift",
"Lib.Sequence.Lemmas.repeat_gen_blocks_f",
"Lib.Sequence.Lemmas.repeat_gen_blocks_map_f"
] | [] | module Lib.Sequence.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 \
--using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq \
+Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas +Lib.LoopCombinators'"
let rec repeati_extensionality #a n f g acc0 =
if n = 0 then begin
Loops.eq_repeati0 n f acc0;
Loops.eq_repeati0 n g acc0 end
else begin
Loops.unfold_repeati n f acc0 (n-1);
Loops.unfold_repeati n g acc0 (n-1);
repeati_extensionality #a (n-1) f g acc0 end
let rec repeat_right_extensionality n lo a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right lo (lo + n) a_f f acc0;
Loops.eq_repeat_right lo (lo + n) a_g g acc0 end
else begin
Loops.unfold_repeat_right lo (lo + n) a_f f acc0 (lo + n - 1);
Loops.unfold_repeat_right lo (lo + n) a_g g acc0 (lo + n - 1);
repeat_right_extensionality (n - 1) lo a_f a_g f g acc0 end
let rec repeat_gen_right_extensionality n lo_g a_f a_g f g acc0 =
if n = 0 then begin
Loops.eq_repeat_right 0 n a_f f acc0;
Loops.eq_repeat_right lo_g (lo_g+n) a_g g acc0 end
else begin
Loops.unfold_repeat_right 0 n a_f f acc0 (n-1);
Loops.unfold_repeat_right lo_g (lo_g+n) a_g g acc0 (lo_g+n-1);
repeat_gen_right_extensionality (n-1) lo_g a_f a_g f g acc0 end
let repeati_right_extensionality #a n lo_g f g acc0 =
repeat_gen_right_extensionality n lo_g (Loops.fixed_a a) (Loops.fixed_a a) f g acc0
let repeati_right_shift #a n f g acc0 =
let acc1 = g 0 acc0 in
repeati_right_extensionality n 1 f g acc1;
// Got:
// repeat_right 0 n (fun _ -> a) f acc1 == repeat_right 1 (n + 1) (fun _ -> a) g acc1
Loops.repeati_def n f acc1;
// Got:
// repeati n f acc1 == repeat_right 0 n (fun _ -> a) f acc1
Loops.repeat_right_plus 0 1 (n + 1) (Loops.fixed_a a) g acc0;
// Got:
// repeat_right 0 (n + 1) (fixed_a a) g acc0 ==
// repeat_right 1 (n + 1) (fixed_a a) g (repeat_right 0 1 (fixed_a a) g acc0)
Loops.unfold_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0 0;
Loops.eq_repeat_right 0 (n + 1) (Loops.fixed_a a) g acc0;
Loops.repeati_def (n + 1) g acc0
let repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 =
Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0
let lemma_repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 = ()
let repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in
l (mi + nb) rem last acc
let lemma_repeat_gen_blocks #inp_t #c blocksize mi hi inp a f l acc0 = ()
let repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n inp a_f a_g f g acc0 =
let f_rep = repeat_gen_blocks_f blocksize mi hi_f n inp a_f f in
let g_rep = repeat_gen_blocks_f blocksize 0 hi_g n inp a_g g in
repeat_gen_right_extensionality n mi a_g a_f g_rep f_rep acc0
let repeat_gen_blocks_extensionality_zero #inp_t #c blocksize mi hi_f hi_g n inp a_f a_g f l_f g l_g acc0 =
let len = length inp in
let rem = len % blocksize in
Math.Lemmas.cancel_mul_div n blocksize;
Math.Lemmas.cancel_mul_mod n blocksize;
let blocks = Seq.slice inp 0 (n * blocksize) in
let block_l = Seq.slice inp (n * blocksize) len in
let acc_f = repeat_gen_blocks_multi blocksize mi hi_f n blocks a_f f acc0 in
let acc_g = repeat_gen_blocks_multi blocksize 0 hi_g n blocks a_g g acc0 in
calc (==) {
repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0;
(==) { }
l_f (mi + n) rem block_l acc_f;
(==) { repeat_gen_blocks_multi_extensionality_zero #inp_t blocksize mi hi_f hi_g n blocks a_f a_g f g acc0 }
l_f (mi + n) rem block_l acc_g;
(==) { }
l_g n rem block_l acc_g;
(==) { }
repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0;
}
let len0_div_bs blocksize len len0 =
let k = len0 / blocksize in
calc (==) {
k + (len - len0) / blocksize;
== { Math.Lemmas.lemma_div_exact len0 blocksize }
k + (len - k * blocksize) / blocksize;
== { Math.Lemmas.division_sub_lemma len blocksize k }
k + len / blocksize - k;
== { }
len / blocksize;
}
let split_len_lemma0 blocksize n len0 =
let len = n * blocksize in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
Math.Lemmas.cancel_mul_mod n blocksize;
//assert (len % blocksize = 0);
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len1 % blocksize = 0);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
Math.Lemmas.lemma_div_exact len1 blocksize;
//assert (n1 * blocksize = len1);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
let split_len_lemma blocksize len len0 =
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
let n = len / blocksize in
Math.Lemmas.lemma_mod_sub_distr len len0 blocksize;
//assert (len % blocksize = len1 % blocksize);
Math.Lemmas.lemma_div_exact len0 blocksize;
//assert (n0 * blocksize = len0);
len0_div_bs blocksize len len0
//assert (n0 + n1 = n)
////////////////////////
// Start of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val aux_repeat_bf_s0:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi <= i /\ i < mi + len0 / blocksize /\ i < hi} // i < hi is needed to type-check the definition
-> acc:a i ->
Lemma
(let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s0 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let n0 = len0 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n0;
Seq.slice_slice inp 0 len0 (i_b * blocksize) (i_b * blocksize + blocksize);
assert (repeat_bf_s0 i acc == f i block acc)
val aux_repeat_bf_s1:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> n:nat{mi + n <= hi}
-> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> i:nat{mi + len0 / blocksize <= i /\ i < mi + n}
-> acc:a i ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
repeat_bf_s1 i acc == repeat_bf_t i acc)
let aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f i acc =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t1 = Seq.slice inp len0 len in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let i_b = i - mi in
Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n;
let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in
assert (repeat_bf_t i acc == f i block acc);
let i_b1 = i - mi - n0 in
calc (<=) {
i_b1 * blocksize + blocksize;
(<=) { Math.Lemmas.lemma_mult_le_right blocksize (i_b1 + 1) n1 }
n1 * blocksize;
(==) { Math.Lemmas.div_exact_r len1 blocksize }
len1;
};
calc (==) {
len0 + i_b1 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n0 * blocksize + i_b1 * blocksize;
(==) { Math.Lemmas.distributivity_add_left n0 i_b1 blocksize }
(n0 + i_b1) * blocksize;
};
Seq.slice_slice inp len0 len (i_b1 * blocksize) (i_b1 * blocksize + blocksize);
assert (repeat_bf_s1 i acc == f i block acc)
let repeat_gen_blocks_multi_split #inp_t blocksize len0 mi hi n inp a f acc0 =
let len = length inp in
let len1 = len - len0 in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let repeat_bf_s0 = repeat_gen_blocks_f blocksize mi hi n0 t0 a f in
let repeat_bf_s1 = repeat_gen_blocks_f blocksize (mi + n0) hi n1 t1 a f in
let repeat_bf_t = repeat_gen_blocks_f blocksize mi hi n inp a f in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
//let acc2 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1 in
calc (==) {
repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0;
(==) { }
Loops.repeat_right mi (mi + n0) a repeat_bf_s0 acc0;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s0 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n0 mi a a repeat_bf_s0 repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n0) a repeat_bf_t acc0;
};
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1;
(==) { }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_s1 acc1;
(==) { Classical.forall_intro_2 (aux_repeat_bf_s1 #inp_t blocksize len0 mi hi n inp a f);
repeat_right_extensionality n1 (mi + n0) a a repeat_bf_s1 repeat_bf_t acc1 }
Loops.repeat_right (mi + n0) (mi + n) a repeat_bf_t acc1;
(==) { Loops.repeat_right_plus mi (mi + n0) (mi + n) a repeat_bf_t acc0 }
Loops.repeat_right mi (mi + n) a repeat_bf_t acc0;
(==) { }
repeat_gen_blocks_multi blocksize mi hi n inp a f acc0;
}
////////////////////////
// End of proof of repeat_gen_blocks_multi_split lemma
////////////////////////
val repeat_gen_blocks_multi_split_slice:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize == 0}
-> mi:nat
-> hi:nat
-> inp:seq inp_t{len0 <= length inp / blocksize * blocksize /\ mi + length inp / blocksize <= hi}
-> a:(i:nat{i <= hi} -> Type)
-> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))
-> acc0:a mi ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 (n * blocksize) in
let acc1 : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
repeat_gen_blocks_multi blocksize mi hi n blocks a f acc0 ==
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc1)
let repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 =
let len = length inp in
let n = len / blocksize in
split_len_lemma blocksize len len0;
let blocks = Seq.slice inp 0 (n * blocksize) in
split_len_lemma0 blocksize n len0;
repeat_gen_blocks_multi_split blocksize len0 mi hi n blocks a f acc0
val slice_slice_last:
#inp_t:Type0
-> blocksize:size_pos
-> len0:nat{len0 % blocksize = 0}
-> inp:seq inp_t{len0 <= length inp} ->
Lemma
(let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n1 = len1 / blocksize in
let t1 = Seq.slice inp len0 len in
Seq.slice t1 (n1 * blocksize) len1 `Seq.equal`
Seq.slice inp (n * blocksize) len)
let slice_slice_last #inp_t blocksize len0 inp =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
calc (==) {
len0 + n1 * blocksize;
(==) { len0_div_bs blocksize len len0 }
len0 + (n - n0) * blocksize;
(==) { Math.Lemmas.distributivity_sub_left n n0 blocksize }
len0 + n * blocksize - n0 * blocksize;
(==) { Math.Lemmas.div_exact_r len0 blocksize }
n * blocksize;
};
let t1 = Seq.slice inp len0 len in
Seq.slice_slice inp len0 len (n1 * blocksize) len1
val len0_le_len_fraction: blocksize:pos -> len:nat -> len0:nat ->
Lemma
(requires len0 <= len /\ len0 % blocksize = 0)
(ensures len0 <= len / blocksize * blocksize)
let len0_le_len_fraction blocksize len len0 =
Math.Lemmas.lemma_div_le len0 len blocksize;
Math.Lemmas.lemma_mult_le_right blocksize (len0 / blocksize) (len / blocksize)
#push-options "--z3rlimit 100"
let repeat_gen_blocks_split #inp_t #c blocksize len0 hi mi inp a f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in
let blocks1 = Seq.slice t1 0 (n1 * blocksize) in
Math.Lemmas.cancel_mul_mod n1 blocksize;
let acc1 = repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc in
calc (==) {
repeat_gen_blocks_multi blocksize (mi + n0) hi n1 blocks1 a f acc;
(==) { repeat_gen_blocks_multi_split_slice #inp_t blocksize len0 mi hi inp a f acc0 }
repeat_gen_blocks_multi blocksize mi hi n (Seq.slice inp 0 (n * blocksize)) a f acc0;
};
calc (==) {
repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc;
(==) { len0_div_bs blocksize len len0 }
l (mi + n) (len1 % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { Math.Lemmas.lemma_mod_sub_distr len len0 blocksize }
l (mi + n) (len % blocksize) (Seq.slice t1 (n1 * blocksize) len1) acc1;
(==) { slice_slice_last #inp_t blocksize len0 inp }
l (mi + n) (len % blocksize) (Seq.slice inp (n * blocksize) len) acc1;
}
#pop-options
////////////////////////
// Start of repeat_blocks-related properties
////////////////////////
let repeat_blocks_extensionality #a #b #c blocksize inp f1 f2 l1 l2 acc0 =
let len = length inp in
let nb = len / blocksize in
let f_rep1 = repeat_blocks_f blocksize inp f1 nb in
let f_rep2 = repeat_blocks_f blocksize inp f2 nb in
let acc1 = Loops.repeati nb f_rep1 acc0 in
let acc2 = Loops.repeati nb f_rep2 acc0 in
lemma_repeat_blocks blocksize inp f1 l1 acc0;
lemma_repeat_blocks blocksize inp f2 l2 acc0;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep1 i acc == f_rep2 i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep1 f_rep2 acc0
let lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let f_rep_b = repeat_blocks_f blocksize blocks f nb in
let f_rep = repeat_blocks_f blocksize inp f nb in
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep_b i acc == f_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
lemma_repeat_blocks #a #b #c blocksize inp f l acc0;
calc (==) {
Loops.repeati nb f_rep acc0;
(==) { Classical.forall_intro_2 aux; repeati_extensionality nb f_rep f_rep_b acc0 }
Loops.repeati nb f_rep_b acc0;
(==) { lemma_repeat_blocks_multi blocksize blocks f acc0 }
repeat_blocks_multi blocksize blocks f acc0;
}
let repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize inp f acc0 =
let len = length inp in
let n = len / blocksize in
Math.Lemmas.div_exact_r len blocksize;
let f_rep = repeat_blocks_f blocksize inp f n in
let f_gen = repeat_gen_blocks_f blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) in
let aux (i:nat{i < n}) (acc:b) : Lemma (f_rep i acc == f_gen i acc) = () in
calc (==) {
repeat_blocks_multi #a #b blocksize inp f acc0;
(==) { lemma_repeat_blocks_multi #a #b blocksize inp f acc0 }
Loops.repeati n f_rep acc0;
(==) { Loops.repeati_def n (repeat_blocks_f blocksize inp f n) acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_rep acc0;
(==) { Classical.forall_intro_2 aux;
repeat_gen_right_extensionality n 0 (Loops.fixed_a b) (Loops.fixed_a b) f_rep f_gen acc0 }
Loops.repeat_right 0 n (Loops.fixed_a b) f_gen acc0;
}
let repeat_blocks_is_repeat_gen_blocks #a #b #c hi blocksize inp f l acc0 =
let len = length inp in
let nb = len / blocksize in
//let rem = len % blocksize in
Math.Lemmas.cancel_mul_div nb blocksize;
Math.Lemmas.cancel_mul_mod nb blocksize;
let blocks = Seq.slice inp 0 (nb * blocksize) in
lemma_repeat_blocks_via_multi #a #b #c blocksize inp f l acc0;
calc (==) {
repeat_blocks_multi blocksize blocks f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b hi blocksize blocks f acc0 }
repeat_gen_blocks_multi blocksize 0 hi nb blocks (Loops.fixed_a b) (Loops.fixed_i f) acc0;
}
let repeat_blocks_multi_split #a #b blocksize len0 inp f acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma0 blocksize n len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks_multi blocksize inp f acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n blocksize inp f acc0 }
repeat_gen_blocks_multi blocksize 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_split #a blocksize len0 0 n n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0 }
repeat_gen_blocks_multi blocksize n0 n n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc1 }
repeat_gen_blocks_multi blocksize 0 n1 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) acc1;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n1 blocksize t1 f acc1 }
repeat_blocks_multi blocksize t1 f acc1;
}
let repeat_blocks_split #a #b #c blocksize len0 inp f l acc0 =
let len = length inp in
let len1 = len - len0 in
let n = len / blocksize in
let n0 = len0 / blocksize in
let n1 = len1 / blocksize in
len0_le_len_fraction blocksize len len0;
split_len_lemma blocksize len len0;
let t0 = Seq.slice inp 0 len0 in
let t1 = Seq.slice inp len0 len in
let acc1 = repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0 in
calc (==) {
repeat_gen_blocks_multi blocksize 0 n n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_gen_blocks_multi_extensionality_zero blocksize 0 n0 n n0 t0
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i f) acc0}
repeat_gen_blocks_multi blocksize 0 n0 n0 t0 (Loops.fixed_a b) (Loops.fixed_i f) acc0;
(==) { repeat_blocks_multi_is_repeat_gen_blocks_multi #a #b n0 blocksize t0 f acc0 }
repeat_blocks_multi blocksize t0 f acc0;
};
calc (==) {
repeat_blocks blocksize inp f l acc0;
(==) { repeat_blocks_is_repeat_gen_blocks n blocksize inp f l acc0 }
repeat_gen_blocks blocksize 0 n inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0;
(==) { repeat_gen_blocks_split #a #c blocksize len0 n 0 inp
(Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0 }
repeat_gen_blocks blocksize n0 n t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_gen_blocks_extensionality_zero blocksize n0 n n1 n1 t1
(Loops.fixed_a b) (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l)
(Loops.fixed_i f) (Loops.fixed_i l) acc1 }
repeat_gen_blocks blocksize 0 n1 t1 (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc1;
(==) { repeat_blocks_is_repeat_gen_blocks #a #b #c n1 blocksize t1 f l acc1 }
repeat_blocks blocksize t1 f l acc1;
}
let repeat_blocks_multi_extensionality #a #b blocksize inp f g init =
let len = length inp in
let nb = len / blocksize in
let f_rep = repeat_blocks_f blocksize inp f nb in
let g_rep = repeat_blocks_f blocksize inp g nb in
lemma_repeat_blocks_multi blocksize inp f init;
lemma_repeat_blocks_multi blocksize inp g init;
let aux (i:nat{i < nb}) (acc:b) : Lemma (f_rep i acc == g_rep i acc) =
Math.Lemmas.lemma_mult_le_right blocksize (i + 1) nb;
Seq.Properties.slice_slice inp 0 (nb * blocksize) (i * blocksize) (i * blocksize + blocksize) in
Classical.forall_intro_2 aux;
repeati_extensionality nb f_rep g_rep init
////////////////////////
// End of repeat_blocks-related properties
////////////////////////
let map_blocks_multi_extensionality #a blocksize max n inp f g =
let a_map = map_blocks_a a blocksize max in
let acc0 : a_map 0 = Seq.empty #a in
calc (==) {
map_blocks_multi blocksize max n inp f;
(==) { lemma_map_blocks_multi blocksize max n inp f }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp f) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp f) acc0;
(==) { repeat_right_extensionality n 0 a_map a_map
(map_blocks_f #a blocksize max inp f) (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_right 0 n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { Loops.repeat_gen_def n a_map (map_blocks_f #a blocksize max inp g) acc0 }
Loops.repeat_gen n a_map (map_blocks_f #a blocksize max inp g) acc0;
(==) { lemma_map_blocks_multi blocksize max n inp g }
map_blocks_multi blocksize max n inp g;
}
let map_blocks_extensionality #a blocksize inp f l_f g l_g =
let len = length inp in
let n = len / blocksize in
let blocks = Seq.slice inp 0 (n * blocksize) in
lemma_map_blocks blocksize inp f l_f;
lemma_map_blocks blocksize inp g l_g;
map_blocks_multi_extensionality #a blocksize n n blocks f g
let repeat_gen_blocks_map_l_length #a blocksize hi l i rem block_l acc = ()
let map_blocks_multi_acc #a blocksize mi hi n inp f acc0 =
repeat_gen_blocks_multi #a blocksize mi hi n inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f) acc0
let map_blocks_acc #a blocksize mi hi inp f l acc0 =
repeat_gen_blocks #a blocksize mi hi inp
(map_blocks_a a blocksize hi)
(repeat_gen_blocks_map_f blocksize hi f)
(repeat_gen_blocks_map_l blocksize hi l) acc0
let map_blocks_acc_length #a blocksize mi hi inp f l acc0 = ()
let map_blocks_multi_acc_is_repeat_gen_blocks_multi #a blocksize mi hi n inp f acc0 = ()
let map_blocks_acc_is_repeat_gen_blocks #a blocksize mi hi inp f l acc0 = ()
#push-options "--z3rlimit 150"
val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a))) | false | false | Lib.Sequence.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi_acc_is_map_blocks_multi_:
#a:Type0
-> blocksize:size_pos
-> mi:nat
-> hi_f:nat
-> hi_g:nat
-> n:nat{mi + hi_g <= hi_f /\ n <= hi_g}
-> inp:seq a{length inp == hi_g * blocksize}
-> f:(i:nat{i < hi_f} -> lseq a blocksize -> lseq a blocksize)
-> acc0:map_blocks_a a blocksize hi_f mi ->
Lemma
(let a_f = map_blocks_a a blocksize hi_f in
let a_g = map_blocks_a a blocksize hi_g in
let f_gen_map = repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen = repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map in
let f_map = map_blocks_f #a blocksize hi_g inp (f_shift blocksize mi hi_f hi_g f) in
Loops.repeat_right mi (mi + n) a_f f_gen acc0 ==
Seq.append acc0 (Loops.repeat_right 0 n a_g f_map (Seq.empty #a))) | [
"recursion"
] | Lib.Sequence.Lemmas.map_blocks_multi_acc_is_map_blocks_multi_ | {
"file_name": "lib/Lib.Sequence.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
mi: Prims.nat ->
hi_f: Prims.nat ->
hi_g: Prims.nat ->
n: Prims.nat{mi + hi_g <= hi_f /\ n <= hi_g} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == hi_g * blocksize} ->
f: (i: Prims.nat{i < hi_f} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) ->
acc0: Lib.Sequence.map_blocks_a a blocksize hi_f mi
-> FStar.Pervasives.Lemma
(ensures
(let a_f = Lib.Sequence.map_blocks_a a blocksize hi_f in
let a_g = Lib.Sequence.map_blocks_a a blocksize hi_g in
let f_gen_map = Lib.Sequence.Lemmas.repeat_gen_blocks_map_f blocksize hi_f f in
let f_gen =
Lib.Sequence.Lemmas.repeat_gen_blocks_f blocksize mi hi_f hi_g inp a_f f_gen_map
in
let f_map =
Lib.Sequence.map_blocks_f blocksize
hi_g
inp
(Lib.Sequence.Lemmas.f_shift blocksize mi hi_f hi_g f)
in
Lib.LoopCombinators.repeat_right mi (mi + n) a_f f_gen acc0 ==
FStar.Seq.Base.append acc0
(Lib.LoopCombinators.repeat_right 0 n a_g f_map FStar.Seq.Base.empty))) | {
"end_col": 11,
"end_line": 716,
"start_col": 90,
"start_line": 685
} |
Prims.GTot | val serialize32_bounded_vlgen_precond (min: nat) (max: nat{min <= max}) (sk k: parser_kind)
: GTot bool | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind)
: GTot bool
= match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' = match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296 | val serialize32_bounded_vlgen_precond (min: nat) (max: nat{min <= max}) (sk k: parser_kind)
: GTot bool
let serialize32_bounded_vlgen_precond (min: nat) (max: nat{min <= max}) (sk k: parser_kind)
: GTot bool = | false | null | false | match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' =
match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296 | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"sometrivial"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"Prims.op_LessThan",
"Prims.op_Addition",
"Prims.int",
"Prims.bool"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
()
let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vlgen_precond (min: nat) (max: nat{min <= max}) (sk k: parser_kind)
: GTot bool | [] | LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max} ->
sk: LowParse.Spec.Base.parser_kind ->
k: LowParse.Spec.Base.parser_kind
-> Prims.GTot Prims.bool | {
"end_col": 28,
"end_line": 70,
"start_col": 2,
"start_line": 63
} |
Prims.Tot | val serialize32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
partial_serializer32 s
{parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_vlgen min max ssk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_vlgen min max ssk s))
= serialize32_synth'
_
(synth_vlgen min max s)
_
(serialize32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
() | val serialize32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
partial_serializer32 s
{parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_vlgen min max ssk s))
let serialize32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
partial_serializer32 s
{parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_vlgen min max ssk s)) = | false | null | false | serialize32_synth' _
(synth_vlgen min max s)
_
(serialize32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
() | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.serializer32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLGen.parse_vlgen_precond",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond",
"LowParse.SLow.Combinators.serialize32_synth'",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.synth_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen",
"LowParse.Spec.VLGen.synth_vlgen_recip",
"LowParse.Spec.VLGen.parse_vlgen",
"LowParse.Spec.VLGen.serialize_vlgen"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
()
let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind)
: GTot bool
= match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' = match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296
inline_for_extraction
let serialize32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
let len = B32.len sp in
ssk32 len `B32.append` sp
) <: (res: _ { serializer32_correct (serialize_bounded_vlgen min max ssk s) input res } ))
inline_for_extraction
let serialize32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } ) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
partial_serializer32 s
{parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_vlgen min max ssk s)) | [] | LowParse.SLow.VLGen.serialize32_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max < 4294967296} ->
ssk32:
LowParse.SLow.Base.serializer32 ssk
{ Mkparser_kind'?.parser_kind_subkind sk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s32:
LowParse.SLow.Base.partial_serializer32 s
{ LowParse.Spec.VLGen.parse_vlgen_precond min max k /\
LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond min max sk k }
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLGen.serialize_vlgen min max ssk s) | {
"end_col": 6,
"end_line": 114,
"start_col": 2,
"start_line": 108
} |
Prims.Tot | val size32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
size32 s {parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k}
)
: Tot (size32 (serialize_vlgen min max ssk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } )
: Tot (size32 (serialize_vlgen min max ssk s))
= size32_synth'
_
(synth_vlgen min max s)
_
(size32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
() | val size32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
size32 s {parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k}
)
: Tot (size32 (serialize_vlgen min max ssk s))
let size32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
size32 s {parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k}
)
: Tot (size32 (serialize_vlgen min max ssk s)) = | false | null | false | size32_synth' _
(synth_vlgen min max s)
_
(size32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
() | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.Spec.VLGen.parse_vlgen_precond",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond",
"LowParse.SLow.Combinators.size32_synth'",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.synth_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen",
"LowParse.SLow.VLGen.size32_bounded_vlgen",
"LowParse.Spec.VLGen.synth_vlgen_recip",
"LowParse.Spec.VLGen.parse_vlgen",
"LowParse.Spec.VLGen.serialize_vlgen"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
()
let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind)
: GTot bool
= match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' = match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296
inline_for_extraction
let serialize32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
let len = B32.len sp in
ssk32 len `B32.append` sp
) <: (res: _ { serializer32_correct (serialize_bounded_vlgen min max ssk s) input res } ))
inline_for_extraction
let serialize32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_vlgen min max ssk s))
= serialize32_synth'
_
(synth_vlgen min max s)
_
(serialize32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
()
inline_for_extraction
let size32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (size32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
ssk32 sp `U32.add` sp
) <: (res: _ { size32_postcond (serialize_bounded_vlgen min max ssk s) input res } ))
inline_for_extraction
let size32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } ) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32:
size32 s {parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k}
)
: Tot (size32 (serialize_vlgen min max ssk s)) | [] | LowParse.SLow.VLGen.size32_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max < 4294967296} ->
ssk32:
LowParse.SLow.Base.size32 ssk
{ Mkparser_kind'?.parser_kind_subkind sk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s32:
LowParse.SLow.Base.size32 s
{ LowParse.Spec.VLGen.parse_vlgen_precond min max k /\
LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond min max sk k }
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLGen.serialize_vlgen min max ssk s) | {
"end_col": 6,
"end_line": 157,
"start_col": 2,
"start_line": 151
} |
Prims.Tot | val serialize32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
let len = B32.len sp in
ssk32 len `B32.append` sp
) <: (res: _ { serializer32_correct (serialize_bounded_vlgen min max ssk s) input res } )) | val serialize32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s))
let serialize32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s)) = | false | null | false | fun (input: parse_bounded_vldata_strong_t min max s) ->
(([@@ inline_let ]let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
let len = B32.len sp in
(ssk32 len) `B32.append` sp)
<:
(res: _{serializer32_correct (serialize_bounded_vlgen min max ssk s) input res})) | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.serializer32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.append",
"FStar.UInt32.t",
"FStar.Bytes.len",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"Prims.unit",
"LowParse.Spec.VLGen.serialize_bounded_vlgen_unfold",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
()
let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind)
: GTot bool
= match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' = match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296
inline_for_extraction
let serialize32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize32_bounded_vlgen_precond min max sk k } ) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s)) | [] | LowParse.SLow.VLGen.serialize32_bounded_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max < 4294967296} ->
ssk32:
LowParse.SLow.Base.serializer32 ssk
{ Mkparser_kind'?.parser_kind_subkind sk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s32:
LowParse.SLow.Base.partial_serializer32 s
{LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond min max sk k}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLGen.serialize_bounded_vlgen min max ssk s) | {
"end_col": 92,
"end_line": 92,
"start_col": 2,
"start_line": 86
} |
Prims.Tot | val parse32_vlgen
(vmin: nat)
(min: U32.t{U32.v min == vmin})
(vmax: nat)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {parse_vlgen_precond (U32.v min) (U32.v max) k})
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
() | val parse32_vlgen
(vmin: nat)
(min: U32.t{U32.v min == vmin})
(vmax: nat)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {parse_vlgen_precond (U32.v min) (U32.v max) k})
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
let parse32_vlgen
(vmin: nat)
(min: U32.t{U32.v min == vmin})
(vmax: nat)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {parse_vlgen_precond (U32.v min) (U32.v max) k})
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s)) = | false | null | false | parse32_synth' _
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
() | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.VLGen.parse_vlgen_precond",
"LowParse.SLow.Combinators.parse32_synth'",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.synth_vlgen",
"LowParse.SLow.VLGen.parse32_bounded_vlgen",
"LowParse.Spec.VLGen.parse_vlgen"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_vlgen
(vmin: nat)
(min: U32.t{U32.v min == vmin})
(vmax: nat)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {parse_vlgen_precond (U32.v min) (U32.v max) k})
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s)) | [] | LowParse.SLow.VLGen.parse32_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
vmin: Prims.nat ->
min: FStar.UInt32.t{FStar.UInt32.v min == vmin} ->
vmax: Prims.nat ->
max: FStar.UInt32.t{FStar.UInt32.v max == vmax /\ FStar.UInt32.v min <= FStar.UInt32.v max} ->
pk32: LowParse.SLow.Base.parser32 pk ->
s:
LowParse.Spec.Base.serializer p
{LowParse.Spec.VLGen.parse_vlgen_precond (FStar.UInt32.v min) (FStar.UInt32.v max) k} ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLGen.parse_vlgen vmin vmax pk s) | {
"end_col": 6,
"end_line": 55,
"start_col": 2,
"start_line": 51
} |
Prims.Tot | val size32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (size32 (serialize_bounded_vlgen min max ssk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (size32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
ssk32 sp `U32.add` sp
) <: (res: _ { size32_postcond (serialize_bounded_vlgen min max ssk s) input res } )) | val size32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (size32 (serialize_bounded_vlgen min max ssk s))
let size32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (size32 (serialize_bounded_vlgen min max ssk s)) = | false | null | false | fun (input: parse_bounded_vldata_strong_t min max s) ->
(([@@ inline_let ]let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
(ssk32 sp) `U32.add` sp)
<:
(res: _{size32_postcond (serialize_bounded_vlgen min max ssk s) input res})) | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.UInt32.add",
"FStar.UInt32.t",
"LowParse.SLow.Base.size32_postcond",
"Prims.unit",
"LowParse.Spec.VLGen.serialize_bounded_vlgen_unfold",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } ))
inline_for_extraction
let parse32_vlgen
(vmin: nat)
(min: U32.t { U32.v min == vmin } )
(vmax: nat)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { parse_vlgen_precond (U32.v min) (U32.v max) k } )
(p32: parser32 p)
: Tot (parser32 (parse_vlgen (vmin) (vmax) pk s))
= parse32_synth'
_
(synth_vlgen (U32.v min) (U32.v max) s)
(parse32_bounded_vlgen vmin min vmax max pk32 s p32)
()
let serialize32_bounded_vlgen_precond
(min: nat)
(max: nat { min <= max } )
(sk: parser_kind)
(k: parser_kind)
: GTot bool
= match sk.parser_kind_high with
| None -> false
| Some kmax ->
let max' = match k.parser_kind_high with
| None -> max
| Some km -> if km < max then km else max
in
kmax + max' < 4294967296
inline_for_extraction
let serialize32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_bounded_vlgen min max ssk s))
= fun (input: parse_bounded_vldata_strong_t min max s) -> ((
[@inline_let]
let _ = serialize_bounded_vlgen_unfold min max ssk s input in
let sp = s32 input in
let len = B32.len sp in
ssk32 len `B32.append` sp
) <: (res: _ { serializer32_correct (serialize_bounded_vlgen min max ssk s) input res } ))
inline_for_extraction
let serialize32_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: serializer32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { parse_vlgen_precond min max k /\ serialize32_bounded_vlgen_precond min max sk k } )
: Tot (serializer32 (serialize_vlgen min max ssk s))
= serialize32_synth'
_
(synth_vlgen min max s)
_
(serialize32_bounded_vlgen min max ssk32 s32)
(synth_vlgen_recip min max s)
()
inline_for_extraction
let size32_bounded_vlgen
(min: nat)
(max: nat { min <= max /\ max < 4294967296 } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk { sk.parser_kind_subkind == Some ParserStrong } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize32_bounded_vlgen_precond min max sk k } ) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_bounded_vlgen
(min: nat)
(max: nat{min <= max /\ max < 4294967296})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 min max))
(#ssk: serializer pk)
(ssk32: size32 ssk {sk.parser_kind_subkind == Some ParserStrong})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize32_bounded_vlgen_precond min max sk k})
: Tot (size32 (serialize_bounded_vlgen min max ssk s)) | [] | LowParse.SLow.VLGen.size32_bounded_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max < 4294967296} ->
ssk32:
LowParse.SLow.Base.size32 ssk
{ Mkparser_kind'?.parser_kind_subkind sk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s32:
LowParse.SLow.Base.size32 s
{LowParse.SLow.VLGen.serialize32_bounded_vlgen_precond min max sk k}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLGen.serialize_bounded_vlgen min max ssk s) | {
"end_col": 87,
"end_line": 135,
"start_col": 2,
"start_line": 130
} |
Prims.Tot | val parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t{U32.v min == vmin})
(vmax: der_length_t)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
= fun (input: bytes32) -> ((
[@inline_let]
let _ = parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input) in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') -> Some ((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s), consumed `U32.add` consumed')
) <: (res: _ { parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res } )) | val parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t{U32.v min == vmin})
(vmax: der_length_t)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s))
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t{U32.v min == vmin})
(vmax: der_length_t)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s)) = | false | null | false | fun (input: bytes32) ->
(([@@ inline_let ]let _ =
parse_bounded_vlgen_unfold_aux (U32.v min) (U32.v max) pk s (B32.reveal input)
in
match pk32 input with
| None -> None
| Some (sz, consumed) ->
let input' = B32.slice input consumed (B32.len input) in
match parse32_fldata_strong s p32 (U32.v sz) sz input' with
| None -> None
| Some (x, consumed') ->
Some
((x <: parse_bounded_vldata_strong_t (U32.v min) (U32.v max) s),
consumed
`U32.add`
consumed'))
<:
(res: _{parser32_correct (parse_bounded_vlgen (U32.v min) (U32.v max) pk s) input res})) | {
"checked_file": "LowParse.SLow.VLGen.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLGen.fst.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.Combinators.fst.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLGen.fst"
} | [
"total"
] | [
"LowParse.Spec.DER.der_length_t",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.DER.der_length_max",
"FStar.UInt32.v",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.FLData.parse32_fldata_strong",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.UInt32.add",
"FStar.Pervasives.Native.option",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"FStar.Bytes.bytes",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"FStar.Bytes.reveal",
"FStar.Seq.Base.slice",
"FStar.Bytes.len",
"FStar.Bytes.slice",
"Prims.unit",
"LowParse.Spec.VLGen.parse_bounded_vlgen_unfold_aux"
] | [] | module LowParse.SLow.VLGen
include LowParse.SLow.Combinators
include LowParse.SLow.FLData
include LowParse.Spec.VLGen
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
inline_for_extraction
let parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t { U32.v min == vmin } )
(vmax: der_length_t)
(max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } )
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p) | false | false | LowParse.SLow.VLGen.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vlgen
(vmin: der_length_t)
(min: U32.t{U32.v min == vmin})
(vmax: der_length_t)
(max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max})
(#sk: parser_kind)
(#pk: parser sk (bounded_int32 (U32.v min) (U32.v max)))
(pk32: parser32 pk)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vlgen (vmin) (vmax) pk s)) | [] | LowParse.SLow.VLGen.parse32_bounded_vlgen | {
"file_name": "src/lowparse/LowParse.SLow.VLGen.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
vmin: LowParse.Spec.DER.der_length_t ->
min: FStar.UInt32.t{FStar.UInt32.v min == vmin} ->
vmax: LowParse.Spec.DER.der_length_t ->
max: FStar.UInt32.t{FStar.UInt32.v max == vmax /\ FStar.UInt32.v min <= FStar.UInt32.v max} ->
pk32: LowParse.SLow.Base.parser32 pk ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLGen.parse_bounded_vlgen vmin vmax pk s) | {
"end_col": 99,
"end_line": 34,
"start_col": 2,
"start_line": 24
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly128 = p:poly{degree p < 128} | let poly128 = | false | null | false | p: poly{degree p < 128} | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Math.Poly2_s.degree"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly128 : Type0 | [] | Vale.AES.GHash.poly128 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 36,
"end_line": 25,
"start_col": 14,
"start_line": 25
} |
|
Prims.Tot | val ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ghash_incremental0 (h:quad32) (y_prev:quad32) (x:seq quad32) : quad32 =
if length x > 0 then ghash_incremental h y_prev x else y_prev | val ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32
let ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32 = | false | null | false | if length x > 0 then ghash_incremental h y_prev x else y_prev | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.op_GreaterThan",
"FStar.Seq.Base.length",
"Vale.AES.GHash.ghash_incremental",
"Prims.bool"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
// Unrolled series of n ghash computations in reverse order (last to first)
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p
val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
val lemma_ghash_poly_degree (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Lemma
(requires degree h < 128 /\ degree init < 128)
(ensures degree (ghash_poly h init data j k) < 128)
(decreases (k - j))
[SMTPat (ghash_poly h init data j k)]
val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y)
=
calc (==) {
x +. y +. z;
== { lemma_add_associate x y z }
x +. (y +. z);
== { lemma_add_commute y z }
x +. (z +. y);
== { lemma_add_associate x z y }
x +. z +. y;
};
()
let rec ghash_incremental_def (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) =
if length x = 0 then y_prev else
let y_i_minus_1 = ghash_incremental_def h_LE y_prev (all_but_last x) in
let x_i = last x in
let xor_LE = quad32_xor y_i_minus_1 x_i in
gf128_mul_LE xor_LE h_LE
[@"opaque_to_smt"] let ghash_incremental = opaque_make ghash_incremental_def
irreducible let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def
val lemma_ghash_incremental_poly (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma
(ensures
of_quad32 (reverse_bytes_quad32 (ghash_incremental h_LE y_prev x)) ==
ghash_poly
(of_quad32 (reverse_bytes_quad32 h_LE))
(of_quad32 (reverse_bytes_quad32 y_prev))
(fun_seq_quad32_LE_poly128 x) 0 (length x)
)
// avoids need for extra fuel
val lemma_ghash_incremental_def_0 (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma
(requires length x == 0)
(ensures ghash_incremental_def h_LE y_prev x == y_prev)
[SMTPat (ghash_incremental_def h_LE y_prev x)]
val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma
(requires length x > 0)
(ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_LE h x)
(decreases %[length x])
val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_LE) : Lemma
(ensures
ghash_incremental h y_prev (append a b) ==
(let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b))
(decreases %[length b]) | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32 | [] | Vale.AES.GHash.ghash_incremental0 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y_prev: Vale.Def.Types_s.quad32 ->
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> Vale.Def.Types_s.quad32 | {
"end_col": 63,
"end_line": 139,
"start_col": 2,
"start_line": 139
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ghash_incremental = opaque_make ghash_incremental_def | let ghash_incremental = | false | null | false | opaque_make ghash_incremental_def | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.GHash.ghash_incremental_def"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
// Unrolled series of n ghash computations in reverse order (last to first)
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p
val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
val lemma_ghash_poly_degree (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Lemma
(requires degree h < 128 /\ degree init < 128)
(ensures degree (ghash_poly h init data j k) < 128)
(decreases (k - j))
[SMTPat (ghash_poly h init data j k)]
val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y)
=
calc (==) {
x +. y +. z;
== { lemma_add_associate x y z }
x +. (y +. z);
== { lemma_add_commute y z }
x +. (z +. y);
== { lemma_add_associate x z y }
x +. z +. y;
};
()
let rec ghash_incremental_def (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) =
if length x = 0 then y_prev else
let y_i_minus_1 = ghash_incremental_def h_LE y_prev (all_but_last x) in
let x_i = last x in
let xor_LE = quad32_xor y_i_minus_1 x_i in | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental : _: Vale.Def.Types_s.quad32 ->
_: Vale.Def.Types_s.quad32 ->
_: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> Prims.Tot Vale.Def.Types_s.quad32 | [] | Vale.AES.GHash.ghash_incremental | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
_: Vale.Def.Types_s.quad32 ->
_: Vale.Def.Types_s.quad32 ->
_: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> Prims.Tot Vale.Def.Types_s.quad32 | {
"end_col": 76,
"end_line": 109,
"start_col": 43,
"start_line": 109
} |
|
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def | let ghash_incremental_reveal = | false | null | true | opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.GHash.ghash_incremental",
"Vale.AES.GHash.ghash_incremental_def"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
// Unrolled series of n ghash computations in reverse order (last to first)
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p
val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
val lemma_ghash_poly_degree (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Lemma
(requires degree h < 128 /\ degree init < 128)
(ensures degree (ghash_poly h init data j k) < 128)
(decreases (k - j))
[SMTPat (ghash_poly h init data j k)]
val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y)
=
calc (==) {
x +. y +. z;
== { lemma_add_associate x y z }
x +. (y +. z);
== { lemma_add_commute y z }
x +. (z +. y);
== { lemma_add_associate x z y }
x +. z +. y;
};
()
let rec ghash_incremental_def (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) =
if length x = 0 then y_prev else
let y_i_minus_1 = ghash_incremental_def h_LE y_prev (all_but_last x) in
let x_i = last x in
let xor_LE = quad32_xor y_i_minus_1 x_i in
gf128_mul_LE xor_LE h_LE | false | false | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GHash.ghash_incremental == Vale.AES.GHash.ghash_incremental_def) | [] | Vale.AES.GHash.ghash_incremental_reveal | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GHash.ghash_incremental == Vale.AES.GHash.ghash_incremental_def) | {
"end_col": 120,
"end_line": 110,
"start_col": 43,
"start_line": 110
} |
|
Prims.Tot | val fun_seq_quad32_LE_poly128 (s: seq quad32) : (int -> poly128) | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero | val fun_seq_quad32_LE_poly128 (s: seq quad32) : (int -> poly128)
let fun_seq_quad32_LE_poly128 (s: seq quad32) : (int -> poly128) = | false | null | false | fun (i: int) ->
if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.int",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Math.Poly2.Bits_s.of_quad32",
"Vale.Def.Types_s.reverse_bytes_quad32",
"FStar.Seq.Base.index",
"Prims.bool",
"Vale.Math.Poly2_s.zero",
"Vale.AES.GHash.poly128"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128} | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fun_seq_quad32_LE_poly128 (s: seq quad32) : (int -> poly128) | [] | Vale.AES.GHash.fun_seq_quad32_LE_poly128 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> _: Prims.int -> Vale.AES.GHash.poly128 | {
"end_col": 102,
"end_line": 28,
"start_col": 2,
"start_line": 28
} |
Prims.Tot | val ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j)) | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h | val ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j))
let rec ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j)) = | false | null | false | if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total",
""
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash.poly128",
"Prims.op_LessThanOrEqual",
"Prims.bool",
"Vale.AES.GF128.gf128_mul_rev",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.AES.GHash.ghash_poly",
"Prims.op_Subtraction"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j)) | [
"recursion"
] | Vale.AES.GHash.ghash_poly | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
init: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash.poly128) ->
j: Prims.int ->
k: Prims.int
-> Prims.Tot Vale.Math.Poly2_s.poly | {
"end_col": 68,
"end_line": 32,
"start_col": 2,
"start_line": 31
} |
Prims.Tot | val ghash_incremental_def (h_LE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x]) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_incremental_def (h_LE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) =
if length x = 0 then y_prev else
let y_i_minus_1 = ghash_incremental_def h_LE y_prev (all_but_last x) in
let x_i = last x in
let xor_LE = quad32_xor y_i_minus_1 x_i in
gf128_mul_LE xor_LE h_LE | val ghash_incremental_def (h_LE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x])
let rec ghash_incremental_def (h_LE y_prev: quad32) (x: seq quad32)
: Tot quad32 (decreases %[length x]) = | false | null | false | if length x = 0
then y_prev
else
let y_i_minus_1 = ghash_incremental_def h_LE y_prev (all_but_last x) in
let x_i = last x in
let xor_LE = quad32_xor y_i_minus_1 x_i in
gf128_mul_LE xor_LE h_LE | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total",
""
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GHash_s.gf128_mul_LE",
"Vale.Def.Types_s.quad32_xor",
"FStar.Seq.Properties.last",
"Vale.AES.GHash.ghash_incremental_def",
"Vale.Lib.Seqs_s.all_but_last"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
// Unrolled series of n ghash computations in reverse order (last to first)
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p
val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
val lemma_ghash_poly_degree (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Lemma
(requires degree h < 128 /\ degree init < 128)
(ensures degree (ghash_poly h init data j k) < 128)
(decreases (k - j))
[SMTPat (ghash_poly h init data j k)]
val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y)
=
calc (==) {
x +. y +. z;
== { lemma_add_associate x y z }
x +. (y +. z);
== { lemma_add_commute y z }
x +. (z +. y);
== { lemma_add_associate x z y }
x +. z +. y;
};
() | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental_def (h_LE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x]) | [
"recursion"
] | Vale.AES.GHash.ghash_incremental_def | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h_LE: Vale.Def.Types_s.quad32 ->
y_prev: Vale.Def.Types_s.quad32 ->
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> Prims.Tot Vale.Def.Types_s.quad32 | {
"end_col": 26,
"end_line": 108,
"start_col": 2,
"start_line": 104
} |
Prims.Tot | val hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0 | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6 | val hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0
let hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0 = | false | null | false | let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\ of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\ index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\ of_quad32 (index hkeys 7) == gf128_power h 6 | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.length",
"Prims.eq2",
"FStar.Seq.Base.index",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Bits_s.of_quad32",
"Vale.AES.GHash.gf128_power",
"Prims.op_Equality",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Prop_s.prop0"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0 | [] | Vale.AES.GHash.hkeys_reqs_priv | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | hkeys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> h_BE: Vale.Def.Types_s.quad32
-> Vale.Def.Prop_s.prop0 | {
"end_col": 46,
"end_line": 53,
"start_col": 3,
"start_line": 43
} |
Prims.Tot | val ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p | val ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly
let rec ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly = | false | null | false | let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash.poly128",
"Prims.nat",
"Prims.op_Equality",
"Vale.Math.Poly2.op_Star_Dot",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.bool",
"Vale.AES.GHash.ghash_unroll",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.AES.GHash.gf128_power"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly | [
"recursion"
] | Vale.AES.GHash.ghash_unroll | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash.poly128) ->
k: Prims.int ->
m: Prims.nat ->
n: Prims.nat
-> Vale.Math.Poly2_s.poly | {
"end_col": 54,
"end_line": 63,
"start_col": 90,
"start_line": 59
} |
Prims.Tot | val ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p | val ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly
let rec ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly = | false | null | false | let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash.poly128",
"Prims.nat",
"Prims.op_Equality",
"Vale.Math.Poly2.op_Star_Dot",
"Prims.bool",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.AES.GHash.ghash_unroll_back",
"Prims.op_Subtraction",
"Vale.AES.GHash.gf128_power",
"Prims.op_Addition"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p | false | true | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly | [
"recursion"
] | Vale.AES.GHash.ghash_unroll_back | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash.poly128) ->
k: Prims.int ->
n: Prims.nat ->
m: Prims.nat
-> Vale.Math.Poly2_s.poly | {
"end_col": 53,
"end_line": 71,
"start_col": 95,
"start_line": 66
} |
FStar.Pervasives.Lemma | val lemma_add_manip (x y z: poly) : Lemma (x +. y +. z == x +. z +. y) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y)
=
calc (==) {
x +. y +. z;
== { lemma_add_associate x y z }
x +. (y +. z);
== { lemma_add_commute y z }
x +. (z +. y);
== { lemma_add_associate x z y }
x +. z +. y;
};
() | val lemma_add_manip (x y z: poly) : Lemma (x +. y +. z == x +. z +. y)
let lemma_add_manip (x y z: poly) : Lemma (x +. y +. z == x +. z +. y) = | false | null | true | calc ( == ) {
x +. y +. z;
( == ) { lemma_add_associate x y z }
x +. (y +. z);
( == ) { lemma_add_commute y z }
x +. (z +. y);
( == ) { lemma_add_associate x z y }
x +. z +. y;
};
() | {
"checked_file": "Vale.AES.GHash.fsti.checked",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GHash.fsti"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Math.Poly2.lemma_add_associate",
"Prims.squash",
"Vale.Math.Poly2.lemma_add_commute",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GHash_s
open Vale.AES.GF128_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
open FStar.Seq
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.AES.GF128
open FStar.Mul
open FStar.Calc
open Vale.AES.OptPublic
#reset-options
let poly128 = p:poly{degree p < 128}
let fun_seq_quad32_LE_poly128 (s:seq quad32) : (int -> poly128) =
fun (i:int) -> if 0 <= i && i < length s then of_quad32 (reverse_bytes_quad32 (index s i)) else zero
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) =
if k <= j then init else
gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
val g_power (a:poly) (n:nat) : poly
val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a)
val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n)
val gf128_power (h:poly) (n:nat) : poly
val lemma_gf128_power (h:poly) (n:nat) : Lemma
(gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0
=
let h = of_quad32 (reverse_bytes_quad32 (reverse_bytes_quad32 h_BE)) in
length hkeys >= 8 /\
index hkeys 2 == h_BE /\
of_quad32 (index hkeys 0) == gf128_power h 1 /\
of_quad32 (index hkeys 1) == gf128_power h 2 /\
of_quad32 (index hkeys 3) == gf128_power h 3 /\
of_quad32 (index hkeys 4) == gf128_power h 4 /\
index hkeys 5 = Mkfour 0 0 0 0 /\
of_quad32 (index hkeys 6) == gf128_power h 5 /\
of_quad32 (index hkeys 7) == gf128_power h 6
val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
// Unrolled series of n ghash computations
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = gf128_power h (n + 1) in
if m = 0 then (prev +. d) *. p else
ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
// Unrolled series of n ghash computations in reverse order (last to first)
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly =
let d = data (k + (n - 1 - m)) in
let p = gf128_power h (m + 1) in
let v = if m = n - 1 then prev +. d else d in
if m = 0 then v *. p else
ghash_unroll_back h prev data k n (m - 1) +. v *. p
val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
val lemma_ghash_poly_degree (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Lemma
(requires degree h < 128 /\ degree init < 128)
(ensures degree (ghash_poly h init data j k) < 128)
(decreases (k - j))
[SMTPat (ghash_poly h init data j k)]
val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_add_manip (x y z:poly) : Lemma
(x +. y +. z == x +. z +. y) | false | false | Vale.AES.GHash.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_add_manip (x y z: poly) : Lemma (x +. y +. z == x +. z +. y) | [] | Vale.AES.GHash.lemma_add_manip | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.Math.Poly2_s.poly -> y: Vale.Math.Poly2_s.poly -> z: Vale.Math.Poly2_s.poly
-> FStar.Pervasives.Lemma (ensures x +. y +. z == x +. z +. y) | {
"end_col": 4,
"end_line": 101,
"start_col": 2,
"start_line": 92
} |
Prims.Tot | val synth_u32_le (x: bounded_integer 4) : Tot U32.t | [
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let synth_u32_le
(x: bounded_integer 4)
: Tot U32.t
= x | val synth_u32_le (x: bounded_integer 4) : Tot U32.t
let synth_u32_le (x: bounded_integer 4) : Tot U32.t = | false | null | false | x | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.bounded_integer",
"FStar.UInt32.t"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i)
inline_for_extraction
let synth_u16_le
(x: bounded_integer 2)
: Tot U16.t
= Cast.uint32_to_uint16 x
let synth_u16_le_injective : squash (synth_injective synth_u16_le) = ()
let parse_u16_le = parse_bounded_integer_le 2 `parse_synth` synth_u16_le
inline_for_extraction
let synth_u32_le
(x: bounded_integer 4) | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val synth_u32_le (x: bounded_integer 4) : Tot U32.t | [] | LowParse.Spec.BoundedInt.synth_u32_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: LowParse.Spec.BoundedInt.bounded_integer 4 -> FStar.UInt32.t | {
"end_col": 3,
"end_line": 159,
"start_col": 2,
"start_line": 159
} |
Prims.Tot | val parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i)) | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i) | val parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
let parse_bounded_integer (i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i)) = | false | null | false | decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i) | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.Combinators.make_total_constant_size_parser",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.decode_bounded_integer",
"Prims.unit",
"LowParse.Spec.BoundedInt.decode_bounded_integer_injective",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size) | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i)) | [] | LowParse.Spec.BoundedInt.parse_bounded_integer | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | i: LowParse.Spec.BoundedInt.integer_size
-> LowParse.Spec.Base.parser (LowParse.Spec.BoundedInt.parse_bounded_integer_kind i)
(LowParse.Spec.BoundedInt.bounded_integer i) | {
"end_col": 82,
"end_line": 64,
"start_col": 2,
"start_line": 63
} |
Prims.Tot | val parse_bounded_integer_le
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i)) | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i) | val parse_bounded_integer_le
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
let parse_bounded_integer_le i = | false | null | false | bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i) | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.Combinators.make_total_constant_size_parser",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.bounded_integer_of_le",
"Prims.unit",
"LowParse.Spec.BoundedInt.bounded_integer_of_le_injective",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_bounded_integer_le
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i)) | [] | LowParse.Spec.BoundedInt.parse_bounded_integer_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | i: LowParse.Spec.BoundedInt.integer_size
-> LowParse.Spec.Base.parser (LowParse.Spec.BoundedInt.parse_bounded_integer_kind i)
(LowParse.Spec.BoundedInt.bounded_integer i) | {
"end_col": 81,
"end_line": 143,
"start_col": 2,
"start_line": 142
} |
Prims.Tot | val synth_u16_le (x: bounded_integer 2) : Tot U16.t | [
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let synth_u16_le
(x: bounded_integer 2)
: Tot U16.t
= Cast.uint32_to_uint16 x | val synth_u16_le (x: bounded_integer 2) : Tot U16.t
let synth_u16_le (x: bounded_integer 2) : Tot U16.t = | false | null | false | Cast.uint32_to_uint16 x | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.bounded_integer",
"FStar.Int.Cast.uint32_to_uint16",
"FStar.UInt16.t"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i)
inline_for_extraction
let synth_u16_le
(x: bounded_integer 2) | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val synth_u16_le (x: bounded_integer 2) : Tot U16.t | [] | LowParse.Spec.BoundedInt.synth_u16_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: LowParse.Spec.BoundedInt.bounded_integer 2 -> FStar.UInt16.t | {
"end_col": 25,
"end_line": 149,
"start_col": 2,
"start_line": 149
} |
Prims.Tot | val serialize_bounded_integer_le
(sz: integer_size)
: Tot (serializer (parse_bounded_integer_le sz)) | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_bounded_integer_le
sz
= serialize_bounded_integer_le_correct sz;
serialize_bounded_integer_le' sz | val serialize_bounded_integer_le
(sz: integer_size)
: Tot (serializer (parse_bounded_integer_le sz))
let serialize_bounded_integer_le sz = | false | null | false | serialize_bounded_integer_le_correct sz;
serialize_bounded_integer_le' sz | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_le'",
"Prims.unit",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_le_correct",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i)
inline_for_extraction
let synth_u16_le
(x: bounded_integer 2)
: Tot U16.t
= Cast.uint32_to_uint16 x
let synth_u16_le_injective : squash (synth_injective synth_u16_le) = ()
let parse_u16_le = parse_bounded_integer_le 2 `parse_synth` synth_u16_le
inline_for_extraction
let synth_u32_le
(x: bounded_integer 4)
: Tot U32.t
= x
let parse_u32_le = parse_bounded_integer_le 4 `parse_synth` synth_u32_le
let serialize_bounded_integer_le'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
E.n_to_le sz (U32.v x)
)
#push-options "--z3rlimit 16"
let serialize_bounded_integer_le_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer_le sz) (serialize_bounded_integer_le' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer_le' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer_le sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
#pop-options
let serialize_bounded_integer_le | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_bounded_integer_le
(sz: integer_size)
: Tot (serializer (parse_bounded_integer_le sz)) | [] | LowParse.Spec.BoundedInt.serialize_bounded_integer_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.Spec.Base.serializer (LowParse.Spec.BoundedInt.parse_bounded_integer_le sz) | {
"end_col": 34,
"end_line": 193,
"start_col": 2,
"start_line": 192
} |
Prims.Tot | val serialize_bounded_integer
(sz: integer_size)
: Tot (serializer (parse_bounded_integer sz)) | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz | val serialize_bounded_integer
(sz: integer_size)
: Tot (serializer (parse_bounded_integer sz))
let serialize_bounded_integer sz : Tot (serializer (parse_bounded_integer sz)) = | false | null | false | serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.serialize_bounded_integer'",
"Prims.unit",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_correct",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz | false | false | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_bounded_integer
(sz: integer_size)
: Tot (serializer (parse_bounded_integer sz)) | [] | LowParse.Spec.BoundedInt.serialize_bounded_integer | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.Spec.Base.serializer (LowParse.Spec.BoundedInt.parse_bounded_integer sz) | {
"end_col": 31,
"end_line": 104,
"start_col": 2,
"start_line": 103
} |
Prims.Tot | val parse_u16_le : parser parse_u16_kind U16.t | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u16_le = parse_bounded_integer_le 2 `parse_synth` synth_u16_le | val parse_u16_le : parser parse_u16_kind U16.t
let parse_u16_le = | false | null | false | (parse_bounded_integer_le 2) `parse_synth` synth_u16_le | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"FStar.UInt16.t",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"LowParse.Spec.BoundedInt.synth_u16_le"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i)
inline_for_extraction
let synth_u16_le
(x: bounded_integer 2)
: Tot U16.t
= Cast.uint32_to_uint16 x
let synth_u16_le_injective : squash (synth_injective synth_u16_le) = () | false | true | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u16_le : parser parse_u16_kind U16.t | [] | LowParse.Spec.BoundedInt.parse_u16_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u16_kind FStar.UInt16.t | {
"end_col": 72,
"end_line": 153,
"start_col": 19,
"start_line": 153
} |
Prims.Tot | val parse_u32_le : parser parse_u32_kind U32.t | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators // for make_total_constant_size_parser_precond",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u32_le = parse_bounded_integer_le 4 `parse_synth` synth_u32_le | val parse_u32_le : parser parse_u32_kind U32.t
let parse_u32_le = | false | null | false | (parse_bounded_integer_le 4) `parse_synth` synth_u32_le | {
"checked_file": "LowParse.Spec.BoundedInt.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.BoundedInt.fst"
} | [
"total"
] | [
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"FStar.UInt32.t",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"LowParse.Spec.BoundedInt.synth_u32_le"
] | [] | module LowParse.Spec.BoundedInt
open LowParse.Spec.Combinators // for make_total_constant_size_parser_precond
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module M = LowParse.Math
module Cast = FStar.Int.Cast
(* bounded integers *)
let integer_size_values i = ()
let bounded_integer_prop_equiv
(i: integer_size)
(u: U32.t)
: Lemma
(bounded_integer_prop i u <==> U32.v u < pow2 (8 * i))
=
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 65536);
assert_norm (pow2 24 == 16777216);
assert_norm (pow2 32 == 4294967296)
#push-options "--z3rlimit 16"
let decode_bounded_integer
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_be_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.be_to_n b)
let decode_bounded_integer_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(decode_bounded_integer i b1 == decode_bounded_integer i b2 ==> Seq.equal b1 b2)
= if decode_bounded_integer i b1 = decode_bounded_integer i b2
then begin
E.lemma_be_to_n_is_bounded b1;
E.lemma_be_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.be_to_n b1)) == E.be_to_n b1);
assert (U32.v (U32.uint_to_t (E.be_to_n b2)) == E.be_to_n b2);
assert (E.be_to_n b1 == E.be_to_n b2);
E.be_to_n_inj b1 b2
end else ()
let decode_bounded_integer_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (decode_bounded_integer i))
= Classical.forall_intro_2 (decode_bounded_integer_injective' i)
let parse_bounded_integer
(i: integer_size)
: Tot (parser (parse_bounded_integer_kind i) (bounded_integer i))
= decode_bounded_integer_injective i;
make_total_constant_size_parser i (bounded_integer i) (decode_bounded_integer i)
let parse_bounded_integer_spec i input =
parser_kind_prop_equiv (parse_bounded_integer_kind i) (parse_bounded_integer i);
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
match parse (parse_bounded_integer i) input with
| None -> ()
| Some (y, consumed) ->
let input' = Seq.slice input 0 i in
E.lemma_be_to_n_is_bounded input';
parse_strong_prefix (parse_bounded_integer i) input input'
let serialize_bounded_integer'
(sz: integer_size)
: Tot (bare_serializer (bounded_integer sz))
= (fun (x: bounded_integer sz) ->
let res = E.n_to_be sz (U32.v x) in
res
)
let serialize_bounded_integer_correct
(sz: integer_size)
: Lemma
(serializer_correct (parse_bounded_integer sz) (serialize_bounded_integer' sz))
= let prf
(x: bounded_integer sz)
: Lemma
(
let res = serialize_bounded_integer' sz x in
Seq.length res == (sz <: nat) /\
parse (parse_bounded_integer sz) res == Some (x, (sz <: nat))
)
= ()
in
Classical.forall_intro prf
let serialize_bounded_integer
sz
: Tot (serializer (parse_bounded_integer sz))
= serialize_bounded_integer_correct sz;
serialize_bounded_integer' sz
let serialize_bounded_integer_spec sz x = ()
let bounded_integer_of_le
(i: integer_size)
(b: bytes { Seq.length b == i } )
: GTot (bounded_integer i)
= E.lemma_le_to_n_is_bounded b;
M.pow2_le_compat 32 (8 `FStar.Mul.op_Star` i);
U32.uint_to_t (E.le_to_n b)
let bounded_integer_of_le_injective'
(i: integer_size)
(b1: bytes { Seq.length b1 == i } )
(b2: bytes { Seq.length b2 == i } )
: Lemma
(bounded_integer_of_le i b1 == bounded_integer_of_le i b2 ==> Seq.equal b1 b2)
= if bounded_integer_of_le i b1 = bounded_integer_of_le i b2
then begin
E.lemma_le_to_n_is_bounded b1;
E.lemma_le_to_n_is_bounded b2;
assert (U32.v (U32.uint_to_t (E.le_to_n b1)) == E.le_to_n b1);
assert (U32.v (U32.uint_to_t (E.le_to_n b2)) == E.le_to_n b2);
assert (E.le_to_n b1 == E.le_to_n b2);
E.le_to_n_inj b1 b2
end else ()
#pop-options
let bounded_integer_of_le_injective
(i: integer_size)
: Lemma
(make_total_constant_size_parser_precond i (bounded_integer i) (bounded_integer_of_le i))
= Classical.forall_intro_2 (bounded_integer_of_le_injective' i)
let parse_bounded_integer_le
i
= bounded_integer_of_le_injective i;
make_total_constant_size_parser i (bounded_integer i) (bounded_integer_of_le i)
inline_for_extraction
let synth_u16_le
(x: bounded_integer 2)
: Tot U16.t
= Cast.uint32_to_uint16 x
let synth_u16_le_injective : squash (synth_injective synth_u16_le) = ()
let parse_u16_le = parse_bounded_integer_le 2 `parse_synth` synth_u16_le
inline_for_extraction
let synth_u32_le
(x: bounded_integer 4)
: Tot U32.t
= x | false | true | LowParse.Spec.BoundedInt.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u32_le : parser parse_u32_kind U32.t | [] | LowParse.Spec.BoundedInt.parse_u32_le | {
"file_name": "src/lowparse/LowParse.Spec.BoundedInt.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u32_kind FStar.UInt32.t | {
"end_col": 72,
"end_line": 161,
"start_col": 19,
"start_line": 161
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.