effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Pervasives.Lemma | val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
let gctr_partial_opaque_completed
(alg: algorithm)
(plain cipher: seq quad32)
(key: seq nat32)
(icb: quad32)
: Lemma
(requires
is_aes_key_word alg key /\ length plain == length cipher /\ length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = | false | null | true | gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCTR_BE.gctr_partial_completed",
"Prims.unit",
"Vale.AES.GCTR_BE.gctr_partial_reveal",
"Prims.l_and",
"Vale.AES.AES_BE_s.is_aes_key_word",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.GCTR_BE.gctr_partial",
"Prims.squash",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [] | Vale.AES.GCTR_BE.gctr_partial_opaque_completed | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_BE_s.is_aes_key_word alg key /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
Vale.AES.GCTR_BE.gctr_partial alg (FStar.Seq.Base.length cipher) plain cipher key icb)
(ensures cipher == Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb plain alg key 0) | {
"end_col": 49,
"end_line": 136,
"start_col": 2,
"start_line": 135
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x1000000 == x' / 0x1000000)
(ensures t.hi3 == t'.hi3) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
() | val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x1000000 == x' / 0x1000000)
(ensures t.hi3 == t'.hi3)
let nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x1000000 == x' / 0x1000000)
(ensures t.hi3 == t'.hi3) = | false | null | true | let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_1_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Division",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x1000000 == x' / 0x1000000)
(ensures t.hi3 == t'.hi3) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_1_helper2 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000) (ensures Mkfour?.hi3 t == Mkfour?.hi3 t') | {
"end_col": 4,
"end_line": 236,
"start_col": 3,
"start_line": 228
} |
FStar.Pervasives.Lemma | val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial_def alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
() | val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial_def alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
let gctr_partial_completed
(alg: algorithm)
(plain cipher: seq quad32)
(key: seq nat32)
(icb: quad32)
= | false | null | true | gctr_indexed icb plain alg key cipher;
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR_BE.gctr_indexed"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial_def alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [] | Vale.AES.GCTR_BE.gctr_partial_completed | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_BE_s.is_aes_key_word alg key /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
Vale.AES.GCTR_BE.gctr_partial_def alg (FStar.Seq.Base.length cipher) plain cipher key icb)
(ensures cipher == Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb plain alg key 0) | {
"end_col": 4,
"end_line": 124,
"start_col": 2,
"start_line": 123
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\
s.lo1 == s'.lo1) (ensures k / 0x100 == k' / 0x100) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\
s.lo1 == s'.lo1) (ensures k / 0x100 == k' / 0x100)
let nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\
s.lo1 == s'.lo1) (ensures k / 0x100 == k' / 0x100) = | false | null | true | let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.squash",
"Prims.int",
"Prims.op_Division",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\
s.lo1 == s'.lo1) (ensures k / 0x100 == k' / 0x100) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_3_helper3 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.hi3 s == Mkfour?.hi3 s' /\ Mkfour?.hi2 s == Mkfour?.hi2 s' /\
Mkfour?.lo1 s == Mkfour?.lo1 s') (ensures k / 0x100 == k' / 0x100) | {
"end_col": 4,
"end_line": 314,
"start_col": 3,
"start_line": 309
} |
FStar.Pervasives.Lemma | val gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma
(requires
is_aes_key_word alg key /\
cipher == gctr_encrypt_recursive icb plain alg key 0 /\
length plain * 16 < pow2_32
)
(ensures seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt icb (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
() | val gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma
(requires
is_aes_key_word alg key /\
cipher == gctr_encrypt_recursive icb plain alg key 0 /\
length plain * 16 < pow2_32
)
(ensures seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt icb (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key)
let gctr_partial_to_full_basic
(icb: quad32)
(plain: seq quad32)
(alg: algorithm)
(key: seq nat32)
(cipher: seq quad32)
= | false | null | true | gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes",
"Vale.Def.Words_s.nat8",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Vale.AES.GCTR_BE_s.gctr_encrypt_reveal"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma
(requires
is_aes_key_word alg key /\
cipher == gctr_encrypt_recursive icb plain alg key 0 /\
length plain * 16 < pow2_32
)
(ensures seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt icb (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key) | [] | Vale.AES.GCTR_BE.gctr_partial_to_full_basic | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_BE_s.is_aes_key_word alg key /\
cipher == Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb plain alg key 0 /\
FStar.Seq.Base.length plain * 16 < Vale.Def.Words_s.pow2_32)
(ensures
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher
) ==
Vale.AES.GCTR_BE_s.gctr_encrypt icb
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain
))
alg
key) | {
"end_col": 4,
"end_line": 146,
"start_col": 2,
"start_line": 139
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x10000 == x' / 0x10000)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
() | val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x10000 == x' / 0x10000)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
let nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x10000 == x' / 0x10000)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2) = | false | null | true | let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_2_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Division",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x10000 == x' / 0x10000)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_2_helper2 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000)
(ensures Mkfour?.hi3 t == Mkfour?.hi3 t' /\ Mkfour?.hi2 t == Mkfour?.hi2 t') | {
"end_col": 4,
"end_line": 255,
"start_col": 3,
"start_line": 245
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x100 == x' / 0x100)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
() | val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x100 == x' / 0x100)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
let nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x100 == x' / 0x100)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) = | false | null | true | let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_3_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Division",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma (requires x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\ x / 0x100 == x' / 0x100)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_3_helper2 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x / 0x100 == x' / 0x100)
(ensures
Mkfour?.hi3 t == Mkfour?.hi3 t' /\ Mkfour?.hi2 t == Mkfour?.hi2 t' /\
Mkfour?.lo1 t == Mkfour?.lo1 t') | {
"end_col": 4,
"end_line": 272,
"start_col": 3,
"start_line": 264
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3 /\
s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
() | val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3 /\
s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
let nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3 /\
s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) = | false | null | true | let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_3_helper2",
"Vale.AES.GCTR_BE.lemma_ishr_ixor_32",
"Vale.AES.Types_helpers.lemma_ishr_32",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_3_helper3",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3 /\
s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_3 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\
Mkfour?.hi3 s == Mkfour?.hi3 s' /\ Mkfour?.hi2 s == Mkfour?.hi2 s' /\
Mkfour?.lo1 s == Mkfour?.lo1 s')
(ensures
Mkfour?.hi3 t == Mkfour?.hi3 t' /\ Mkfour?.hi2 t == Mkfour?.hi2 t' /\
Mkfour?.lo1 t == Mkfour?.lo1 t') | {
"end_col": 4,
"end_line": 393,
"start_col": 3,
"start_line": 380
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3)
(ensures k / 0x1000000 == k' / 0x1000000) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3)
(ensures k / 0x1000000 == k' / 0x1000000)
let nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3)
(ensures k / 0x1000000 == k' / 0x1000000) = | false | null | true | let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Prims.squash",
"Prims.int",
"Prims.op_Division",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3)
(ensures k / 0x1000000 == k' / 0x1000000) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_1_helper3 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.hi3 s == Mkfour?.hi3 s') (ensures k / 0x1000000 == k' / 0x1000000) | {
"end_col": 4,
"end_line": 286,
"start_col": 3,
"start_line": 281
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3)
(ensures t.hi3 == t'.hi3) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
() | val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3)
(ensures t.hi3 == t'.hi3)
let nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3)
(ensures t.hi3 == t'.hi3) = | false | null | true | let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_1_helper2",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"Vale.AES.Types_helpers.pow2_24",
"Vale.AES.GCTR_BE.lemma_ishr_ixor_32",
"Vale.AES.Types_helpers.lemma_ishr_32",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_1_helper3",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.hi3 == s'.hi3)
(ensures t.hi3 == t'.hi3) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_1 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\
Mkfour?.hi3 s == Mkfour?.hi3 s') (ensures Mkfour?.hi3 t == Mkfour?.hi3 t') | {
"end_col": 4,
"end_line": 341,
"start_col": 3,
"start_line": 327
} |
FStar.Pervasives.Lemma | val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
() | val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s)
let slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) = | false | null | true | assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4 then nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) | [] | Vale.AES.GCTR_BE.slice_pad_to_128_bits | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s:
FStar.Seq.Base.seq Vale.Def.Types_s.nat8
{0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.AES.GCTR_BE_s.pad_to_128_bits s) 0 (FStar.Seq.Base.length s) == s) | {
"end_col": 4,
"end_line": 487,
"start_col": 2,
"start_line": 485
} |
FStar.Pervasives.Lemma | val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux | val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i))
let lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) = | false | null | true | let aux (i: nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in
Classical.forall_intro aux | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_Subtraction",
"FStar.Seq.Base.length",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.int",
"Prims.l_imp"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) | [] | Vale.AES.GCTR_BE.lemma_slice_orig_index | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq a -> s': FStar.Seq.Base.seq a -> m: Prims.nat -> n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length s == FStar.Seq.Base.length s' /\ m <= n /\
n <= FStar.Seq.Base.length s /\ FStar.Seq.Base.slice s m n == FStar.Seq.Base.slice s' m n)
(ensures
forall (i: Prims.int). {:pattern FStar.Seq.Base.index s i\/FStar.Seq.Base.index s' i}
m <= i /\ i < n ==> FStar.Seq.Base.index s i == FStar.Seq.Base.index s' i) | {
"end_col": 31,
"end_line": 178,
"start_col": 3,
"start_line": 174
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
) (ensures k / 0x10000 == k' / 0x10000) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
) (ensures k / 0x10000 == k' / 0x10000)
let nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
) (ensures k / 0x10000 == k' / 0x10000) = | false | null | true | let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.squash",
"Prims.int",
"Prims.op_Division",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
) (ensures k / 0x10000 == k' / 0x10000) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_2_helper3 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.hi3 s == Mkfour?.hi3 s' /\ Mkfour?.hi2 s == Mkfour?.hi2 s')
(ensures k / 0x10000 == k' / 0x10000) | {
"end_col": 4,
"end_line": 300,
"start_col": 3,
"start_line": 295
} |
FStar.Pervasives.Lemma | val gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) | val gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
let gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) = | false | null | true | gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert (equal cipher c) | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_BE_s.gctr_plain_internal",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_BE_s.aes_key_word",
"FStar.Seq.Base.seq",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"Prims.unit",
"Vale.AES.GCTR_BE.gctr_indexed_helper",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Prims.l_Forall",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.index",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.AES.GCTR_BE_s.inc32",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | [] | Vale.AES.GCTR_BE.gctr_indexed | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_BE_s.gctr_plain_internal ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_BE_s.aes_key_word alg ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\
(forall (i:
Prims.int
{ i >= 0 /\ i < FStar.Seq.Base.length plain /\
(i >= 0) /\ (i < FStar.Seq.Base.length cipher) }).
{:pattern FStar.Seq.Base.index cipher i}
0 <= i /\ i < FStar.Seq.Base.length cipher ==>
FStar.Seq.Base.index cipher i ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain i)
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.AES.GCTR_BE_s.inc32 icb i))))
(ensures cipher == Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb plain alg key 0) | {
"end_col": 24,
"end_line": 120,
"start_col": 2,
"start_line": 118
} |
FStar.Pervasives.Lemma | val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes)
(num_blocks * 16)
in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
() | val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes)
(num_blocks * 16)
in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
let step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes)
(num_blocks * 16)
in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE) = | false | null | true | let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16)
in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks ==
slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes0",
"Prims.int",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes)
(num_blocks * 16)
in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE) | [] | Vale.AES.GCTR_BE.step1 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
p: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat{num_bytes < 16 * FStar.Seq.Base.length p}
-> FStar.Pervasives.Lemma
(ensures
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let _ =
FStar.Seq.Properties.split (FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE
(Vale.Def.Words.Seq_s.seq_four_to_seq_BE p))
0
num_bytes)
(num_blocks * 16)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ full_blocks _ = _ in
let full_quads_BE = Vale.Def.Types_s.be_bytes_to_seq_quad32 full_blocks in
let p_prefix = FStar.Seq.Base.slice p 0 num_blocks in
p_prefix == full_quads_BE)
<:
Type0)) | {
"end_col": 4,
"end_line": 168,
"start_col": 3,
"start_line": 155
} |
FStar.Pervasives.Lemma | val gctr_encrypt_one_block (icb plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma
(requires is_aes_key_word alg key)
(ensures
gctr_encrypt icb (be_quad32_to_bytes plain) alg key ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor plain (aes_encrypt_word alg key icb))))
) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_encrypt_one_block (icb plain:quad32) (alg:algorithm) (key:seq nat32) =
gctr_encrypt_reveal ();
assert(inc32 icb 0 == icb);
let encrypted_icb = aes_encrypt_word alg key icb in
let p = be_quad32_to_bytes plain in
let plain_quads = be_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
be_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads);
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
assert (cipher_quads == cons (gctr_encrypt_block icb (head plain_quads) alg key 0) (gctr_encrypt_recursive icb (tail plain_quads) alg key (1)));
assert (head plain_quads == plain);
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 ==
(quad32_xor (head plain_quads) (aes_encrypt_word alg key icb)));
assert (quad32_xor plain (aes_encrypt_word alg key icb)
==
(quad32_xor (head plain_quads) (aes_encrypt_word alg key (inc32 icb 0))));
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 == quad32_xor plain (aes_encrypt_word alg key icb));
aes_encrypt_word_reveal ();
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 == quad32_xor plain (aes_encrypt_word alg key icb));
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 == quad32_xor plain encrypted_icb);
assert(gctr_encrypt_recursive icb (tail p_seq) alg key 1 == empty); // OBSERVE
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x);
() | val gctr_encrypt_one_block (icb plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma
(requires is_aes_key_word alg key)
(ensures
gctr_encrypt icb (be_quad32_to_bytes plain) alg key ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor plain (aes_encrypt_word alg key icb))))
)
let gctr_encrypt_one_block (icb plain: quad32) (alg: algorithm) (key: seq nat32) = | false | null | true | gctr_encrypt_reveal ();
assert (inc32 icb 0 == icb);
let encrypted_icb = aes_encrypt_word alg key icb in
let p = be_quad32_to_bytes plain in
let plain_quads = be_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
be_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads);
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
assert (cipher_quads ==
cons (gctr_encrypt_block icb (head plain_quads) alg key 0)
(gctr_encrypt_recursive icb (tail plain_quads) alg key (1)));
assert (head plain_quads == plain);
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 ==
(quad32_xor (head plain_quads) (aes_encrypt_word alg key icb)));
assert (quad32_xor plain (aes_encrypt_word alg key icb) ==
(quad32_xor (head plain_quads) (aes_encrypt_word alg key (inc32 icb 0))));
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 ==
quad32_xor plain (aes_encrypt_word alg key icb));
aes_encrypt_word_reveal ();
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 ==
quad32_xor plain (aes_encrypt_word alg key icb));
assert (gctr_encrypt_block icb (head plain_quads) alg key 0 == quad32_xor plain encrypted_icb);
assert (gctr_encrypt_recursive icb (tail p_seq) alg key 1 == empty);
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x);
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"FStar.Seq.Base.append_empty_r",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.quad32_xor",
"Prims._assert",
"Prims.eq2",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"FStar.Seq.Properties.tail",
"FStar.Seq.Base.empty",
"Vale.AES.GCTR_BE_s.gctr_encrypt_block",
"FStar.Seq.Properties.head",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.AES.AES_BE_s.aes_encrypt_word_reveal",
"Vale.AES.GCTR_BE_s.inc32",
"FStar.Seq.Properties.cons",
"Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes_one_quad",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.AES.GCTR_BE_s.gctr_encrypt_reveal"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4 then nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_word alg) (i:int):
Lemma(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_word alg key (inc32 icb_BE i) in
let icb = inc32 icb_BE i in
if s = q_bytes_prefix then (
be_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (be_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_word alg key icb) (length s);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties
let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
step1 plain num_bytes;
let s = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let final_quad_BE = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_BE = gctr_encrypt_recursive icb_BE full_quads_BE alg key 0 in
let final_cipher_quad_BE = gctr_encrypt_block icb_BE final_quad_BE alg key (full_bytes_len / 16) in
assert (cipher_quads_BE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_BE = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) in
let final_cipher_bytes_BE = slice (be_quad32_to_bytes final_cipher_quad_BE) 0 num_extra in
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks))); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (be_quad32_to_bytes final_p) 0 num_extra in
be_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_BE == slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
be_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_commutes_be_seq_quad32_to_bytes0 cipher num_blocks;
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks)) == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16));
assert (slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_append_adds (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes;
assert (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16) @|
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes);
assert (cipher_bytes == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks))) @| slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_encrypt_one_block (icb plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma
(requires is_aes_key_word alg key)
(ensures
gctr_encrypt icb (be_quad32_to_bytes plain) alg key ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor plain (aes_encrypt_word alg key icb))))
) | [] | Vale.AES.GCTR_BE.gctr_encrypt_one_block | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32
-> FStar.Pervasives.Lemma (requires Vale.AES.AES_BE_s.is_aes_key_word alg key)
(ensures
Vale.AES.GCTR_BE_s.gctr_encrypt icb (Vale.Arch.Types.be_quad32_to_bytes plain) alg key ==
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.create
1
(Vale.Def.Types_s.quad32_xor plain
(Vale.AES.AES_BE_s.aes_encrypt_word alg key icb))))) | {
"end_col": 4,
"end_line": 596,
"start_col": 2,
"start_line": 571
} |
FStar.Pervasives.Lemma | val gctr_encrypt_length (icb: quad32) (plain: gctr_plain) (alg: algorithm) (key: aes_key_word alg)
: Lemma (length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))] | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
) | val gctr_encrypt_length (icb: quad32) (plain: gctr_plain) (alg: algorithm) (key: aes_key_word alg)
: Lemma (length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
let gctr_encrypt_length (icb: quad32) (plain: gctr_plain) (alg: algorithm) (key: aes_key_word alg)
: Lemma (length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))] = | false | null | true | reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0
then
(let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0)
else
(let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()) | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_BE_s.gctr_plain",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_BE_s.aes_key_word",
"Prims.op_Equality",
"Prims.int",
"Vale.AES.GCTR_BE.gctr_encrypt_recursive_length",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Prims.bool",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.nat8",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.slice",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCTR_BE_s.gctr_encrypt_block",
"Prims.op_Division",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.op_Subtraction",
"Vale.AES.GCTR_BE_s.gctr_encrypt",
"Prims.op_Modulus",
"Vale.AES.GCTR_BE_s.gctr_encrypt_reveal",
"FStar.Pervasives.reveal_opaque",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))] | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_encrypt_length (icb: quad32) (plain: gctr_plain) (alg: algorithm) (key: aes_key_word alg)
: Lemma (length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))] | [] | Vale.AES.GCTR_BE.gctr_encrypt_length | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_BE_s.gctr_plain ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_BE_s.aes_key_word alg
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length (Vale.AES.GCTR_BE_s.gctr_encrypt icb plain alg key) ==
FStar.Seq.Base.length plain)
[SMTPat (FStar.Seq.Base.length (Vale.AES.GCTR_BE_s.gctr_encrypt icb plain alg key))] | {
"end_col": 3,
"end_line": 83,
"start_col": 2,
"start_line": 56
} |
FStar.Pervasives.Lemma | val step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma
(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_word alg) (i:int):
Lemma(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_word alg key (inc32 icb_BE i) in
let icb = inc32 icb_BE i in
if s = q_bytes_prefix then (
be_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (be_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_word alg key icb) (length s);
()
) else
();
() | val step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma
(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
let step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma
(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) = | false | null | true | let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_word alg key (inc32 icb_BE i) in
let icb = inc32 icb_BE i in
if s = q_bytes_prefix
then
(be_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q
(be_bytes_to_quad32 (pad_to_128_bits s))
(aes_encrypt_word alg key icb)
(length s);
());
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.quad32",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_BE_s.aes_key_word",
"Prims.int",
"Prims.unit",
"Prims.op_Equality",
"Vale.AES.GCTR_BE.quad32_xor_bytewise",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.AES.GCTR_BE.slice_pad_to_128_bits",
"Vale.Arch.Types.be_quad32_to_bytes_to_quad32",
"Prims.bool",
"Vale.AES.GCTR_BE_s.inc32",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.AES.GCTR_BE_s.gctr_encrypt_block",
"Vale.Def.Words.Seq_s.seq16",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4 then nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_word alg) (i:int):
Lemma(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma
(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) | [] | Vale.AES.GCTR_BE.step2 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s:
FStar.Seq.Base.seq Vale.Def.Types_s.nat8
{0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16} ->
q: Vale.Def.Types_s.quad32 ->
icb_BE: Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_BE_s.aes_key_word alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(let q_bytes = Vale.Arch.Types.be_quad32_to_bytes q in
let q_bytes_prefix = FStar.Seq.Base.slice q_bytes 0 (FStar.Seq.Base.length s) in
let q_cipher = Vale.AES.GCTR_BE_s.gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes =
FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes q_cipher)
0
(FStar.Seq.Base.length s)
in
let s_quad = Vale.Def.Types_s.be_bytes_to_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits s) in
let s_cipher = Vale.AES.GCTR_BE_s.gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes =
FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes s_cipher)
0
(FStar.Seq.Base.length s)
in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)) | {
"end_col": 4,
"end_line": 516,
"start_col": 3,
"start_line": 498
} |
FStar.Pervasives.Lemma | val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_word alg key /\
length plain >= bound /\
length cipher >= bound /\
length plain' >= bound /\
length cipher' >= bound /\
slice plain 0 bound == slice plain' 0 bound /\
slice cipher 0 bound == slice cipher' 0 bound)
(ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
() | val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_word alg key /\
length plain >= bound /\
length cipher >= bound /\
length plain' >= bound /\
length cipher' >= bound /\
slice plain 0 bound == slice plain' 0 bound /\
slice cipher 0 bound == slice cipher' 0 bound)
(ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb)
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb = | false | null | true | gctr_partial_reveal ();
assert (forall i. 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"FStar.Seq.Base.slice",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"FStar.Seq.Base.index",
"Vale.AES.GCTR_BE.gctr_partial_reveal"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
() | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_word alg key /\
length plain >= bound /\
length cipher >= bound /\
length plain' >= bound /\
length cipher' >= bound /\
slice plain 0 bound == slice plain' 0 bound /\
slice cipher 0 bound == slice cipher' 0 bound)
(ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb) | [] | Vale.AES.GCTR_BE.gctr_partial_opaque_ignores_postfix | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
bound: Vale.Def.Types_s.nat32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
plain': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ FStar.Seq.Base.length plain >= bound /\
FStar.Seq.Base.length cipher >= bound /\ FStar.Seq.Base.length plain' >= bound /\
FStar.Seq.Base.length cipher' >= bound /\
FStar.Seq.Base.slice plain 0 bound == FStar.Seq.Base.slice plain' 0 bound /\
FStar.Seq.Base.slice cipher 0 bound == FStar.Seq.Base.slice cipher' 0 bound)
(ensures
Vale.AES.GCTR_BE.gctr_partial alg bound plain cipher key icb <==>
Vale.AES.GCTR_BE.gctr_partial alg bound plain' cipher' key icb) | {
"end_col": 4,
"end_line": 37,
"start_col": 2,
"start_line": 31
} |
FStar.Pervasives.Lemma | val gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j))))))
(decreases %[length plain]) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper | val gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j))))))
(decreases %[length plain])
let rec gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j))))))
(decreases %[length plain]) = | false | null | true | if length plain = 0
then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i + 1) in
let helper (j: int)
: Lemma
((0 <= j /\ j < length plain) ==>
(index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)))
)) =
aes_encrypt_word_reveal ();
if 0 < j && j < length plain
then
(gctr_indexed_helper icb tl alg key (i + 1);
assert (index r_cipher (j - 1) ==
quad32_xor (index tl (j - 1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)))))
in
FStar.Classical.forall_intro helper | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma",
""
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_BE_s.gctr_plain_internal",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_BE_s.aes_key_word",
"Prims.int",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Prims.bool",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.AES.GCTR_BE_s.inc32",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_AmpAmp",
"Prims._assert",
"Prims.op_Subtraction",
"Vale.AES.GCTR_BE.gctr_indexed_helper",
"Vale.AES.AES_BE_s.aes_encrypt_word_reveal",
"FStar.Seq.Base.seq",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"FStar.Seq.Properties.tail",
"Prims.nat",
"Prims.l_Forall",
"Prims.op_GreaterThanOrEqual"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain]) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal)
(alg: algorithm)
(key: aes_key_word alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j))))))
(decreases %[length plain]) | [
"recursion"
] | Vale.AES.GCTR_BE.gctr_indexed_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_BE_s.gctr_plain_internal ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_BE_s.aes_key_word alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(let cipher = Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb plain alg key i in
FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\
(forall (j:
i:
Prims.int
{ i >= 0 /\ i < FStar.Seq.Base.length plain /\
(i >= 0) /\ (i < FStar.Seq.Base.length cipher) }).
{:pattern FStar.Seq.Base.index cipher j}
0 <= j /\ j < FStar.Seq.Base.length plain ==>
FStar.Seq.Base.index cipher j ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain j)
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.AES.GCTR_BE_s.inc32 icb (i + j))))
)) (decreases FStar.Seq.Base.length plain) | {
"end_col": 41,
"end_line": 109,
"start_col": 2,
"start_line": 95
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_BE s) /\ k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
() | val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_BE s) /\ k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i))
let nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_BE s) /\ k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) = | false | null | true | assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1
then
nat32_xor_bytewise_1 k
k'
x
x'
m
(seq_to_four_BE s)
(seq_to_four_BE s')
(seq_to_four_BE t)
(seq_to_four_BE t');
if n = 2
then
nat32_xor_bytewise_2 k
k'
x
x'
m
(seq_to_four_BE s)
(seq_to_four_BE s')
(seq_to_four_BE t)
(seq_to_four_BE t');
if n = 3
then
nat32_xor_bytewise_3 k
k'
x
x'
m
(seq_to_four_BE s)
(seq_to_four_BE s')
(seq_to_four_BE t)
(seq_to_four_BE t');
if n = 4
then
nat32_xor_bytewise_4 k
k'
x
x'
m
(seq_to_four_BE s)
(seq_to_four_BE s')
(seq_to_four_BE t)
(seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat8",
"Prims.nat",
"Prims.unit",
"Vale.AES.GCTR_BE.lemma_slice_orig_index",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Prims.op_Equality",
"Prims.int",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_4",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Prims.bool",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_3",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_2",
"Vale.AES.GCTR_BE.nat32_xor_bytewise_1",
"Vale.Def.Words_s.natN",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.pow2_32",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Vale.Def.Words.Four_s.four_to_nat",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.squash",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i)) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_BE s) /\ k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ k == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s) /\
k' == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s') /\
Vale.Def.Types_s.ixor k m ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE t) /\
Vale.Def.Types_s.ixor k' m ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE t') /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 n) (FStar.Seq.Base.slice s' 0 n))
(ensures
forall (i: Prims.nat). {:pattern FStar.Seq.Base.index t i\/FStar.Seq.Base.index t' i}
i < n ==> FStar.Seq.Base.index t i == FStar.Seq.Base.index t' i) | {
"end_col": 4,
"end_line": 440,
"start_col": 2,
"start_line": 428
} |
FStar.Pervasives.Lemma | val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma
(requires
is_aes_key_word alg key /\
1 <= num_bytes /\
num_bytes < 16 * length plain /\
16 * (length plain - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\
length plain == length cipher /\
( let num_blocks = num_bytes / 16 in
slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\
index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks)
)
(ensures (
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
cipher_bytes == gctr_encrypt icb_BE plain_bytes alg key
)) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
step1 plain num_bytes;
let s = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let final_quad_BE = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_BE = gctr_encrypt_recursive icb_BE full_quads_BE alg key 0 in
let final_cipher_quad_BE = gctr_encrypt_block icb_BE final_quad_BE alg key (full_bytes_len / 16) in
assert (cipher_quads_BE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_BE = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) in
let final_cipher_bytes_BE = slice (be_quad32_to_bytes final_cipher_quad_BE) 0 num_extra in
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks))); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (be_quad32_to_bytes final_p) 0 num_extra in
be_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_BE == slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
be_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_commutes_be_seq_quad32_to_bytes0 cipher num_blocks;
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks)) == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16));
assert (slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_append_adds (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes;
assert (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16) @|
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes);
assert (cipher_bytes == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks))) @| slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma
(requires
is_aes_key_word alg key /\
1 <= num_bytes /\
num_bytes < 16 * length plain /\
16 * (length plain - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\
length plain == length cipher /\
( let num_blocks = num_bytes / 16 in
slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\
index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks)
)
(ensures (
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
cipher_bytes == gctr_encrypt icb_BE plain_bytes alg key
))
let gctr_partial_to_full_advanced
(icb_BE: quad32)
(plain cipher: seq quad32)
(alg: algorithm)
(key: seq nat32)
(num_bytes: nat)
= | false | null | true | gctr_encrypt_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
step1 plain num_bytes;
let s = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let final_quad_BE = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_BE = gctr_encrypt_recursive icb_BE full_quads_BE alg key 0 in
let final_cipher_quad_BE = gctr_encrypt_block icb_BE final_quad_BE alg key (full_bytes_len / 16) in
assert (cipher_quads_BE == slice cipher 0 num_blocks);
let cipher_bytes_full_BE = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) in
let final_cipher_bytes_BE = slice (be_quad32_to_bytes final_cipher_quad_BE) 0 num_extra in
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads_BE) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks)));
assert (length s == num_extra);
let q_prefix = slice (be_quad32_to_bytes final_p) 0 num_extra in
be_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert (final_cipher_bytes_BE == slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
be_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_commutes_be_seq_quad32_to_bytes0 cipher num_blocks;
assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks)) ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16));
assert (slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))
(num_blocks * 16)
(length cipher * 16))
0
num_extra ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes);
slice_append_adds (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes;
assert (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 (num_blocks * 16) @|
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) (num_blocks * 16) num_bytes ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes);
assert (cipher_bytes ==
(seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice cipher 0 num_blocks))) @|
slice (be_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Vale.Def.Words_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.op_At_Bar",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"FStar.Seq.Base.slice",
"Vale.Arch.Types.be_quad32_to_bytes",
"FStar.Seq.Base.index",
"FStar.Mul.op_Star",
"Vale.Lib.Seqs.slice_append_adds",
"FStar.Seq.Base.length",
"Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes0",
"Vale.AES.GCM_helpers_BE.be_seq_quad32_to_bytes_tail_prefix",
"Prims.int",
"Vale.AES.GCTR_BE_s.gctr_encrypt_block",
"Prims.op_Division",
"Vale.AES.GCTR_BE_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Prims.op_Modulus",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.op_Subtraction",
"Vale.AES.GCTR_BE.step2",
"Vale.AES.GCTR_BE.step1",
"Vale.AES.GCTR_BE_s.gctr_encrypt_reveal"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4 then nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_word alg) (i:int):
Lemma(let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = be_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (be_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = be_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (be_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_word alg key (inc32 icb_BE i) in
let icb = inc32 icb_BE i in
if s = q_bytes_prefix then (
be_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (be_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_word alg key icb) (length s);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma
(requires
is_aes_key_word alg key /\
1 <= num_bytes /\
num_bytes < 16 * length plain /\
16 * (length plain - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\
length plain == length cipher /\
( let num_blocks = num_bytes / 16 in
slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\
index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks)
)
(ensures (
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 num_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 num_bytes in
cipher_bytes == gctr_encrypt icb_BE plain_bytes alg key
)) | [] | Vale.AES.GCTR_BE.gctr_partial_to_full_advanced | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
icb_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ 1 <= num_bytes /\
num_bytes < 16 * FStar.Seq.Base.length plain /\
16 * (FStar.Seq.Base.length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\
num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
(let num_blocks = num_bytes / 16 in
FStar.Seq.Base.slice cipher 0 num_blocks ==
Vale.AES.GCTR_BE_s.gctr_encrypt_recursive icb_BE
(FStar.Seq.Base.slice plain 0 num_blocks)
alg
key
0 /\
FStar.Seq.Base.index cipher num_blocks ==
Vale.AES.GCTR_BE_s.gctr_encrypt_block icb_BE
(FStar.Seq.Base.index plain num_blocks)
alg
key
num_blocks))
(ensures
(let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
plain))
0
num_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
cipher))
0
num_bytes
in
cipher_bytes == Vale.AES.GCTR_BE_s.gctr_encrypt icb_BE plain_bytes alg key)) | {
"end_col": 4,
"end_line": 568,
"start_col": 2,
"start_line": 522
} |
FStar.Pervasives.Lemma | val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma
(requires gctr_partial alg b1 p1 c1 key icb1 /\
gctr_partial alg b2 p2 c2 key icb2 /\
b1 == length p1 /\ b1 == length c1 /\
b2 == length p2 /\ b2 == length c2 /\
icb2 == inc32 icb1 b1)
(ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
() | val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma
(requires gctr_partial alg b1 p1 c1 key icb1 /\
gctr_partial alg b2 p2 c2 key icb2 /\
b1 == length p1 /\ b1 == length c1 /\
b2 == length p2 /\ b2 == length c2 /\
icb2 == inc32 icb1 b1)
(ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1)
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 = | false | null | true | gctr_partial_reveal ();
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_common_s.algorithm",
"Prims.nat",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR_BE.gctr_partial_reveal"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma
(requires gctr_partial alg b1 p1 c1 key icb1 /\
gctr_partial alg b2 p2 c2 key icb2 /\
b1 == length p1 /\ b1 == length c1 /\
b2 == length p2 /\ b2 == length c2 /\
icb2 == inc32 icb1 b1)
(ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | [] | Vale.AES.GCTR_BE.lemma_gctr_partial_append | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
b1: Prims.nat ->
b2: Prims.nat ->
p1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb1: Vale.Def.Types_s.quad32 ->
icb2: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.GCTR_BE.gctr_partial alg b1 p1 c1 key icb1 /\
Vale.AES.GCTR_BE.gctr_partial alg b2 p2 c2 key icb2 /\ b1 == FStar.Seq.Base.length p1 /\
b1 == FStar.Seq.Base.length c1 /\ b2 == FStar.Seq.Base.length p2 /\
b2 == FStar.Seq.Base.length c2 /\ icb2 == Vale.AES.GCTR_BE_s.inc32 icb1 b1)
(ensures Vale.AES.GCTR_BE.gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | {
"end_col": 4,
"end_line": 28,
"start_col": 2,
"start_line": 27
} |
FStar.Pervasives.Lemma | val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4 then nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
() | val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
let quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) = | false | null | true | let s = be_quad32_to_bytes q in
let s' = be_quad32_to_bytes q' in
let t = be_quad32_to_bytes (quad32_xor q r) in
let t' = be_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_quad32_to_bytes q';
lemma_slices_be_quad32_to_bytes (quad32_xor q r);
lemma_slices_be_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
if n < 4
then
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8
then
nat32_xor_bytewise q.hi2
q'.hi2
r.hi2
(slice s 4 8)
(slice s' 4 8)
(slice t 4 8)
(slice t' 4 8)
(n - 4)
else
(nat32_xor_bytewise q.hi2
q'.hi2
r.hi2
(slice s 4 8)
(slice s' 4 8)
(slice t 4 8)
(slice t' 4 8)
4;
if n < 12
then
nat32_xor_bytewise q.lo1
q'.lo1
r.lo1
(slice s 8 12)
(slice s' 8 12)
(slice t 8 12)
(slice t' 8 12)
(n - 8)
else
(nat32_xor_bytewise q.lo1
q'.lo1
r.lo1
(slice s 8 12)
(slice s' 8 12)
(slice t 8 12)
(slice t' 8 12)
4;
nat32_xor_bytewise q.lo0
q'.lo0
r.lo0
(slice s 12 16)
(slice s' 12 16)
(slice t 12 16)
(slice t' 12 16)
(n - 12);
())));
assert (equal (slice t 0 n) (slice t' 0 n));
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Prims.op_LessThan",
"Vale.AES.GCTR_BE.nat32_xor_bytewise",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.nat32",
"Prims.bool",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.op_Subtraction",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.quad32_xor_reveal",
"Vale.AES.GCTR_BE.lemma_slice_orig_index",
"Vale.AES.Types_helpers.lemma_slices_be_quad32_to_bytes",
"Vale.Def.Types_s.quad32_xor",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_BE s) /\
k' == four_to_nat 8 (seq_to_four_BE s') /\
ixor k m == four_to_nat 8 (seq_to_four_BE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_BE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_BE s) (seq_to_four_BE s') (seq_to_four_BE t) (seq_to_four_BE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = be_quad32_to_bytes q in
let q'_bytes = be_quad32_to_bytes q' in
let qr_bytes = be_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = be_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) | [] | Vale.AES.GCTR_BE.quad32_xor_bytewise | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
q: Vale.Def.Types_s.quad32 ->
q': Vale.Def.Types_s.quad32 ->
r: Vale.Def.Types_s.quad32 ->
n: Prims.nat{n <= 16}
-> FStar.Pervasives.Lemma
(requires
(let q_bytes = Vale.Arch.Types.be_quad32_to_bytes q in
let q'_bytes = Vale.Arch.Types.be_quad32_to_bytes q' in
FStar.Seq.Base.slice q_bytes 0 n == FStar.Seq.Base.slice q'_bytes 0 n))
(ensures
(let q_bytes = Vale.Arch.Types.be_quad32_to_bytes q in
let q'_bytes = Vale.Arch.Types.be_quad32_to_bytes q' in
let qr_bytes = Vale.Arch.Types.be_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q r) in
let q'r_bytes = Vale.Arch.Types.be_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q' r) in
FStar.Seq.Base.slice qr_bytes 0 n == FStar.Seq.Base.slice q'r_bytes 0 n)) | {
"end_col": 4,
"end_line": 480,
"start_col": 3,
"start_line": 451
} |
FStar.Pervasives.Lemma | val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
() | val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t')
let nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') = | false | null | true | let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
() | {
"checked_file": "Vale.AES.GCTR_BE.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Types_s.ixor",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GCTR_BE
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open Vale.AES.GCM_helpers_BE
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let gctr_encrypt_block_offset (icb:quad32) (plain:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
//TODO: Check if ever being used
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb:quad32) (plain:gctr_plain)
(alg:algorithm) (key:aes_key_word alg) :
Lemma(length (gctr_encrypt icb plain alg key) == length plain)
[SMTPat (length (gctr_encrypt icb plain alg key))]
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
gctr_encrypt_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt icb plain alg key in
if num_extra = 0 then (
let plain_quads = be_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb plain_quads alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads = be_bytes_to_seq_quad32 full_blocks in
let final_quad = be_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads = gctr_encrypt_recursive icb full_quads alg key 0 in
let final_cipher_quad = gctr_encrypt_block icb final_quad alg key (full_bytes_len / 16) in
let cipher_bytes_full = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
let final_cipher_bytes = slice (be_quad32_to_bytes final_cipher_quad) 0 num_extra in
gctr_encrypt_recursive_length icb full_quads alg key 0;
assert (length result == length cipher_bytes_full + length final_cipher_bytes);
assert (length cipher_quads == length full_quads);
assert (length cipher_bytes_full == 16 * length cipher_quads);
assert (16 * length full_quads == length full_blocks);
assert (length cipher_bytes_full == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_word alg key (inc32 icb (i + j)) )))
=
aes_encrypt_word_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_word alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal)
(alg:algorithm) (key:aes_key_word alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_word alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_word alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_reveal ();
let p = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain) in
assert (length p % 16 == 0);
let plain_quads = be_bytes_to_seq_quad32 p in
let cipher_quads = gctr_encrypt_recursive icb plain_quads alg key 0 in
let cipher_bytes = seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_quads) in
be_bytes_to_seq_quad32_to_bytes plain;
()
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_BE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) (num_blocks * 16) in
let full_quads_BE = be_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE p)) 0 (num_blocks * 16));
slice_commutes_be_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice p 0 num_blocks)));
be_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_BE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishr_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishr #pow2_32 (ixor x y) k == ixor (ishr x k) (ishr y k))
=
Vale.Def.TypesNative_s.reveal_ishr 32 x k;
Vale.Def.TypesNative_s.reveal_ishr 32 y k;
Vale.Def.TypesNative_s.reveal_ishr 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishr x k) (ishr y k);
FStar.UInt.shift_right_logxor_lemma #32 x y k;
()
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == 0x1000000 * x0 + x1 /\
x' == 0x1000000 * x0' + x1' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == 0x10000 * x0 + x1 /\
x' == 0x10000 * x0' + x1' /\
x / 0x10000 == x' / 0x10000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == 0x100 * x0 + x1 /\
x' == 0x100 * x0' + x1' /\
x / 0x100 == x' / 0x100
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x1000000 == x' / 0x1000000
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t3 t3' t012 t012' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x10000 == x' / 0x10000
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t23 t23' t01 t01' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x / 0x100 == x' / 0x100
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t123 t123' t0 t0' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3
)
(ensures k / 0x1000000 == k' / 0x1000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures k / 0x10000 == k' / 0x10000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures k / 0x100 == k' / 0x100)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3
)
(ensures t.hi3 == t'.hi3)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishr_32 k 24;
lemma_ishr_32 k' 24;
lemma_ishr_32 x 24;
lemma_ishr_32 x' 24;
lemma_ishr_ixor_32 k m 24;
lemma_ishr_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishr_32 k 16;
lemma_ishr_32 k' 16;
lemma_ishr_32 x 16;
lemma_ishr_32 x' 16;
lemma_ishr_ixor_32 k m 16;
lemma_ishr_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.hi3 == s'.hi3 /\ s.hi2 == s'.hi2 /\ s.lo1 == s'.lo1
)
(ensures t.hi3 == t'.hi3 /\ t.hi2 == t'.hi2 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishr_32 k 8;
lemma_ishr_32 k' 8;
lemma_ishr_32 x 8;
lemma_ishr_32 x' 8;
lemma_ishr_ixor_32 k m 8;
lemma_ishr_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
) | false | false | Vale.AES.GCTR_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') | [] | Vale.AES.GCTR_BE.nat32_xor_bytewise_4 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ s == s')
(ensures t == t') | {
"end_col": 4,
"end_line": 414,
"start_col": 3,
"start_line": 407
} |
FStar.HyperStack.ST.Stack | val store_sha512_modq_pre_pre2:
out:lbuffer uint8 32ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store_sha512_modq_pre_pre2 out prefix prefix2 len input =
push_frame ();
let tmp = create 5ul (u64 0) in
sha512_modq_pre_pre2 tmp prefix prefix2 len input;
Hacl.Impl.Store56.store_56 out tmp;
pop_frame () | val store_sha512_modq_pre_pre2:
out:lbuffer uint8 32ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input))))
let store_sha512_modq_pre_pre2 out prefix prefix2 len input = | true | null | false | push_frame ();
let tmp = create 5ul (u64 0) in
sha512_modq_pre_pre2 tmp prefix prefix2 len input;
Hacl.Impl.Store56.store_56 out tmp;
pop_frame () | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Store56.store_56",
"Hacl.Impl.SHA512.ModQ.sha512_modq_pre_pre2",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.uint64",
"Lib.IntTypes.u64",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_pre_pre2_msg hash prefix prefix2 len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_modq_pre out prefix len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_msg hash prefix len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame()
val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_modq_pre_pre2 out prefix prefix2 len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_pre2_msg hash prefix prefix2 len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame()
inline_for_extraction noextract
val store_sha512_modq_pre:
out:lbuffer uint8 32ul
-> outq:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h outq /\
disjoint prefix out /\ disjoint out input /\ disjoint out outq /\
disjoint prefix outq /\ disjoint outq input)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc outq) h0 h1 /\
F56.scalar_inv_full_t h1 outq /\
F56.as_nat h1 outq == Spec.Ed25519.sha512_modq (32 + v len) (Seq.append (as_seq h0 prefix) (as_seq h0 input)) /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (F56.as_nat h1 outq))
let store_sha512_modq_pre out outq prefix len input =
sha512_modq_pre outq prefix len input;
Hacl.Impl.Store56.store_56 out outq
inline_for_extraction noextract
val store_sha512_modq_pre_pre2:
out:lbuffer uint8 32ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))) | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store_sha512_modq_pre_pre2:
out:lbuffer uint8 32ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))) | [] | Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2 | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
prefix2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 173,
"start_col": 2,
"start_line": 169
} |
FStar.HyperStack.ST.Stack | val store_sha512_modq_pre:
out:lbuffer uint8 32ul
-> outq:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h outq /\
disjoint prefix out /\ disjoint out input /\ disjoint out outq /\
disjoint prefix outq /\ disjoint outq input)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc outq) h0 h1 /\
F56.scalar_inv_full_t h1 outq /\
F56.as_nat h1 outq == Spec.Ed25519.sha512_modq (32 + v len) (Seq.append (as_seq h0 prefix) (as_seq h0 input)) /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (F56.as_nat h1 outq)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store_sha512_modq_pre out outq prefix len input =
sha512_modq_pre outq prefix len input;
Hacl.Impl.Store56.store_56 out outq | val store_sha512_modq_pre:
out:lbuffer uint8 32ul
-> outq:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h outq /\
disjoint prefix out /\ disjoint out input /\ disjoint out outq /\
disjoint prefix outq /\ disjoint outq input)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc outq) h0 h1 /\
F56.scalar_inv_full_t h1 outq /\
F56.as_nat h1 outq == Spec.Ed25519.sha512_modq (32 + v len) (Seq.append (as_seq h0 prefix) (as_seq h0 input)) /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (F56.as_nat h1 outq))
let store_sha512_modq_pre out outq prefix len input = | true | null | false | sha512_modq_pre outq prefix len input;
Hacl.Impl.Store56.store_56 out outq | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint64",
"Lib.IntTypes.size_t",
"Hacl.Impl.Store56.store_56",
"Prims.unit",
"Hacl.Impl.SHA512.ModQ.sha512_modq_pre"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_pre_pre2_msg hash prefix prefix2 len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_modq_pre out prefix len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_msg hash prefix len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame()
val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_modq_pre_pre2 out prefix prefix2 len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_pre2_msg hash prefix prefix2 len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame()
inline_for_extraction noextract
val store_sha512_modq_pre:
out:lbuffer uint8 32ul
-> outq:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h outq /\
disjoint prefix out /\ disjoint out input /\ disjoint out outq /\
disjoint prefix outq /\ disjoint outq input)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc outq) h0 h1 /\
F56.scalar_inv_full_t h1 outq /\
F56.as_nat h1 outq == Spec.Ed25519.sha512_modq (32 + v len) (Seq.append (as_seq h0 prefix) (as_seq h0 input)) /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (F56.as_nat h1 outq)) | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store_sha512_modq_pre:
out:lbuffer uint8 32ul
-> outq:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h outq /\
disjoint prefix out /\ disjoint out input /\ disjoint out outq /\
disjoint prefix outq /\ disjoint outq input)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc outq) h0 h1 /\
F56.scalar_inv_full_t h1 outq /\
F56.as_nat h1 outq == Spec.Ed25519.sha512_modq (32 + v len) (Seq.append (as_seq h0 prefix) (as_seq h0 input)) /\
as_seq h1 out == BSeq.nat_to_bytes_le 32 (F56.as_nat h1 outq)) | [] | Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
outq: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 37,
"end_line": 150,
"start_col": 2,
"start_line": 149
} |
FStar.HyperStack.ST.Stack | val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512_modq_pre out prefix len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_msg hash prefix len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame() | val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
let sha512_modq_pre out prefix len input = | true | null | false | push_frame ();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_msg hash prefix len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame () | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"Hacl.Impl.BignumQ.Mul.barrett_reduction",
"Hacl.Impl.Load56.load_64_bytes",
"Hacl.Impl.SHA512.ModQ.sha512_pre_msg",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"Lib.IntTypes.U64",
"Lib.IntTypes.u64",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_pre_pre2_msg hash prefix prefix2 len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline] | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input))) | [] | Hacl.Impl.SHA512.ModQ.sha512_modq_pre | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 101,
"start_col": 2,
"start_line": 94
} |
FStar.HyperStack.ST.Stack | val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512_modq_pre_pre2 out prefix prefix2 len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_pre2_msg hash prefix prefix2 len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame() | val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
let sha512_modq_pre_pre2 out prefix prefix2 len input = | true | null | false | push_frame ();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_pre2_msg hash prefix prefix2 len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame () | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"Hacl.Impl.BignumQ.Mul.barrett_reduction",
"Hacl.Impl.Load56.load_64_bytes",
"Hacl.Impl.SHA512.ModQ.sha512_pre_pre2_msg",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"Lib.IntTypes.U64",
"Lib.IntTypes.u64",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline]
let sha512_pre_pre2_msg hash prefix prefix2 len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_modq_pre:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\
disjoint prefix out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (32 + v len)
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_modq_pre out prefix len input =
push_frame();
let tmp = create 10ul (u64 0) in
let hash = create 64ul (u8 0) in
sha512_pre_msg hash prefix len input;
Hacl.Impl.Load56.load_64_bytes tmp hash;
Hacl.Impl.BignumQ.Mul.barrett_reduction out tmp;
assert_norm (pow2 56 == 0x100000000000000);
pop_frame()
val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline] | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512_modq_pre_pre2:
out:lbuffer uint64 5ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h input /\ live h out /\ live h prefix /\ live h prefix2 /\
disjoint prefix out /\ disjoint prefix2 out /\ disjoint out input)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F56.scalar_inv_full_t h1 out /\
F56.as_nat h1 out == Spec.Ed25519.sha512_modq (64 + v len)
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input))) | [] | Hacl.Impl.SHA512.ModQ.sha512_modq_pre_pre2 | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
prefix2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 128,
"start_col": 2,
"start_line": 121
} |
FStar.HyperStack.ST.Stack | val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame () | val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
let sha512_pre_msg hash prefix len input = | true | null | false | push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash ==
Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame () | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"FStar.Seq.Base.append_empty_l",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Hash.Definitions.hash_length'",
"Spec.Hash.Definitions.SHA2_512",
"Spec.Agile.Hash.hash",
"FStar.Seq.Base.append",
"FStar.Seq.Base.empty",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Streaming.SHA2.finish_512",
"LowStar.Ignore.ignore",
"Hacl.Streaming.Types.error_code",
"Hacl.Streaming.SHA2.update_512",
"Hacl.Streaming.Functor.state",
"Hacl.Streaming.SHA2.hacl_sha2_512",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.SHA2.state_t_512",
"FStar.Ghost.erased",
"Hacl.Streaming.SHA2.alloca_512",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline] | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input))) | [] | Hacl.Impl.SHA512.ModQ.sha512_pre_msg | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
hash: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 45,
"start_col": 2,
"start_line": 33
} |
FStar.HyperStack.ST.Stack | val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.SHA2",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA512",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512_pre_pre2_msg hash prefix prefix2 len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame () | val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
let sha512_pre_pre2_msg hash prefix prefix2 len input = | true | null | false | push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st prefix2 32ul in
let err2 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
LowStar.Ignore.ignore err2;
Hash.finish_512 st hash ();
Seq.append_empty_l (as_seq h0 prefix);
pop_frame () | {
"checked_file": "Hacl.Impl.SHA512.ModQ.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Ed25519.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Store56.fst.checked",
"Hacl.Impl.Load56.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA512.ModQ.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"FStar.Seq.Base.append_empty_l",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Streaming.SHA2.finish_512",
"LowStar.Ignore.ignore",
"Hacl.Streaming.Types.error_code",
"Hacl.Streaming.SHA2.update_512",
"Hacl.Streaming.Functor.state",
"Hacl.Streaming.SHA2.hacl_sha2_512",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.SHA2.state_t_512",
"FStar.Ghost.erased",
"Hacl.Streaming.SHA2.alloca_512",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.SHA512.ModQ
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module Hash = Hacl.Streaming.SHA2
module F56 = Hacl.Impl.BignumQ.Mul
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val sha512_pre_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h input /\
disjoint input hash /\ disjoint prefix hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (as_seq h0 prefix) (as_seq h0 input)))
[@CInline]
let sha512_pre_msg hash prefix len input =
push_frame ();
let h0 = ST.get () in
let st = Hash.alloca_512 () in
let err0 = Hash.update_512 st prefix 32ul in
let err1 = Hash.update_512 st input len in
LowStar.Ignore.ignore err0;
LowStar.Ignore.ignore err1;
Hash.finish_512 st hash ();
let h1 = ST.get () in
assert (as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (Seq.empty) (as_seq h0 prefix)) (as_seq h0 input)));
Seq.append_empty_l (as_seq h0 prefix);
pop_frame ()
val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input)))
[@CInline] | false | false | Hacl.Impl.SHA512.ModQ.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512_pre_pre2_msg:
hash:lbuffer uint8 64ul
-> prefix:lbuffer uint8 32ul
-> prefix2:lbuffer uint8 32ul
-> len:size_t
-> input:lbuffer uint8 len ->
Stack unit
(requires fun h ->
live h hash /\ live h prefix /\ live h prefix2 /\ live h input /\
disjoint prefix hash /\ disjoint prefix2 hash /\ disjoint input hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == Spec.Agile.Hash.hash Spec.Hash.Definitions.SHA2_512
(Seq.append (Seq.append (as_seq h0 prefix) (as_seq h0 prefix2)) (as_seq h0 input))) | [] | Hacl.Impl.SHA512.ModQ.sha512_pre_pre2_msg | {
"file_name": "code/ed25519/Hacl.Impl.SHA512.ModQ.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
hash: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul ->
prefix: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
prefix2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
len: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 75,
"start_col": 2,
"start_line": 64
} |
Prims.Tot | val va_code_Stack_lemma : va_dummy:unit -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Stack_lemma () =
(va_Block (va_CNil ())) | val va_code_Stack_lemma : va_dummy:unit -> Tot va_code
let va_code_Stack_lemma () = | false | null | false | (va_Block (va_CNil ())) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Prims.unit",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Stack_lemma : va_dummy:unit -> Tot va_code | [] | Vale.X64.InsStack.va_code_Stack_lemma | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | va_dummy: Prims.unit -> Vale.X64.Decls.va_code | {
"end_col": 25,
"end_line": 27,
"start_col": 2,
"start_line": 27
} |
Prims.Tot | val va_codegen_success_Pop : dst:va_operand_dst_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Pop dst =
(va_ttrue ()) | val va_codegen_success_Pop : dst:va_operand_dst_opr64 -> Tot va_pbool
let va_codegen_success_Pop dst = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Pop : dst:va_operand_dst_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Pop | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 60,
"start_col": 2,
"start_line": 60
} |
Prims.Tot | val va_codegen_success_Push_Secret : src:va_operand_reg_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Push_Secret src =
(va_ttrue ()) | val va_codegen_success_Push_Secret : src:va_operand_reg_opr64 -> Tot va_pbool
let va_codegen_success_Push_Secret src = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Push_Secret : src:va_operand_reg_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Push_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_reg_opr64 -> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 156,
"start_col": 2,
"start_line": 156
} |
Prims.Tot | val va_code_Push_Secret : src:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Push_Secret src =
(Ins (BC.Push src Secret)) | val va_code_Push_Secret : src:va_operand_reg_opr64 -> Tot va_code
let va_code_Push_Secret src = | false | null | false | (Ins (BC.Push src Secret)) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Bytes_Code_s.Push",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Push_Secret : src:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_Push_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_reg_opr64 -> Vale.X64.Decls.va_code | {
"end_col": 28,
"end_line": 152,
"start_col": 2,
"start_line": 152
} |
Prims.Tot | val va_codegen_success_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Pop_Secret dst =
(va_ttrue ()) | val va_codegen_success_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_pbool
let va_codegen_success_Pop_Secret dst = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Pop_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 124,
"start_col": 2,
"start_line": 124
} |
Prims.Tot | val va_codegen_success_Push : src:va_operand_reg_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Push src =
(va_ttrue ()) | val va_codegen_success_Push : src:va_operand_reg_opr64 -> Tot va_pbool
let va_codegen_success_Push src = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Push : src:va_operand_reg_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Push | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_reg_opr64 -> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 92,
"start_col": 2,
"start_line": 92
} |
Prims.Tot | val va_code_Push : src:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Push src =
(Ins (BC.Push src Public)) | val va_code_Push : src:va_operand_reg_opr64 -> Tot va_code
let va_code_Push src = | false | null | false | (Ins (BC.Push src Public)) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Bytes_Code_s.Push",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Push : src:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_Push | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_reg_opr64 -> Vale.X64.Decls.va_code | {
"end_col": 28,
"end_line": 88,
"start_col": 2,
"start_line": 88
} |
Prims.Tot | val va_codegen_success_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ()))))) | val va_codegen_success_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool
let va_codegen_success_PopXmm dst tmp = | false | null | false | (va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0)
(va_ttrue ()))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsStack.va_codegen_success_Pop",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsVector.va_codegen_success_Pinsrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_PopXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_pbool | {
"end_col": 90,
"end_line": 279,
"start_col": 2,
"start_line": 276
} |
Prims.Tot | val va_codegen_success_Stack_lemma : va_dummy:unit -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Stack_lemma () =
(va_ttrue ()) | val va_codegen_success_Stack_lemma : va_dummy:unit -> Tot va_pbool
let va_codegen_success_Stack_lemma () = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Prims.unit",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Stack_lemma : va_dummy:unit -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Stack_lemma | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 31,
"start_col": 2,
"start_line": 31
} |
Prims.Tot | val va_code_Pop : dst:va_operand_dst_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Pop dst =
(Ins (BC.Pop dst Public)) | val va_code_Pop : dst:va_operand_dst_opr64 -> Tot va_code
let va_code_Pop dst = | false | null | false | (Ins (BC.Pop dst Public)) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Bytes_Code_s.Pop",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Pop : dst:va_operand_dst_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_Pop | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> Vale.X64.Decls.va_code | {
"end_col": 27,
"end_line": 56,
"start_col": 2,
"start_line": 56
} |
Prims.Tot | val va_codegen_success_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_PopXmm_Secret dst tmp =
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue
()))))) | val va_codegen_success_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool
let va_codegen_success_PopXmm_Secret dst tmp = | false | null | false | (va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0)
(va_ttrue ()))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsStack.va_codegen_success_Pop_Secret",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsVector.va_codegen_success_Pinsrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm_Secret src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm_Secret
[@ "opaque_to_smt"]
let va_code_PopXmm_Secret dst tmp =
(va_Block (va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop_Secret
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool | [] | Vale.X64.InsStack.va_codegen_success_PopXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_pbool | {
"end_col": 11,
"end_line": 382,
"start_col": 2,
"start_line": 378
} |
Prims.Tot | val va_code_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ())))))) | val va_code_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code
let va_code_PushXmm_Secret src tmp = | false | null | false | (va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_CCons (va_code_Push_Secret tmp)
(va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push_Secret tmp) (va_CNil ())))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsVector.va_code_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsStack.va_code_Push_Secret",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_PushXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_code | {
"end_col": 60,
"end_line": 323,
"start_col": 2,
"start_line": 321
} |
Prims.Tot | val va_code_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret)) | val va_code_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_code
let va_code_Pop_Secret dst = | false | null | false | (Ins (BC.Pop dst Secret)) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Bytes_Code_s.Pop",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Pop_Secret : dst:va_operand_dst_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_Pop_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> Vale.X64.Decls.va_code | {
"end_col": 27,
"end_line": 120,
"start_col": 2,
"start_line": 120
} |
Prims.Tot | val va_codegen_success_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ()))))) | val va_codegen_success_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool
let va_codegen_success_PushXmm src tmp = | false | null | false | (va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp)
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_pbool_and (va_codegen_success_Push tmp) (va_ttrue ()))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsVector.va_codegen_success_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsStack.va_codegen_success_Push",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_PushXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_pbool | {
"end_col": 21,
"end_line": 228,
"start_col": 2,
"start_line": 225
} |
Prims.Tot | val va_codegen_success_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 ->
offset:int -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ()) | val va_codegen_success_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 ->
offset:int -> Tot va_pbool
let va_codegen_success_Load64_stack dst src offset = | false | null | false | (va_ttrue ()) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_reg_opr64",
"Prims.int",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 ->
offset:int -> Tot va_pbool | [] | Vale.X64.InsStack.va_codegen_success_Load64_stack | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_reg_opr64 ->
offset: Prims.int
-> Vale.X64.Decls.va_pbool | {
"end_col": 15,
"end_line": 189,
"start_col": 2,
"start_line": 189
} |
Prims.Tot | val va_code_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ())))))) | val va_code_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code
let va_code_PushXmm src tmp = | false | null | false | (va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_CCons (va_code_Push tmp)
(va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ())))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsVector.va_code_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsStack.va_code_Push",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_PushXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_code | {
"end_col": 50,
"end_line": 221,
"start_col": 2,
"start_line": 219
} |
Prims.Tot | val va_code_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ())))))) | val va_code_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code
let va_code_PopXmm dst tmp = | false | null | false | (va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_CCons (va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_CCons (va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ())))))
) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsStack.va_code_Pop",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsVector.va_code_Pinsrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_PopXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_code | {
"end_col": 59,
"end_line": 272,
"start_col": 2,
"start_line": 269
} |
Prims.Tot | val va_codegen_success_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ()))))) | val va_codegen_success_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool
let va_codegen_success_PushXmm_Secret src tmp = | false | null | false | (va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp)
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_ttrue ()))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsVector.va_codegen_success_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsStack.va_codegen_success_Push_Secret",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot
va_pbool | [] | Vale.X64.InsStack.va_codegen_success_PushXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_pbool | {
"end_col": 26,
"end_line": 330,
"start_col": 2,
"start_line": 327
} |
Prims.Tot | val va_code_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_PopXmm_Secret dst tmp =
(va_Block (va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop_Secret
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ())))))) | val va_code_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code
let va_code_PopXmm_Secret dst tmp = | false | null | false | (va_Block (va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_CCons (va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_CCons (va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ())))))
) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsStack.va_code_Pop_Secret",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.InsVector.va_code_Pinsrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm_Secret src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm_Secret
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> Tot va_code | [] | Vale.X64.InsStack.va_code_PopXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_xmm -> tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Vale.X64.Decls.va_code | {
"end_col": 59,
"end_line": 374,
"start_col": 2,
"start_line": 371
} |
Prims.Tot | val va_code_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public))))) | val va_code_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
Tot va_code
let va_code_Load64_stack dst src offset = | false | null | false | (mk_ins (make_instr_annotate (I.ins_Mov64)
(S.AnnotateMov64 ())
dst
(OStack ((MReg (get_reg src) offset, Public))))) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_reg_opr64",
"Prims.int",
"Vale.X64.Taint_Semantics.mk_ins",
"Vale.X64.InsLemmas.make_instr_annotate",
"Prims.Cons",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_Semantics_s.AnnotateMov64",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.Machine_s.OStack",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Machine_s.maddr",
"Vale.Arch.HeapTypes_s.taint",
"Vale.X64.Machine_s.MReg",
"Vale.X64.Decls.get_reg",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"] | false | true | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
Tot va_code | [] | Vale.X64.InsStack.va_code_Load64_stack | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_reg_opr64 ->
offset: Prims.int
-> Vale.X64.Decls.va_code | {
"end_col": 23,
"end_line": 185,
"start_col": 2,
"start_line": 184
} |
Prims.Ghost | val va_lemma_Stack_lemma : va_b0:va_code -> va_s0:va_state -> base:operand64 -> offset:int ->
t:taint
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Stack_lemma ()) va_s0 /\ va_get_ok va_s0))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_state_eq va_sM (va_update_ok va_sM va_s0))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM) | val va_lemma_Stack_lemma : va_b0:va_code -> va_s0:va_state -> base:operand64 -> offset:int ->
t:taint
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Stack_lemma ()) va_s0 /\ va_get_ok va_s0))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_state_eq va_sM (va_update_ok va_sM va_s0)))
let va_lemma_Stack_lemma va_b0 va_s0 base offset t = | false | null | false | va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let va_old_s:va_state = va_s0 in
let va_b1:va_codes = va_get_block va_b0 in
let va_sM, va_fM = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Machine_s.operand64",
"Prims.int",
"Vale.Arch.HeapTypes_s.taint",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_get_block",
"Prims.unit",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Stack_lemma"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Stack_lemma : va_b0:va_code -> va_s0:va_state -> base:operand64 -> offset:int ->
t:taint
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Stack_lemma ()) va_s0 /\ va_get_ok va_s0))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_state_eq va_sM (va_update_ok va_sM va_s0))) | [] | Vale.X64.InsStack.va_lemma_Stack_lemma | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
base: Vale.X64.Machine_s.operand64 ->
offset: Prims.int ->
t: Vale.Arch.HeapTypes_s.taint
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 39,
"start_col": 2,
"start_line": 35
} |
Prims.Ghost | val va_wpProof_Stack_lemma : base:operand64 -> offset:int -> t:taint -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Stack_lemma base offset t va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Stack_lemma ()) ([]) va_s0 va_k
((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Stack_lemma : base:operand64 -> offset:int -> t:taint -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Stack_lemma base offset t va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Stack_lemma ()) ([]) va_s0 va_k
((va_sM, va_f0, va_g))))
let va_wpProof_Stack_lemma base offset t va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Machine_s.operand64",
"Prims.int",
"Vale.Arch.HeapTypes_s.taint",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Nil",
"Vale.X64.QuickCode.mod_t",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Stack_lemma",
"Vale.X64.InsStack.va_code_Stack_lemma"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Stack_lemma : base:operand64 -> offset:int -> t:taint -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Stack_lemma base offset t va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Stack_lemma ()) ([]) va_s0 va_k
((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Stack_lemma | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
base: Vale.X64.Machine_s.operand64 ->
offset: Prims.int ->
t: Vale.Arch.HeapTypes_s.taint ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 49,
"start_col": 53,
"start_line": 43
} |
Prims.Ghost | val va_wpProof_Push_Secret : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit
-> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push_Secret src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push_Secret src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Push_Secret : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit
-> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push_Secret src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push_Secret src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Push_Secret src va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stackTaint va_sM
(va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stackTaint",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stackTaint",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Push_Secret",
"Vale.X64.InsStack.va_code_Push_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Push_Secret : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit
-> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push_Secret src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push_Secret src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Push_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
src: Vale.X64.Decls.va_operand_reg_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 177,
"start_col": 43,
"start_line": 170
} |
Prims.Ghost | val va_wpProof_Pop_Secret : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit ->
Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop_Secret dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop_Secret dst) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Pop_Secret : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit ->
Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop_Secret dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop_Secret dst) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Pop_Secret dst va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_dst_opr64",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_dst_opr64",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Pop_Secret",
"Vale.X64.InsStack.va_code_Pop_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Pop_Secret : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit ->
Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop_Secret dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop_Secret dst) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Pop_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 145,
"start_col": 42,
"start_line": 138
} |
Prims.Ghost | val va_wpProof_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 ->
expected_xmm:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm_Secret dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm_Secret dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_PopXmm_Secret dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm_Secret (va_code_PopXmm_Secret dst tmp) va_s0 dst tmp
expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 ->
expected_xmm:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm_Secret dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm_Secret dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_PopXmm_Secret dst tmp expected_xmm va_s0 va_k = | false | null | false | let va_sM, va_f0 =
va_lemma_PopXmm_Secret (va_code_PopXmm_Secret dst tmp) va_s0 dst tmp expected_xmm
in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0)))))
);
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM
va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.quad32",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_reg_opr64",
"Vale.X64.QuickCode.va_mod_xmm",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_reg_opr64",
"Vale.X64.Decls.va_update_operand_xmm",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_PopXmm_Secret",
"Vale.X64.InsStack.va_code_PopXmm_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm_Secret src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm_Secret
[@ "opaque_to_smt"]
let va_code_PopXmm_Secret dst tmp =
(va_Block (va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop_Secret
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm_Secret dst tmp =
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue
())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm_Secret va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm_Secret) (va_code_PopXmm_Secret dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop_Secret (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64
tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop_Secret (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64
tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_PopXmm_Secret : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 ->
expected_xmm:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm_Secret dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm_Secret dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_PopXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
expected_xmm: Vale.X64.Decls.quad32 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 420,
"start_col": 62,
"start_line": 411
} |
Prims.Ghost | val va_wpProof_Push : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Push : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Push src va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stackTaint va_sM
(va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stackTaint",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stackTaint",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Push",
"Vale.X64.InsStack.va_code_Push"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Push : src:va_operand_reg_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Push src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Push src) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Push | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
src: Vale.X64.Decls.va_operand_reg_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 113,
"start_col": 36,
"start_line": 106
} |
Prims.Ghost | val va_lemma_Push_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push_Secret src) va_s0 /\ va_is_src_reg_opr64 src
va_s0 /\ va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Secret (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0)))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM) | val va_lemma_Push_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push_Secret src) va_s0 /\ va_is_src_reg_opr64 src
va_s0 /\ va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Secret (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0))))))
let va_lemma_Push_Secret va_b0 va_s0 src = | false | null | false | va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let va_old_s:va_state = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let va_sM, va_fM = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM)
(va_eval_reg_opr64 va_old_s src)
(va_get_stack va_old_s);
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.State.vale_state",
"Vale.X64.Lemmas.fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Prims.unit",
"Vale.X64.Stack_Sems.equiv_store_stack64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.Decls.va_eval_reg_opr64",
"Vale.X64.Decls.va_get_stack",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"Vale.X64.Decls.va_eval_ins",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Bytes_Code_s.Push",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.va_ins_lemma",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Push_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Push_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push_Secret src) va_s0 /\ va_is_src_reg_opr64 src
va_s0 /\ va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Secret (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0)))))) | [] | Vale.X64.InsStack.va_lemma_Push_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
src: Vale.X64.Decls.va_operand_reg_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 166,
"start_col": 2,
"start_line": 160
} |
Prims.Ghost | val va_wpProof_Pop : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop dst) ([va_Mod_stack; va_Mod_reg64
rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Pop : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop dst) ([va_Mod_stack; va_Mod_reg64
rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Pop dst va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_dst_opr64",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_dst_opr64",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Pop",
"Vale.X64.InsStack.va_code_Pop"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Pop : dst:va_operand_dst_opr64 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Pop dst va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Pop dst) ([va_Mod_stack; va_Mod_reg64
rRsp; va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Pop | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 81,
"start_col": 35,
"start_line": 74
} |
Prims.Ghost | val va_wpProof_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Load64_stack dst src offset va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Load64_stack dst src offset)
([va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Load64_stack dst src offset va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Load64_stack dst src offset)
([va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Load64_stack dst src offset va_s0 va_k = | false | null | false | let va_sM, va_f0 =
va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src offset
in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_reg_opr64",
"Prims.int",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_mod_dst_opr64",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_dst_opr64",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_Load64_stack",
"Vale.X64.InsStack.va_code_Load64_stack"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_Load64_stack : dst:va_operand_dst_opr64 -> src:va_operand_reg_opr64 -> offset:int ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Load64_stack dst src offset va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Load64_stack dst src offset)
([va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_Load64_stack | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_reg_opr64 ->
offset: Prims.int ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 212,
"start_col": 55,
"start_line": 205
} |
Prims.Ghost | val va_wpProof_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm_Secret src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm_Secret src tmp)
([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k
((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_PushXmm_Secret src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm_Secret src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm_Secret src tmp)
([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k
((va_sM, va_f0, va_g))))
let va_wpProof_PushXmm_Secret src tmp va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stackTaint va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM
va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stackTaint",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_reg_opr64",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stackTaint",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_reg_opr64",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_PushXmm_Secret",
"Vale.X64.InsStack.va_code_PushXmm_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_PushXmm_Secret : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm_Secret src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm_Secret src tmp)
([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k
((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_PushXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
src: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 364,
"start_col": 50,
"start_line": 356
} |
Prims.Ghost | val va_lemma_Push : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push src) va_s0 /\ va_is_src_reg_opr64 src va_s0 /\
va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Public (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0)))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM) | val va_lemma_Push : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push src) va_s0 /\ va_is_src_reg_opr64 src va_s0 /\
va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Public (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0))))))
let va_lemma_Push va_b0 va_s0 src = | false | null | false | va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let va_old_s:va_state = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let va_sM, va_fM = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM)
(va_eval_reg_opr64 va_old_s src)
(va_get_stack va_old_s);
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.State.vale_state",
"Vale.X64.Lemmas.fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Prims.unit",
"Vale.X64.Stack_Sems.equiv_store_stack64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.Decls.va_eval_reg_opr64",
"Vale.X64.Decls.va_get_stack",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"Vale.X64.Decls.va_eval_ins",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Bytes_Code_s.Push",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_ins_lemma",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Push"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Push : va_b0:va_code -> va_s0:va_state -> src:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Push src) va_s0 /\ va_is_src_reg_opr64 src va_s0 /\
va_get_ok va_s0 /\ va_get_reg64 rRsp va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 8))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 /\ va_get_stack va_sM ==
Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_s0 src)
(va_get_stack va_s0) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_sM) Public (va_get_stackTaint va_s0) /\ va_state_eq va_sM
(va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok
va_sM va_s0)))))) | [] | Vale.X64.InsStack.va_lemma_Push | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
src: Vale.X64.Decls.va_operand_reg_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 102,
"start_col": 2,
"start_line": 96
} |
Prims.Ghost | val va_wpProof_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm src tmp) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm src tmp) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_PushXmm src tmp va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stackTaint va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM
va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stackTaint",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_reg_opr64",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stackTaint",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_reg_opr64",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_PushXmm",
"Vale.X64.InsStack.va_code_PushXmm"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_PushXmm : src:va_operand_xmm -> tmp:va_operand_reg_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PushXmm src tmp va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PushXmm src tmp) ([va_Mod_stackTaint;
va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_PushXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
src: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 262,
"start_col": 43,
"start_line": 254
} |
Prims.Ghost | val va_wpProof_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> expected_xmm:quad32 ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | val va_wpProof_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> expected_xmm:quad32 ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k = | false | null | false | let va_sM, va_f0 = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM
(va_update_stack va_sM
(va_update_reg64 rRsp
va_sM
(va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0)))))
);
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM
va_s0;
let va_g = () in
(va_sM, va_f0, va_g) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.quad32",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.QuickCode.va_lemma_norm_mods",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_stack",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.QuickCode.va_mod_reg_opr64",
"Vale.X64.QuickCode.va_mod_xmm",
"Prims.Nil",
"Prims._assert",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_stack",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_operand_reg_opr64",
"Vale.X64.Decls.va_update_operand_xmm",
"Vale.X64.Decls.va_lemma_upd_update",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.InsStack.va_lemma_PopXmm",
"Vale.X64.InsStack.va_code_PopXmm"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wpProof_PopXmm : dst:va_operand_xmm -> tmp:va_operand_reg_opr64 -> expected_xmm:quad32 ->
va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_PopXmm dst tmp expected_xmm va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_PopXmm dst tmp) ([va_Mod_stack;
va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst]) va_s0 va_k ((va_sM, va_f0, va_g)))) | [] | Vale.X64.InsStack.va_wpProof_PopXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
expected_xmm: Vale.X64.Decls.quad32 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit) | {
"end_col": 22,
"end_line": 314,
"start_col": 55,
"start_line": 306
} |
Prims.Ghost | val va_lemma_PushXmm_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm_Secret src tmp) va_s0 /\ va_is_src_xmm src
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp
va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp
(va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Secret (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Secret (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0))))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | val va_lemma_PushXmm_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm_Secret src tmp) va_s0 /\ va_is_src_xmm src
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp
va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp
(va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Secret (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Secret (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0)))))))
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp = | false | null | false | va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let va_old_s:va_state = va_s0 in
let va_b1:va_codes = va_get_block va_b0 in
let va_s2, va_fc2 =
va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0
in
let va_b2 = va_tl va_b1 in
let va_s3, va_fc3 = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let va_s4, va_fc4 =
va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1
in
let va_b4 = va_tl va_b3 in
let va_s5, va_fc5 = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let va_sM, va_f5 = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_lemma_merge_total",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_tl",
"Vale.X64.InsStack.va_lemma_Push_Secret",
"Vale.X64.Decls.va_hd",
"Vale.X64.InsVector.va_lemma_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.Decls.va_get_block",
"Prims.unit",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_PushXmm_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_PushXmm_Secret : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm_Secret src tmp) va_s0 /\ va_is_src_xmm src
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp
va_s0 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp
(va_get_stack va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Secret (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Secret (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0))))))) | [] | Vale.X64.InsStack.va_lemma_PushXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
src: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 352,
"start_col": 2,
"start_line": 334
} |
Prims.Ghost | val va_lemma_PopXmm : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm dst tmp) va_s0 /\ va_is_dst_xmm dst va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Public (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0))))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | val va_lemma_PopXmm : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm dst tmp) va_s0 /\ va_is_dst_xmm dst va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Public (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0)))))))
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm = | false | null | false | va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let va_old_s:va_state = va_s0 in
let va_b1:va_codes = va_get_block va_b0 in
let va_s2, va_fc2 = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let va_s3, va_fc3 = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp) 1 in
let va_b3 = va_tl va_b2 in
let va_s4, va_fc4 = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let va_s5, va_fc5 = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp) 0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let va_sM, va_f5 = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.quad32",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_lemma_merge_total",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.unit",
"Vale.Arch.Types.push_pop_xmm",
"Vale.X64.Decls.va_eval_xmm",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_tl",
"Vale.X64.InsVector.va_lemma_Pinsrq",
"Vale.X64.Decls.va_hd",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.InsStack.va_lemma_Pop",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.Decls.va_get_block",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_PopXmm"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_PopXmm : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm dst tmp) va_s0 /\ va_is_dst_xmm dst va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Public (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0))))))) | [] | Vale.X64.InsStack.va_lemma_PopXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
dst: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
expected_xmm: Vale.X64.Decls.quad32
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 302,
"start_col": 2,
"start_line": 283
} |
Prims.Ghost | val va_lemma_PushXmm : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm src tmp) va_s0 /\ va_is_src_xmm src va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 <=
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Public (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Public (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0))))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | val va_lemma_PushXmm : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm src tmp) va_s0 /\ va_is_src_xmm src va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 <=
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Public (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Public (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0)))))))
let va_lemma_PushXmm va_b0 va_s0 src tmp = | false | null | false | va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let va_old_s:va_state = va_s0 in
let va_b1:va_codes = va_get_block va_b0 in
let va_s2, va_fc2 =
va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0
in
let va_b2 = va_tl va_b1 in
let va_s3, va_fc3 = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let va_s4, va_fc4 =
va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1
in
let va_b4 = va_tl va_b3 in
let va_s5, va_fc5 = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let va_sM, va_f5 = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_lemma_merge_total",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_tl",
"Vale.X64.InsStack.va_lemma_Push",
"Vale.X64.Decls.va_hd",
"Vale.X64.InsVector.va_lemma_Pextrq",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.Decls.va_get_block",
"Prims.unit",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_PushXmm"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_PushXmm : va_b0:va_code -> va_s0:va_state -> src:va_operand_xmm ->
tmp:va_operand_reg_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PushXmm src tmp) va_s0 /\ va_is_src_xmm src va_s0 /\
va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 <=
Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 <= va_get_reg64 rRsp va_s0 - 16))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let src_lo = Vale.Arch.Types.lo64 (va_eval_xmm va_sM src) in let src_hi = Vale.Arch.Types.hi64
(va_eval_xmm va_sM src) in va_get_stack va_sM == Vale.X64.Stack_i.store_stack64 (va_get_reg64
rRsp va_s0 - 16) src_hi (Vale.X64.Stack_i.store_stack64 (va_get_reg64 rRsp va_s0 - 8) src_lo
(va_get_stack va_s0)) /\ va_get_stackTaint va_sM == Vale.X64.Stack_i.store_taint_stack64
(va_get_reg64 rRsp va_s0 - 16) Public (Vale.X64.Stack_i.store_taint_stack64 (va_get_reg64 rRsp
va_s0 - 8) Public (va_get_stackTaint va_s0)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp
va_s0 - 16) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
va_s0))))))) | [] | Vale.X64.InsStack.va_lemma_PushXmm | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
src: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 250,
"start_col": 2,
"start_line": 232
} |
Prims.Ghost | val va_lemma_PopXmm_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm_Secret dst tmp) va_s0 /\ va_is_dst_xmm dst
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Secret (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0))))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_PopXmm_Secret va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm_Secret) (va_code_PopXmm_Secret dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop_Secret (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64
tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop_Secret (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64
tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | val va_lemma_PopXmm_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm_Secret dst tmp) va_s0 /\ va_is_dst_xmm dst
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Secret (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0)))))))
let va_lemma_PopXmm_Secret va_b0 va_s0 dst tmp expected_xmm = | false | null | false | va_reveal_opaque (`%va_code_PopXmm_Secret) (va_code_PopXmm_Secret dst tmp);
let va_old_s:va_state = va_s0 in
let va_b1:va_codes = va_get_block va_b0 in
let va_s2, va_fc2 =
va_lemma_Pop_Secret (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
in
let va_b2 = va_tl va_b1 in
let va_s3, va_fc3 = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp) 1 in
let va_b3 = va_tl va_b2 in
let va_s4, va_fc4 =
va_lemma_Pop_Secret (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
in
let va_b4 = va_tl va_b3 in
let va_s5, va_fc5 = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp) 0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let va_sM, va_f5 = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_xmm",
"Vale.X64.Decls.va_operand_reg_opr64",
"Vale.X64.Decls.quad32",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_lemma_merge_total",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.unit",
"Vale.Arch.Types.push_pop_xmm",
"Vale.X64.Decls.va_eval_xmm",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_tl",
"Vale.X64.InsVector.va_lemma_Pinsrq",
"Vale.X64.Decls.va_hd",
"Vale.X64.Decls.va_coerce_reg_opr64_to_opr64",
"Vale.X64.InsStack.va_lemma_Pop_Secret",
"Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64",
"Vale.X64.Decls.va_get_block",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_PopXmm_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Load64_stack dst src offset va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Load64_stack (va_code_Load64_stack dst src offset) va_s0 dst src
offset in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)));
va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm
[@ "opaque_to_smt"]
let va_code_PushXmm src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 1)
(va_CCons (va_code_Push tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push tmp)
(va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm) (va_code_PushXmm src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm (va_code_PushXmm src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm
[@ "opaque_to_smt"]
let va_code_PopXmm dst tmp =
(va_Block (va_CCons (va_code_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm dst tmp =
(va_pbool_and (va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_pbool_and
(va_codegen_success_Pop (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_pbool_and
(va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PopXmm va_b0 va_s0 dst tmp expected_xmm =
va_reveal_opaque (`%va_code_PopXmm) (va_code_PopXmm dst tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pop (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Pinsrq (va_hd va_b2) va_s2 dst (va_coerce_reg_opr64_to_opr64 tmp)
1 in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pop (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp) in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Pinsrq (va_hd va_b4) va_s4 dst (va_coerce_reg_opr64_to_opr64 tmp)
0 in
let va_b5 = va_tl va_b4 in
Vale.Arch.Types.push_pop_xmm expected_xmm (va_eval_xmm va_old_s dst);
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PopXmm dst tmp expected_xmm va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PopXmm (va_code_PopXmm dst tmp) va_s0 dst tmp expected_xmm in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_reg_opr64 tmp va_sM (va_update_operand_xmm dst va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp; va_mod_xmm dst])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PushXmm_Secret
[@ "opaque_to_smt"]
let va_code_PushXmm_Secret src tmp =
(va_Block (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0) (va_CCons
(va_code_Push_Secret tmp) (va_CCons (va_code_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src
1) (va_CCons (va_code_Push_Secret tmp) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PushXmm_Secret src tmp =
(va_pbool_and (va_codegen_success_Pextrq (va_coerce_reg_opr64_to_dst_opr64 tmp) src 0)
(va_pbool_and (va_codegen_success_Push_Secret tmp) (va_pbool_and (va_codegen_success_Pextrq
(va_coerce_reg_opr64_to_dst_opr64 tmp) src 1) (va_pbool_and (va_codegen_success_Push_Secret
tmp) (va_ttrue ())))))
[@"opaque_to_smt"]
let va_lemma_PushXmm_Secret va_b0 va_s0 src tmp =
va_reveal_opaque (`%va_code_PushXmm_Secret) (va_code_PushXmm_Secret src tmp);
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_s2, va_fc2) = va_lemma_Pextrq (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 0 in
let va_b2 = va_tl va_b1 in
let (va_s3, va_fc3) = va_lemma_Push_Secret (va_hd va_b2) va_s2 tmp in
let va_b3 = va_tl va_b2 in
let (va_s4, va_fc4) = va_lemma_Pextrq (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 tmp)
src 1 in
let va_b4 = va_tl va_b3 in
let (va_s5, va_fc5) = va_lemma_Push_Secret (va_hd va_b4) va_s4 tmp in
let va_b5 = va_tl va_b4 in
let (va_sM, va_f5) = va_lemma_empty_total va_s5 va_b5 in
let va_f4 = va_lemma_merge_total va_b4 va_s4 va_fc5 va_s5 va_f5 va_sM in
let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in
let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in
let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_PushXmm_Secret src tmp va_s0 va_k =
let (va_sM, va_f0) = va_lemma_PushXmm_Secret (va_code_PushXmm_Secret src tmp) va_s0 src tmp in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM va_s0))))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp; va_mod_reg_opr64 tmp])
va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- PopXmm_Secret
[@ "opaque_to_smt"]
let va_code_PopXmm_Secret dst tmp =
(va_Block (va_CCons (va_code_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons
(va_code_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1) (va_CCons (va_code_Pop_Secret
(va_coerce_reg_opr64_to_dst_opr64 tmp)) (va_CCons (va_code_Pinsrq dst
(va_coerce_reg_opr64_to_opr64 tmp) 0) (va_CNil ()))))))
[@ "opaque_to_smt"]
let va_codegen_success_PopXmm_Secret dst tmp =
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 1)
(va_pbool_and (va_codegen_success_Pop_Secret (va_coerce_reg_opr64_to_dst_opr64 tmp))
(va_pbool_and (va_codegen_success_Pinsrq dst (va_coerce_reg_opr64_to_opr64 tmp) 0) (va_ttrue
())))))
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_PopXmm_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_xmm ->
tmp:va_operand_reg_opr64 -> expected_xmm:quad32
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_PopXmm_Secret dst tmp) va_s0 /\ va_is_dst_xmm dst
va_s0 /\ va_is_dst_reg_opr64 tmp va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret (va_get_stackTaint va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0 + 8) Secret (va_get_stackTaint
va_s0) /\ Vale.Arch.Types.hi64 expected_xmm == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp
va_s0) (va_get_stack va_s0) /\ Vale.Arch.Types.lo64 expected_xmm ==
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) /\
va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) - 4096 /\
va_get_reg64 rRsp va_s0 + 16 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_xmm va_sM dst == expected_xmm /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 +
16 /\ va_get_stack va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 16)
(va_get_reg64 rRsp va_sM) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM
(va_update_reg64 rRsp va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 tmp va_sM
(va_update_operand_xmm dst va_sM va_s0))))))) | [] | Vale.X64.InsStack.va_lemma_PopXmm_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
dst: Vale.X64.Decls.va_operand_xmm ->
tmp: Vale.X64.Decls.va_operand_reg_opr64 ->
expected_xmm: Vale.X64.Decls.quad32
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 407,
"start_col": 2,
"start_line": 386
} |
Prims.Ghost | val va_lemma_Pop_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop_Secret dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0
/\ va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM) | val va_lemma_Pop_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop_Secret dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0
/\ va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))))))
let va_lemma_Pop_Secret va_b0 va_s0 dst = | false | null | false | va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let va_old_s:va_state = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let va_sM, va_fM = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s)
Secret
(va_get_stackTaint va_old_s);
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.State.vale_state",
"Vale.X64.Lemmas.fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Prims.unit",
"Vale.X64.Stack_i.lemma_valid_taint_stack64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.va_get_stackTaint",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"Vale.X64.Decls.va_eval_ins",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Bytes_Code_s.Pop",
"Vale.X64.Decls.va_ins_lemma",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Pop_Secret"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Pop_Secret : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop_Secret dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0
/\ va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Secret
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))))) | [] | Vale.X64.InsStack.va_lemma_Pop_Secret | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
dst: Vale.X64.Decls.va_operand_dst_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 134,
"start_col": 2,
"start_line": 128
} |
Prims.Ghost | val va_lemma_Pop : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0 /\
va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack
va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM) | val va_lemma_Pop : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0 /\
va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack
va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))))))
let va_lemma_Pop va_b0 va_s0 dst = | false | null | false | va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let va_old_s:va_state = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let va_sM, va_fM = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s)
Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.State.vale_state",
"Vale.X64.Lemmas.fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Prims.unit",
"Vale.X64.Stack_i.lemma_valid_taint_stack64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_get_stackTaint",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"Vale.X64.Decls.va_eval_ins",
"Vale.X64.Machine_s.Ins",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Bytes_Code_s.Pop",
"Vale.X64.Decls.va_ins_lemma",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Pop"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Pop : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Pop dst) va_s0 /\ va_is_dst_dst_opr64 dst va_s0 /\
va_get_ok va_s0 /\ Vale.X64.Stack_i.valid_src_stack64 (va_get_reg64 rRsp va_s0) (va_get_stack
va_s0) /\ Vale.X64.Stack_i.valid_taint_stack64 (va_get_reg64 rRsp va_s0) Public
(va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 >= Vale.X64.Stack_i.init_rsp (va_get_stack
va_s0) - 4096 /\ va_get_reg64 rRsp va_s0 + 8 <= Vale.X64.Stack_i.init_rsp (va_get_stack va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0)
(va_get_stack va_s0) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 + 8 /\ va_get_stack
va_sM == Vale.X64.Stack_i.free_stack64 (va_get_reg64 rRsp va_sM - 8) (va_get_reg64 rRsp va_sM)
(va_get_stack va_s0) /\ va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM
(va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))))) | [] | Vale.X64.InsStack.va_lemma_Pop | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
dst: Vale.X64.Decls.va_operand_dst_opr64
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 70,
"start_col": 2,
"start_line": 64
} |
Prims.Ghost | val va_lemma_Load64_stack : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_reg_opr64 -> offset:int
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Load64_stack dst src offset) va_s0 /\
va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_reg_opr64 src va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Stack_i.valid_src_stack64 (va_eval_reg_opr64 va_s0 src + offset) (va_get_stack va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_eval_reg_opr64 va_s0 src + offset) Public
(va_get_stackTaint va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_eval_reg_opr64 va_s0 src +
offset) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))) | [
{
"abbrev": false,
"full_module": "Vale.X64.Taint_Semantics",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": "BC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Instructions_s",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.StateLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_lemma_Load64_stack va_b0 va_s0 dst src offset =
va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg
(get_reg src) offset, Public))))) va_s0;
let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ())
dst (OStack ((MReg (get_reg src) offset, Public))))) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset) Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM) | val va_lemma_Load64_stack : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_reg_opr64 -> offset:int
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Load64_stack dst src offset) va_s0 /\
va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_reg_opr64 src va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Stack_i.valid_src_stack64 (va_eval_reg_opr64 va_s0 src + offset) (va_get_stack va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_eval_reg_opr64 va_s0 src + offset) Public
(va_get_stackTaint va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_eval_reg_opr64 va_s0 src +
offset) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0))))
let va_lemma_Load64_stack va_b0 va_s0 dst src offset = | false | null | false | va_reveal_opaque (`%va_code_Load64_stack) (va_code_Load64_stack dst src offset);
let va_old_s:va_state = va_s0 in
va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64)
(S.AnnotateMov64 ())
dst
(OStack ((MReg (get_reg src) offset, Public)))))
va_s0;
let va_sM, va_fM =
va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64)
(S.AnnotateMov64 ())
dst
(OStack ((MReg (get_reg src) offset, Public)))))
va_s0
in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_eval_reg_opr64 va_old_s src + offset)
Public
(va_get_stackTaint va_old_s);
(va_sM, va_fM) | {
"checked_file": "Vale.X64.InsStack.fst.checked",
"dependencies": [
"Vale.X64.Taint_Semantics.fst.checked",
"Vale.X64.StateLemmas.fsti.checked",
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Stack_i.fst.checked",
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Decls.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.InsStack.fst"
} | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_reg_opr64",
"Prims.int",
"Vale.X64.State.vale_state",
"Vale.X64.Lemmas.fuel",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Decls.va_fuel",
"Prims.unit",
"Vale.X64.Stack_i.lemma_valid_taint_stack64",
"Prims.op_Addition",
"Vale.X64.Decls.va_eval_reg_opr64",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_get_stackTaint",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"Vale.X64.Decls.va_eval_ins",
"Vale.X64.Taint_Semantics.mk_ins",
"Vale.X64.InsLemmas.make_instr_annotate",
"Prims.Cons",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_Semantics_s.AnnotateMov64",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.Machine_s.OStack",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.maddr",
"Vale.Arch.HeapTypes_s.taint",
"Vale.X64.Machine_s.MReg",
"Vale.X64.Decls.get_reg",
"Vale.X64.Decls.va_ins_lemma",
"Vale.X64.Decls.va_reveal_opaque",
"Vale.X64.InsStack.va_code_Load64_stack"
] | [] | module Vale.X64.InsStack
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64
open Vale.X64.State
open Vale.X64.StateLemmas
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsVector
open Vale.X64.InsLemmas
module I = Vale.X64.Instructions_s
module BC = Vale.X64.Bytes_Code_s
module S = Vale.X64.Machine_Semantics_s
module P = Vale.X64.Print_s
open Vale.X64.Taint_Semantics
friend Vale.X64.Decls
friend Vale.X64.Stack_i
#reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50"
//-- Stack_in
//--
//-- Stack_lemma
[@ "opaque_to_smt"]
let va_code_Stack_lemma () =
(va_Block (va_CNil ()))
[@ "opaque_to_smt"]
let va_codegen_success_Stack_lemma () =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Stack_lemma va_b0 va_s0 base offset t =
va_reveal_opaque (`%va_code_Stack_lemma) (va_code_Stack_lemma ());
let (va_old_s:va_state) = va_s0 in
let (va_b1:va_codes) = va_get_block va_b0 in
let (va_sM, va_fM) = va_lemma_empty_total va_s0 va_b1 in
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Stack_lemma base offset t va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Stack_lemma (va_code_Stack_lemma ()) va_s0 base offset t in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_ok va_sM va_s0));
va_lemma_norm_mods ([]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop
[@ "opaque_to_smt"]
let va_code_Pop dst =
(Ins (BC.Pop dst Public))
[@ "opaque_to_smt"]
let va_codegen_success_Pop dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop) (va_code_Pop dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Public)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Public (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop (va_code_Pop dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push
[@ "opaque_to_smt"]
let va_code_Push src =
(Ins (BC.Push src Public))
[@ "opaque_to_smt"]
let va_codegen_success_Push src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push) (va_code_Push src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Public)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Public)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push (va_code_Push src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Pop_Secret
[@ "opaque_to_smt"]
let va_code_Pop_Secret dst =
(Ins (BC.Pop dst Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Pop_Secret dst =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Pop_Secret va_b0 va_s0 dst =
va_reveal_opaque (`%va_code_Pop_Secret) (va_code_Pop_Secret dst);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Pop dst Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Pop dst Secret)) va_s0 in
Vale.X64.Stack_i.lemma_valid_taint_stack64 (va_get_reg64 rRsp va_old_s) Secret (va_get_stackTaint
va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Pop_Secret dst va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Pop_Secret (va_code_Pop_Secret dst) va_s0 dst in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stack; va_Mod_reg64 rRsp; va_mod_dst_opr64 dst]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Push_Secret
[@ "opaque_to_smt"]
let va_code_Push_Secret src =
(Ins (BC.Push src Secret))
[@ "opaque_to_smt"]
let va_codegen_success_Push_Secret src =
(va_ttrue ())
[@"opaque_to_smt"]
let va_lemma_Push_Secret va_b0 va_s0 src =
va_reveal_opaque (`%va_code_Push_Secret) (va_code_Push_Secret src);
let (va_old_s:va_state) = va_s0 in
va_ins_lemma (Ins (BC.Push src Secret)) va_s0;
let (va_sM, va_fM) = va_eval_ins (Ins (BC.Push src Secret)) va_s0 in
Vale.X64.Stack_Sems.equiv_store_stack64 (va_get_reg64 rRsp va_sM) (va_eval_reg_opr64 va_old_s
src) (va_get_stack va_old_s);
(va_sM, va_fM)
[@"opaque_to_smt"]
let va_wpProof_Push_Secret src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_Push_Secret (va_code_Push_Secret src) va_s0 src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_reg64
rRsp va_sM (va_update_ok va_sM va_s0)))));
va_lemma_norm_mods ([va_Mod_stackTaint; va_Mod_stack; va_Mod_reg64 rRsp]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
//--
//-- Load64_stack
[@ "opaque_to_smt"]
let va_code_Load64_stack dst src offset =
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst (OStack ((MReg (get_reg src)
offset, Public)))))
[@ "opaque_to_smt"]
let va_codegen_success_Load64_stack dst src offset =
(va_ttrue ())
[@"opaque_to_smt"] | false | false | Vale.X64.InsStack.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 4,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_lemma_Load64_stack : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_reg_opr64 -> offset:int
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Load64_stack dst src offset) va_s0 /\
va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_reg_opr64 src va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Stack_i.valid_src_stack64 (va_eval_reg_opr64 va_s0 src + offset) (va_get_stack va_s0)
/\ Vale.X64.Stack_i.valid_taint_stack64 (va_eval_reg_opr64 va_s0 src + offset) Public
(va_get_stackTaint va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.X64.Stack_i.load_stack64 (va_eval_reg_opr64 va_s0 src +
offset) (va_get_stack va_s0) /\ va_state_eq va_sM (va_update_ok va_sM
(va_update_operand_dst_opr64 dst va_sM va_s0)))) | [] | Vale.X64.InsStack.va_lemma_Load64_stack | {
"file_name": "obj/Vale.X64.InsStack.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_reg_opr64 ->
offset: Prims.int
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 16,
"end_line": 201,
"start_col": 2,
"start_line": 193
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var) | let vprop_equiv_refl_type = | false | null | false | let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit) (RT.close_term (stt_vprop_equiv v v) var) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"total"
] | [
"Pulse.Reflection.Util.mk_arrow",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"FStar.Reflection.V2.Data.Q_Explicit",
"FStar.Reflection.Typing.close_term",
"Pulse.Reflection.Util.stt_vprop_equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Reflection.Util.mk_name",
"Prims.int"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **) | false | true | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_refl_type : FStar.Reflection.Types.term | [] | Pulse.Soundness.VPropEquiv.vprop_equiv_refl_type | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Reflection.Types.term | {
"end_col": 52,
"end_line": 23,
"start_col": 27,
"start_line": 18
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid)) | let vprop_tm = | false | null | false | R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid)) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.Builtins.pack_ln",
"FStar.Reflection.V2.Data.Tv_FVar",
"FStar.Reflection.V2.Builtins.pack_fv",
"Pulse.Reflection.Util.vprop_lid"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit() | false | true | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_tm : FStar.Reflection.Types.term | [] | Pulse.Soundness.VPropEquiv.vprop_tm | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Reflection.Types.term | {
"end_col": 59,
"end_line": 108,
"start_col": 15,
"start_line": 108
} |
|
Prims.GTot | val vprop_equiv_unit_soundness (#g:stt_env) (#v0 #v1:term)
(d0:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (RT.tot_typing (elab_env g) (`())
(stt_vprop_equiv (elab_term v0) (elab_term v1))) | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vprop_equiv_unit_soundness (#g:stt_env) (#v0 #v1:term)
(d0:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (RT.tot_typing (elab_env g) (`()) (stt_vprop_equiv (elab_term v0) (elab_term v1)))
= let (| pf, s |) = vprop_equiv_soundness d0 eq in
let d1 = fst (vprop_equiv_typing eq) d0 in
let s_prop = stt_vprop_equiv_is_prop (tot_typing_soundness d0) (tot_typing_soundness d1) in
RT.T_PropIrrelevance _ _ _ _ _ s s_prop | val vprop_equiv_unit_soundness (#g:stt_env) (#v0 #v1:term)
(d0:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (RT.tot_typing (elab_env g) (`())
(stt_vprop_equiv (elab_term v0) (elab_term v1)))
let vprop_equiv_unit_soundness
(#g: stt_env)
(#v0 #v1: term)
(d0: tot_typing g v0 tm_vprop)
(eq: vprop_equiv g v0 v1)
: GTot (RT.tot_typing (elab_env g) (`()) (stt_vprop_equiv (elab_term v0) (elab_term v1))) = | false | null | false | let (| pf , s |) = vprop_equiv_soundness d0 eq in
let d1 = fst (vprop_equiv_typing eq) d0 in
let s_prop = stt_vprop_equiv_is_prop (tot_typing_soundness d0) (tot_typing_soundness d1) in
RT.T_PropIrrelevance _ _ _ _ _ s s_prop | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"sometrivial"
] | [
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.vprop_equiv",
"FStar.Reflection.Types.term",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Typing.elab_env",
"Pulse.Reflection.Util.stt_vprop_equiv",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Reflection.Typing.T_PropIrrelevance",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Reflection.Typing.tm_prop",
"Pulse.Soundness.VPropEquiv.stt_vprop_equiv_is_prop",
"Pulse.Soundness.Common.tot_typing_soundness",
"FStar.Pervasives.Native.fst",
"Pulse.Typing.Combinators.vprop_equiv_typing",
"Prims.dtuple2",
"Pulse.Soundness.VPropEquiv.vprop_equiv_soundness"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit()
let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid))
let vprop_equiv_ext_type : R.term =
let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index = pack_ln (Tv_BVar (pack_bv {
ppname = RT.pp_name_default;
index = index;
sort = Sealed.seal tun;
})) in
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit)
(
stt_vprop_equiv (mk_bv 2) (mk_bv 1)
)
)
)
let inst_vprop_equiv_ext_aux #g #v0 #v1
(token:T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) =
let ctxt = RT.Ctxt_app_arg
(R.pack_ln (R.Tv_App stt_vprop_equiv_tm (v0, R.Q_Explicit)))
R.Q_Explicit
RT.Ctxt_hole in
RT.Rel_ctxt _ _ _ ctxt (RT.Rel_eq_token _ _ _ (Squash.return_squash token))
let inst_vprop_equiv_ext #g #v0 #v1
(d0:RT.tot_typing g v0 vprop_tm)
(d1:RT.tot_typing g v1 vprop_tm)
(token:T.equiv_token g v0 v1)
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v1)) =
let (| pf, typing |)
: (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v0)) =
inst_vprop_equiv_refl d0 in
let d_st_equiv
: RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1) =
inst_vprop_equiv_ext_aux token in
let sub_typing
: RT.sub_typing g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)
= RT.Rel_equiv _ _ _ _ d_st_equiv in
let pf_typing
: RT.tot_typing g pf (stt_vprop_equiv v0 v1) =
RT.T_Sub _ _ _ _ typing
(RT.Relc_typ _ _ _ _ _ sub_typing) in
(| pf, pf_typing |)
#push-options "--z3rlimit_factor 4"
let rec vprop_equiv_soundness (#g:stt_env) (#v0 #v1:term)
(d:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (pf:R.term &
RT.tot_typing (elab_env g)
pf
(stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq)
= match eq with
| VE_Refl _ _ ->
let d = tot_typing_soundness d in
inst_vprop_equiv_refl d
| VE_Sym g _v1 _v0 eq' ->
let fwd, _ = vprop_equiv_typing eq in
let d' = fwd d in
let (| pf, dd |) = vprop_equiv_soundness d' eq' in
inst_vprop_equiv_sym (tot_typing_soundness d')
(tot_typing_soundness d)
dd
| VE_Trans _ _ v _ eq_0v eq_v1 ->
let dv = fst (vprop_equiv_typing eq_0v) d in
let d1 = fst (vprop_equiv_typing eq_v1) dv in
let (| pf_0v, eq_0v |) = vprop_equiv_soundness d eq_0v in
let (| pf_v1, eq_v1 |) = vprop_equiv_soundness dv eq_v1 in
inst_vprop_equiv_trans
(tot_typing_soundness d)
(tot_typing_soundness dv)
(tot_typing_soundness d1)
eq_0v
eq_v1
| VE_Ctxt _ t0 t1 t0' t1' eq0 eq1 ->
let t0_typing, t1_typing = star_typing_inversion d in
let t0'_typing = fst (vprop_equiv_typing eq0) t0_typing in
let t1'_typing = fst (vprop_equiv_typing eq1) t1_typing in
let (| pf0, dd0 |) = vprop_equiv_soundness t0_typing eq0 in
let (| pf1, dd1 |) = vprop_equiv_soundness t1_typing eq1 in
inst_vprop_equiv_cong (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t0'_typing)
(tot_typing_soundness t1'_typing)
dd0 dd1
| VE_Unit _ _v1 ->
let v1_typing = fst (vprop_equiv_typing eq) d in
inst_vprop_equiv_unit (tot_typing_soundness v1_typing)
| VE_Comm _ t0 t1 ->
let t0_typing, t1_typing = star_typing_inversion #_ #t0 #t1 d in
inst_vprop_equiv_comm (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
| VE_Assoc _ t0 t1 t2 ->
let t0_typing, t12_typing = star_typing_inversion #_ #t0 #(tm_star t1 t2) d in
let t1_typing, t2_typing = star_typing_inversion #_ #t1 #t2 t12_typing in
inst_vprop_equiv_assoc (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t2_typing)
| VE_Ext _ t0 t1 token ->
let t0_typing, t1_typing = vprop_eq_typing_inversion _ t0 t1 token in
inst_vprop_equiv_ext (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
token
#pop-options
let stt_vprop_equiv_is_prop (#g:R.env) (#v0 #v1:R.term)
(d0: RT.tot_typing g v0 (elab_term tm_vprop))
(d1: RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (RT.tot_typing g (stt_vprop_equiv v0 v1) RT.tm_prop)
= admit()
let vprop_equiv_unit_soundness (#g:stt_env) (#v0 #v1:term)
(d0:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1) | false | false | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_unit_soundness (#g:stt_env) (#v0 #v1:term)
(d0:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (RT.tot_typing (elab_env g) (`())
(stt_vprop_equiv (elab_term v0) (elab_term v1))) | [] | Pulse.Soundness.VPropEquiv.vprop_equiv_unit_soundness | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d0: Pulse.Typing.tot_typing g v0 Pulse.Syntax.Base.tm_vprop -> eq: Pulse.Typing.vprop_equiv g v0 v1
-> Prims.GTot
(FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g)
(`())
(Pulse.Reflection.Util.stt_vprop_equiv (Pulse.Elaborate.Pure.elab_term v0)
(Pulse.Elaborate.Pure.elab_term v1))) | {
"end_col": 43,
"end_line": 253,
"start_col": 3,
"start_line": 250
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0) | let vprop_equiv_sym_type = | false | null | false | let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Implicit)
(RT.close_term (mk_arrow (v_typ, R.Q_Implicit)
(RT.close_term (mk_arrow (stt_vprop_equiv v0 v1, R.Q_Explicit) (stt_vprop_equiv v0 v1))
var1))
var0) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"total"
] | [
"Pulse.Reflection.Util.mk_arrow",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"FStar.Reflection.V2.Data.Q_Implicit",
"FStar.Reflection.Typing.close_term",
"Pulse.Reflection.Util.stt_vprop_equiv",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Reflection.Util.mk_name",
"Prims.int"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit() | false | true | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_sym_type : FStar.Reflection.Types.term | [] | Pulse.Soundness.VPropEquiv.vprop_equiv_sym_type | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Reflection.Types.term | {
"end_col": 13,
"end_line": 46,
"start_col": 26,
"start_line": 31
} |
|
Prims.Tot | val vprop_equiv_ext_type:R.term | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vprop_equiv_ext_type : R.term =
let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index = pack_ln (Tv_BVar (pack_bv {
ppname = RT.pp_name_default;
index = index;
sort = Sealed.seal tun;
})) in
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit)
(
stt_vprop_equiv (mk_bv 2) (mk_bv 1)
)
)
) | val vprop_equiv_ext_type:R.term
let vprop_equiv_ext_type:R.term = | false | null | false | let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index =
pack_ln (Tv_BVar
(pack_bv ({ ppname = RT.pp_name_default; index = index; sort = Sealed.seal tun })))
in
mk_arrow (vprop_tm, Q_Explicit)
(mk_arrow (vprop_tm, Q_Explicit)
(mk_arrow (vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit) (stt_vprop_equiv (mk_bv 2) (mk_bv 1)))
) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"total"
] | [
"Pulse.Reflection.Util.mk_arrow",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"Pulse.Soundness.VPropEquiv.vprop_tm",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Reflection.Util.vprop_eq_tm",
"Pulse.Reflection.Util.stt_vprop_equiv",
"Prims.nat",
"FStar.Reflection.V2.Builtins.pack_ln",
"FStar.Reflection.V2.Data.Tv_BVar",
"FStar.Reflection.V2.Builtins.pack_bv",
"FStar.Reflection.V2.Data.Mkbv_view",
"FStar.Sealed.seal",
"FStar.Reflection.Types.typ",
"Pulse.Reflection.Util.tun",
"FStar.Reflection.Typing.pp_name_default",
"FStar.Reflection.V2.Data.Tv_FVar",
"FStar.Reflection.V2.Builtins.pack_fv",
"Pulse.Reflection.Util.vprop_lid"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit()
let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid)) | false | true | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_ext_type:R.term | [] | Pulse.Soundness.VPropEquiv.vprop_equiv_ext_type | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Reflection.Types.term | {
"end_col": 5,
"end_line": 131,
"start_col": 15,
"start_line": 111
} |
Prims.GTot | val inst_vprop_equiv_ext
(#g #v0 #v1: _)
(d0: RT.tot_typing g v0 vprop_tm)
(d1: RT.tot_typing g v1 vprop_tm)
(token: T.equiv_token g v0 v1)
: GTot (pf: R.term & RT.tot_typing g pf (stt_vprop_equiv v0 v1)) | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let inst_vprop_equiv_ext #g #v0 #v1
(d0:RT.tot_typing g v0 vprop_tm)
(d1:RT.tot_typing g v1 vprop_tm)
(token:T.equiv_token g v0 v1)
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v1)) =
let (| pf, typing |)
: (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v0)) =
inst_vprop_equiv_refl d0 in
let d_st_equiv
: RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1) =
inst_vprop_equiv_ext_aux token in
let sub_typing
: RT.sub_typing g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)
= RT.Rel_equiv _ _ _ _ d_st_equiv in
let pf_typing
: RT.tot_typing g pf (stt_vprop_equiv v0 v1) =
RT.T_Sub _ _ _ _ typing
(RT.Relc_typ _ _ _ _ _ sub_typing) in
(| pf, pf_typing |) | val inst_vprop_equiv_ext
(#g #v0 #v1: _)
(d0: RT.tot_typing g v0 vprop_tm)
(d1: RT.tot_typing g v1 vprop_tm)
(token: T.equiv_token g v0 v1)
: GTot (pf: R.term & RT.tot_typing g pf (stt_vprop_equiv v0 v1))
let inst_vprop_equiv_ext
#g
#v0
#v1
(d0: RT.tot_typing g v0 vprop_tm)
(d1: RT.tot_typing g v1 vprop_tm)
(token: T.equiv_token g v0 v1)
: GTot (pf: R.term & RT.tot_typing g pf (stt_vprop_equiv v0 v1)) = | false | null | false | let (| pf , typing |):(pf: R.term & RT.tot_typing g pf (stt_vprop_equiv v0 v0)) =
inst_vprop_equiv_refl d0
in
let d_st_equiv:RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1) =
inst_vprop_equiv_ext_aux token
in
let sub_typing:RT.sub_typing g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1) =
RT.Rel_equiv _ _ _ _ d_st_equiv
in
let pf_typing:RT.tot_typing g pf (stt_vprop_equiv v0 v1) =
RT.T_Sub _ _ _ _ typing (RT.Relc_typ _ _ _ _ _ sub_typing)
in
(| pf, pf_typing |) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"sometrivial"
] | [
"FStar.Reflection.Types.env",
"FStar.Reflection.Types.term",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Soundness.VPropEquiv.vprop_tm",
"FStar.Tactics.Types.equiv_token",
"Pulse.Reflection.Util.stt_vprop_equiv",
"Prims.Mkdtuple2",
"FStar.Reflection.Typing.T_Sub",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Reflection.Types.typ",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Reflection.Typing.Relc_typ",
"FStar.Reflection.Typing.R_Sub",
"FStar.Reflection.Typing.sub_typing",
"FStar.Reflection.Typing.Rel_equiv",
"FStar.Reflection.Typing.equiv",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_ext_aux",
"Prims.dtuple2",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_refl"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit()
let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid))
let vprop_equiv_ext_type : R.term =
let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index = pack_ln (Tv_BVar (pack_bv {
ppname = RT.pp_name_default;
index = index;
sort = Sealed.seal tun;
})) in
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit)
(
stt_vprop_equiv (mk_bv 2) (mk_bv 1)
)
)
)
let inst_vprop_equiv_ext_aux #g #v0 #v1
(token:T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) =
let ctxt = RT.Ctxt_app_arg
(R.pack_ln (R.Tv_App stt_vprop_equiv_tm (v0, R.Q_Explicit)))
R.Q_Explicit
RT.Ctxt_hole in
RT.Rel_ctxt _ _ _ ctxt (RT.Rel_eq_token _ _ _ (Squash.return_squash token))
let inst_vprop_equiv_ext #g #v0 #v1
(d0:RT.tot_typing g v0 vprop_tm)
(d1:RT.tot_typing g v1 vprop_tm)
(token:T.equiv_token g v0 v1) | false | false | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inst_vprop_equiv_ext
(#g #v0 #v1: _)
(d0: RT.tot_typing g v0 vprop_tm)
(d1: RT.tot_typing g v1 vprop_tm)
(token: T.equiv_token g v0 v1)
: GTot (pf: R.term & RT.tot_typing g pf (stt_vprop_equiv v0 v1)) | [] | Pulse.Soundness.VPropEquiv.inst_vprop_equiv_ext | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
d0: FStar.Reflection.Typing.tot_typing g v0 Pulse.Soundness.VPropEquiv.vprop_tm ->
d1: FStar.Reflection.Typing.tot_typing g v1 Pulse.Soundness.VPropEquiv.vprop_tm ->
token: FStar.Tactics.Types.equiv_token g v0 v1
-> Prims.GTot
(Prims.dtuple2 FStar.Reflection.Types.term
(fun pf ->
FStar.Reflection.Typing.tot_typing g pf (Pulse.Reflection.Util.stt_vprop_equiv v0 v1))) | {
"end_col": 21,
"end_line": 169,
"start_col": 55,
"start_line": 149
} |
Prims.GTot | val inst_vprop_equiv_ext_aux (#g #v0 #v1: _) (token: T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let inst_vprop_equiv_ext_aux #g #v0 #v1
(token:T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) =
let ctxt = RT.Ctxt_app_arg
(R.pack_ln (R.Tv_App stt_vprop_equiv_tm (v0, R.Q_Explicit)))
R.Q_Explicit
RT.Ctxt_hole in
RT.Rel_ctxt _ _ _ ctxt (RT.Rel_eq_token _ _ _ (Squash.return_squash token)) | val inst_vprop_equiv_ext_aux (#g #v0 #v1: _) (token: T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1))
let inst_vprop_equiv_ext_aux #g #v0 #v1 (token: T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) = | false | null | false | let ctxt =
RT.Ctxt_app_arg (R.pack_ln (R.Tv_App stt_vprop_equiv_tm (v0, R.Q_Explicit)))
R.Q_Explicit
RT.Ctxt_hole
in
RT.Rel_ctxt _ _ _ ctxt (RT.Rel_eq_token _ _ _ (Squash.return_squash token)) | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"sometrivial"
] | [
"FStar.Reflection.Types.env",
"FStar.Reflection.Types.typ",
"FStar.Tactics.Types.equiv_token",
"FStar.Reflection.Typing.Rel_ctxt",
"FStar.Reflection.Typing.Rel_eq_token",
"FStar.Squash.return_squash",
"FStar.Reflection.Typing.term_ctxt",
"FStar.Reflection.Typing.Ctxt_app_arg",
"FStar.Reflection.V2.Builtins.pack_ln",
"FStar.Reflection.V2.Data.Tv_App",
"Pulse.Reflection.Util.stt_vprop_equiv_tm",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"FStar.Reflection.V2.Data.Q_Explicit",
"FStar.Reflection.Typing.Ctxt_hole",
"FStar.Reflection.Typing.equiv",
"Pulse.Reflection.Util.stt_vprop_equiv"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit()
let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid))
let vprop_equiv_ext_type : R.term =
let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index = pack_ln (Tv_BVar (pack_bv {
ppname = RT.pp_name_default;
index = index;
sort = Sealed.seal tun;
})) in
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit)
(
stt_vprop_equiv (mk_bv 2) (mk_bv 1)
)
)
)
let inst_vprop_equiv_ext_aux #g #v0 #v1 | false | false | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inst_vprop_equiv_ext_aux (#g #v0 #v1: _) (token: T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) | [] | Pulse.Soundness.VPropEquiv.inst_vprop_equiv_ext_aux | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | token: FStar.Tactics.Types.equiv_token g v0 v1
-> Prims.GTot
(FStar.Reflection.Typing.equiv g
(Pulse.Reflection.Util.stt_vprop_equiv v0 v0)
(Pulse.Reflection.Util.stt_vprop_equiv v0 v1)) | {
"end_col": 77,
"end_line": 142,
"start_col": 71,
"start_line": 135
} |
Prims.GTot | val vprop_equiv_soundness
(#g: stt_env)
(#v0 #v1: term)
(d: tot_typing g v0 tm_vprop)
(eq: vprop_equiv g v0 v1)
: GTot
(pf: R.term & RT.tot_typing (elab_env g) pf (stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq) | [
{
"abbrev": false,
"full_module": "Pulse.Checker.VPropEquiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec vprop_equiv_soundness (#g:stt_env) (#v0 #v1:term)
(d:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (pf:R.term &
RT.tot_typing (elab_env g)
pf
(stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq)
= match eq with
| VE_Refl _ _ ->
let d = tot_typing_soundness d in
inst_vprop_equiv_refl d
| VE_Sym g _v1 _v0 eq' ->
let fwd, _ = vprop_equiv_typing eq in
let d' = fwd d in
let (| pf, dd |) = vprop_equiv_soundness d' eq' in
inst_vprop_equiv_sym (tot_typing_soundness d')
(tot_typing_soundness d)
dd
| VE_Trans _ _ v _ eq_0v eq_v1 ->
let dv = fst (vprop_equiv_typing eq_0v) d in
let d1 = fst (vprop_equiv_typing eq_v1) dv in
let (| pf_0v, eq_0v |) = vprop_equiv_soundness d eq_0v in
let (| pf_v1, eq_v1 |) = vprop_equiv_soundness dv eq_v1 in
inst_vprop_equiv_trans
(tot_typing_soundness d)
(tot_typing_soundness dv)
(tot_typing_soundness d1)
eq_0v
eq_v1
| VE_Ctxt _ t0 t1 t0' t1' eq0 eq1 ->
let t0_typing, t1_typing = star_typing_inversion d in
let t0'_typing = fst (vprop_equiv_typing eq0) t0_typing in
let t1'_typing = fst (vprop_equiv_typing eq1) t1_typing in
let (| pf0, dd0 |) = vprop_equiv_soundness t0_typing eq0 in
let (| pf1, dd1 |) = vprop_equiv_soundness t1_typing eq1 in
inst_vprop_equiv_cong (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t0'_typing)
(tot_typing_soundness t1'_typing)
dd0 dd1
| VE_Unit _ _v1 ->
let v1_typing = fst (vprop_equiv_typing eq) d in
inst_vprop_equiv_unit (tot_typing_soundness v1_typing)
| VE_Comm _ t0 t1 ->
let t0_typing, t1_typing = star_typing_inversion #_ #t0 #t1 d in
inst_vprop_equiv_comm (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
| VE_Assoc _ t0 t1 t2 ->
let t0_typing, t12_typing = star_typing_inversion #_ #t0 #(tm_star t1 t2) d in
let t1_typing, t2_typing = star_typing_inversion #_ #t1 #t2 t12_typing in
inst_vprop_equiv_assoc (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t2_typing)
| VE_Ext _ t0 t1 token ->
let t0_typing, t1_typing = vprop_eq_typing_inversion _ t0 t1 token in
inst_vprop_equiv_ext (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
token | val vprop_equiv_soundness
(#g: stt_env)
(#v0 #v1: term)
(d: tot_typing g v0 tm_vprop)
(eq: vprop_equiv g v0 v1)
: GTot
(pf: R.term & RT.tot_typing (elab_env g) pf (stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq)
let rec vprop_equiv_soundness
(#g: stt_env)
(#v0 #v1: term)
(d: tot_typing g v0 tm_vprop)
(eq: vprop_equiv g v0 v1)
: GTot
(pf: R.term & RT.tot_typing (elab_env g) pf (stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq) = | false | null | false | match eq with
| VE_Refl _ _ ->
let d = tot_typing_soundness d in
inst_vprop_equiv_refl d
| VE_Sym g _v1 _v0 eq' ->
let fwd, _ = vprop_equiv_typing eq in
let d' = fwd d in
let (| pf , dd |) = vprop_equiv_soundness d' eq' in
inst_vprop_equiv_sym (tot_typing_soundness d') (tot_typing_soundness d) dd
| VE_Trans _ _ v _ eq_0v eq_v1 ->
let dv = fst (vprop_equiv_typing eq_0v) d in
let d1 = fst (vprop_equiv_typing eq_v1) dv in
let (| pf_0v , eq_0v |) = vprop_equiv_soundness d eq_0v in
let (| pf_v1 , eq_v1 |) = vprop_equiv_soundness dv eq_v1 in
inst_vprop_equiv_trans (tot_typing_soundness d)
(tot_typing_soundness dv)
(tot_typing_soundness d1)
eq_0v
eq_v1
| VE_Ctxt _ t0 t1 t0' t1' eq0 eq1 ->
let t0_typing, t1_typing = star_typing_inversion d in
let t0'_typing = fst (vprop_equiv_typing eq0) t0_typing in
let t1'_typing = fst (vprop_equiv_typing eq1) t1_typing in
let (| pf0 , dd0 |) = vprop_equiv_soundness t0_typing eq0 in
let (| pf1 , dd1 |) = vprop_equiv_soundness t1_typing eq1 in
inst_vprop_equiv_cong (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t0'_typing)
(tot_typing_soundness t1'_typing)
dd0
dd1
| VE_Unit _ _v1 ->
let v1_typing = fst (vprop_equiv_typing eq) d in
inst_vprop_equiv_unit (tot_typing_soundness v1_typing)
| VE_Comm _ t0 t1 ->
let t0_typing, t1_typing = star_typing_inversion #_ #t0 #t1 d in
inst_vprop_equiv_comm (tot_typing_soundness t0_typing) (tot_typing_soundness t1_typing)
| VE_Assoc _ t0 t1 t2 ->
let t0_typing, t12_typing = star_typing_inversion #_ #t0 #(tm_star t1 t2) d in
let t1_typing, t2_typing = star_typing_inversion #_ #t1 #t2 t12_typing in
inst_vprop_equiv_assoc (tot_typing_soundness t0_typing)
(tot_typing_soundness t1_typing)
(tot_typing_soundness t2_typing)
| VE_Ext _ t0 t1 token ->
let t0_typing, t1_typing = vprop_eq_typing_inversion _ t0 t1 token in
inst_vprop_equiv_ext (tot_typing_soundness t0_typing) (tot_typing_soundness t1_typing) token | {
"checked_file": "Pulse.Soundness.VPropEquiv.fst.checked",
"dependencies": [
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Checker.VPropEquiv.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.VPropEquiv.fst"
} | [
"sometrivial",
""
] | [
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.Env.env",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_refl",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Soundness.Common.tot_typing_soundness",
"FStar.Reflection.Types.term",
"Pulse.Reflection.Util.stt_vprop_equiv",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_sym",
"Prims.dtuple2",
"Pulse.Soundness.VPropEquiv.vprop_equiv_soundness",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.Combinators.vprop_equiv_typing",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_trans",
"FStar.Pervasives.Native.fst",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_cong",
"Pulse.Typing.star_typing_inversion",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_unit",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_comm",
"Pulse.Syntax.Base.tm_star",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_assoc",
"FStar.Tactics.Types.equiv_token",
"Pulse.Soundness.VPropEquiv.inst_vprop_equiv_ext",
"Pulse.Typing.vprop_eq_typing_inversion"
] | [] | module Pulse.Soundness.VPropEquiv
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Elaborate.Pure
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Elaborate
open Pulse.Soundness.Common
open Pulse.Checker.VPropEquiv
(*** Soundness of vprop equivalence **)
let vprop_equiv_refl_type =
let var = 0 in
let v = mk_name var in
let v_typ = elab_term tm_vprop in
mk_arrow (v_typ, R.Q_Explicit)
(RT.close_term (stt_vprop_equiv v v) var)
let inst_vprop_equiv_refl #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v v))
= admit()
let vprop_equiv_sym_type =
let var0 = 0 in
let v0 = mk_name var0 in
let var1 = 1 in
let v1 = mk_name var1 in
let v_typ = elab_term tm_vprop in
mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(v_typ, R.Q_Implicit)
(RT.close_term
(mk_arrow
(stt_vprop_equiv v0 v1, R.Q_Explicit)
(stt_vprop_equiv v0 v1)) var1))
var0)
let inst_vprop_equiv_sym #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(#pf:_)
(deq:RT.tot_typing g pf (stt_vprop_equiv v0 v1))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v1 v0))
= admit()
let inst_vprop_equiv_trans #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
(#pf01:_)
(d01:RT.tot_typing g pf01 (stt_vprop_equiv v0 v1))
(#pf12:_)
(d12:RT.tot_typing g pf12 (stt_vprop_equiv v1 v2))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v2))
= admit()
let inst_vprop_equiv_cong #g #v0 #v1 #v0' #v1'
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d0':RT.tot_typing g v0' (elab_term tm_vprop))
(d1':RT.tot_typing g v1' (elab_term tm_vprop))
(#pf0:_)
(eq0:RT.tot_typing g pf0 (stt_vprop_equiv v0 v0'))
(#pf1:_)
(eq1:RT.tot_typing g pf1 (stt_vprop_equiv v1 v1'))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v0' v1')))
= admit()
let inst_vprop_equiv_unit #g #v
(d:RT.tot_typing g v (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star (elab_term tm_emp) v) v))
= admit()
let inst_vprop_equiv_comm #g #v0 #v1
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 v1) (mk_star v1 v0)))
= admit()
let inst_vprop_equiv_assoc #g #v0 #v1 #v2
(d0:RT.tot_typing g v0 (elab_term tm_vprop))
(d1:RT.tot_typing g v1 (elab_term tm_vprop))
(d2:RT.tot_typing g v2 (elab_term tm_vprop))
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv (mk_star v0 (mk_star v1 v2)) (mk_star (mk_star v0 v1) v2)))
= admit()
let vprop_tm = R.pack_ln (R.Tv_FVar (R.pack_fv vprop_lid))
let vprop_equiv_ext_type : R.term =
let open R in
let v_typ = pack_ln (Tv_FVar (pack_fv vprop_lid)) in
let mk_bv index = pack_ln (Tv_BVar (pack_bv {
ppname = RT.pp_name_default;
index = index;
sort = Sealed.seal tun;
})) in
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_tm, Q_Explicit)
(
mk_arrow
(vprop_eq_tm (mk_bv 1) (mk_bv 0), Q_Explicit)
(
stt_vprop_equiv (mk_bv 2) (mk_bv 1)
)
)
)
let inst_vprop_equiv_ext_aux #g #v0 #v1
(token:T.equiv_token g v0 v1)
: GTot (RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)) =
let ctxt = RT.Ctxt_app_arg
(R.pack_ln (R.Tv_App stt_vprop_equiv_tm (v0, R.Q_Explicit)))
R.Q_Explicit
RT.Ctxt_hole in
RT.Rel_ctxt _ _ _ ctxt (RT.Rel_eq_token _ _ _ (Squash.return_squash token))
let inst_vprop_equiv_ext #g #v0 #v1
(d0:RT.tot_typing g v0 vprop_tm)
(d1:RT.tot_typing g v1 vprop_tm)
(token:T.equiv_token g v0 v1)
: GTot (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v1)) =
let (| pf, typing |)
: (pf:R.term &
RT.tot_typing g pf (stt_vprop_equiv v0 v0)) =
inst_vprop_equiv_refl d0 in
let d_st_equiv
: RT.equiv g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1) =
inst_vprop_equiv_ext_aux token in
let sub_typing
: RT.sub_typing g (stt_vprop_equiv v0 v0) (stt_vprop_equiv v0 v1)
= RT.Rel_equiv _ _ _ _ d_st_equiv in
let pf_typing
: RT.tot_typing g pf (stt_vprop_equiv v0 v1) =
RT.T_Sub _ _ _ _ typing
(RT.Relc_typ _ _ _ _ _ sub_typing) in
(| pf, pf_typing |)
#push-options "--z3rlimit_factor 4"
let rec vprop_equiv_soundness (#g:stt_env) (#v0 #v1:term)
(d:tot_typing g v0 tm_vprop)
(eq:vprop_equiv g v0 v1)
: GTot (pf:R.term &
RT.tot_typing (elab_env g)
pf
(stt_vprop_equiv (elab_term v0) (elab_term v1))) | false | false | Pulse.Soundness.VPropEquiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_soundness
(#g: stt_env)
(#v0 #v1: term)
(d: tot_typing g v0 tm_vprop)
(eq: vprop_equiv g v0 v1)
: GTot
(pf: R.term & RT.tot_typing (elab_env g) pf (stt_vprop_equiv (elab_term v0) (elab_term v1)))
(decreases eq) | [
"recursion"
] | Pulse.Soundness.VPropEquiv.vprop_equiv_soundness | {
"file_name": "lib/steel/pulse/Pulse.Soundness.VPropEquiv.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.tot_typing g v0 Pulse.Syntax.Base.tm_vprop -> eq: Pulse.Typing.vprop_equiv g v0 v1
-> Prims.GTot
(Prims.dtuple2 FStar.Reflection.Types.term
(fun pf ->
FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g)
pf
(Pulse.Reflection.Util.stt_vprop_equiv (Pulse.Elaborate.Pure.elab_term v0)
(Pulse.Elaborate.Pure.elab_term v1)))) | {
"end_col": 32,
"end_line": 237,
"start_col": 4,
"start_line": 180
} |
Prims.Tot | val mk_nat_mont_ll_comm_monoid (pbits rLen n: pos) (mu: nat{M.mont_pre pbits rLen n mu})
: LE.comm_monoid (nat_mod n) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
} | val mk_nat_mont_ll_comm_monoid (pbits rLen n: pos) (mu: nat{M.mont_pre pbits rLen n mu})
: LE.comm_monoid (nat_mod n)
let mk_nat_mont_ll_comm_monoid (pbits rLen n: pos) (mu: nat{M.mont_pre pbits rLen n mu})
: LE.comm_monoid (nat_mod n) = | false | null | false | {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu
} | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.Exponentiation.Definition.Mkcomm_monoid",
"Lib.NatMod.nat_mod",
"Hacl.Spec.Exponentiation.Lemmas.mont_one_ll",
"Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_one_ll",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_ll_assoc",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_ll_comm",
"Lib.Exponentiation.Definition.comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_nat_mont_ll_comm_monoid (pbits rLen n: pos) (mu: nat{M.mont_pre pbits rLen n mu})
: LE.comm_monoid (nat_mod n) | [] | Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu}
-> Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod n) | {
"end_col": 61,
"end_line": 209,
"start_col": 2,
"start_line": 205
} |
Prims.Tot | val mont_one: n:pos -> r:pos -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mont_one n r = 1 * r % n | val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = | false | null | false | 1 * r % n | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.nat_mod"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mont_one: n:pos -> r:pos -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mont_one | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.pos -> r: Prims.pos -> Lib.NatMod.nat_mod n | {
"end_col": 28,
"end_line": 20,
"start_col": 19,
"start_line": 20
} |
Prims.Tot | val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b | val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b = | false | null | false | M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Hacl.Spec.Montgomery.Lemmas.mont_mul",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Lib.NatMod.nat_mod n
-> Lib.NatMod.nat_mod n | {
"end_col": 32,
"end_line": 155,
"start_col": 2,
"start_line": 154
} |
Prims.Tot | val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mont_mul n d a b = a * b * d % n | val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = | false | null | false | (a * b) * d % n | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.int",
"Lib.NatMod.nat_mod",
"Prims.op_Modulus",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mont_mul | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.pos -> d: Prims.int -> a: Lib.NatMod.nat_mod n -> b: Lib.NatMod.nat_mod n
-> Lib.NatMod.nat_mod n | {
"end_col": 36,
"end_line": 23,
"start_col": 23,
"start_line": 23
} |
FStar.Pervasives.Lemma | val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c | val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Prims.int",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_assoc",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma",
"Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"FStar.Mul.op_Star",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c)) | [] | Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_ll_assoc | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Lib.NatMod.nat_mod n ->
c: Lib.NatMod.nat_mod n
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits
rLen
n
mu
(Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits rLen n mu a b)
c ==
Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits
rLen
n
mu
a
(Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits rLen n mu b c)) | {
"end_col": 32,
"end_line": 186,
"start_col": 51,
"start_line": 177
} |
Prims.Tot | val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu | val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu = | false | null | false | M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Hacl.Spec.Montgomery.Lemmas.mont_one",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_one_lemma",
"Lib.NatMod.nat_mod"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mont_one_ll | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu}
-> Lib.NatMod.nat_mod n | {
"end_col": 28,
"end_line": 149,
"start_col": 2,
"start_line": 148
} |
FStar.Pervasives.Lemma | val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a | val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Prims.int",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_one",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Montgomery.Lemmas.mont_one_lemma",
"Hacl.Spec.Exponentiation.Lemmas.mont_one_ll",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n -> | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a) | [] | Hacl.Spec.Exponentiation.Lemmas.lemma_mont_one_ll | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits
rLen
n
mu
a
(Hacl.Spec.Exponentiation.Lemmas.mont_one_ll pbits rLen n mu) ==
a) | {
"end_col": 24,
"end_line": 169,
"start_col": 41,
"start_line": 160
} |
Prims.Tot | val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_exp_mont_ll pbits rLen n mu a b =
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc | val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont_ll pbits rLen n mu a b = | false | null | false | let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.from_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.from_mont",
"Lib.Exponentiation.Definition.pow",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.to_mont"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end
val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_ll | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> Lib.NatMod.nat_mod n | {
"end_col": 5,
"end_line": 256,
"start_col": 41,
"start_line": 250
} |
FStar.Pervasives.Lemma | val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b | val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Prims.int",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_comm",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"FStar.Mul.op_Star",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a) | [] | Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_ll_comm | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Lib.NatMod.nat_mod n
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits rLen n mu a b ==
Hacl.Spec.Exponentiation.Lemmas.mont_mul_ll pbits rLen n mu b a) | {
"end_col": 29,
"end_line": 200,
"start_col": 48,
"start_line": 193
} |
Prims.Tot | val mk_nat_mont_comm_monoid (n: pos) (r: nat) (d: int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
} | val mk_nat_mont_comm_monoid (n: pos) (r: nat) (d: int{r * d % n = 1}) : LE.comm_monoid (nat_mod n)
let mk_nat_mont_comm_monoid (n: pos) (r: nat) (d: int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = | false | null | false | {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d
} | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.Exponentiation.Definition.Mkcomm_monoid",
"Lib.NatMod.nat_mod",
"Hacl.Spec.Exponentiation.Lemmas.mont_one",
"Hacl.Spec.Exponentiation.Lemmas.mont_mul",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_one",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_assoc",
"Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_comm",
"Lib.Exponentiation.Definition.comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = () | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_nat_mont_comm_monoid (n: pos) (r: nat) (d: int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) | [] | Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.pos -> r: Prims.nat -> d: Prims.int{r * d % n = 1}
-> Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod n) | {
"end_col": 46,
"end_line": 71,
"start_col": 2,
"start_line": 67
} |
Prims.Tot | val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc | val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b = | false | null | false | let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.nat_mod",
"Prims.nat",
"Lib.Exponentiation.Definition.pow",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n | [] | Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.pos ->
r: Prims.pos ->
d: Prims.int{r * d % n == 1} ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> Lib.NatMod.nat_mod n | {
"end_col": 5,
"end_line": 115,
"start_col": 28,
"start_line": 111
} |
FStar.Pervasives.Lemma | val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_exp_mont_ll_lemma pbits rLen n mu a b =
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow k aM b in
assert (accM == LE.pow k aM b /\ accM < n);
Math.Lemmas.small_mod accM n;
mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM | val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b)
let mod_exp_mont_ll_lemma pbits rLen n mu a b = | false | null | true | let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow k aM b in
assert (accM == LE.pow k aM b /\ accM < n);
Math.Lemmas.small_mod accM n;
mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_ll_mod_lemma",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims._assert",
"Prims.l_and",
"Prims.eq2",
"Lib.Exponentiation.Definition.pow",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.to_mont",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end
val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont_ll pbits rLen n mu a b =
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc
val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b))
let mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
assert (aM == a * r % n);
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b;
assert (accM % n == LE.pow k2 aM b);
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
assert (acc == accM * d % n);
Math.Lemmas.lemma_mod_mul_distr_l accM d n;
mod_exp_mont_lemma n r d a b
val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b) | [] | Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_ll_lemma | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_ll pbits rLen n mu a b == Lib.NatMod.pow_mod a b) | {
"end_col": 52,
"end_line": 303,
"start_col": 47,
"start_line": 295
} |
FStar.Pervasives.Lemma | val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
assert (aM == a * r % n);
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b;
assert (accM % n == LE.pow k2 aM b);
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
assert (acc == accM * d % n);
Math.Lemmas.lemma_mod_mul_distr_l accM d n;
mod_exp_mont_lemma n r d a b | val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b))
let mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
assert (aM == a * r % n);
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b;
assert (accM % n == LE.pow k2 aM b);
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
assert (acc == accM * d % n);
Math.Lemmas.lemma_mod_mul_distr_l accM d n;
mod_exp_mont_lemma n r d a b | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Lib.NatMod.nat_mod",
"Prims.int",
"Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_lemma",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Montgomery.Lemmas.from_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.from_mont",
"Lib.Exponentiation.Definition.pow",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_is_pow_nat_mont",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.to_mont",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end
val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont_ll pbits rLen n mu a b =
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc
val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b)) | [] | Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_ll_mod_lemma | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat{Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu} ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat ->
accM: Prims.nat
-> FStar.Pervasives.Lemma
(requires
(let r = Prims.pow2 (pbits * rLen) in
let k = Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == Lib.Exponentiation.Definition.pow k (a * r % n) b))
(ensures
(let aM = Hacl.Spec.Montgomery.Lemmas.to_mont pbits rLen n mu a in
let acc = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu accM in
acc == Lib.NatMod.pow_mod a b)) | {
"end_col": 30,
"end_line": 288,
"start_col": 56,
"start_line": 269
} |
FStar.Pervasives.Lemma | val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
} | val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c = | false | null | true | calc ( == ) {
mont_mul n d (mont_mul n d a b) c;
( == ) { () }
(((a * b) * d % n) * c) * d % n;
( == ) { Math.Lemmas.paren_mul_right ((a * b) * d % n) c d }
((a * b) * d % n) * (c * d) % n;
( == ) { M.lemma_mod_mul_distr3 1 ((a * b) * d) (c * d) n }
((a * b) * d) * (c * d) % n;
( == ) { Math.Lemmas.paren_mul_right ((a * b) * d) c d }
(((a * b) * d) * c) * d % n;
( == ) { (Math.Lemmas.paren_mul_right a b d;
Math.Lemmas.paren_mul_right a (b * d) c) }
(a * ((b * d) * c)) * d % n;
( == ) { (Math.Lemmas.paren_mul_right b d c;
Math.Lemmas.paren_mul_right b c d) }
(a * ((b * c) * d)) * d % n;
( == ) { M.lemma_mod_mul_distr3 a ((b * c) * d) d n }
mont_mul n d a (mont_mul n d b c);
} | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"Lib.NatMod.nat_mod",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Hacl.Spec.Exponentiation.Lemmas.mont_mul",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"Hacl.Spec.Montgomery.Lemmas.lemma_mod_mul_distr3"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c)) | [] | Hacl.Spec.Exponentiation.Lemmas.lemma_mont_mul_assoc | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.pos ->
d: Prims.int ->
a: Lib.NatMod.nat_mod n ->
b: Lib.NatMod.nat_mod n ->
c: Lib.NatMod.nat_mod n
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mont_mul n
d
(Hacl.Spec.Exponentiation.Lemmas.mont_mul n d a b)
c ==
Hacl.Spec.Exponentiation.Lemmas.mont_mul n
d
a
(Hacl.Spec.Exponentiation.Lemmas.mont_mul n d b c)) | {
"end_col": 5,
"end_line": 59,
"start_col": 2,
"start_line": 43
} |
FStar.Pervasives.Lemma | val pow_nat_mont_ll_mod_base:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
LE.pow k a b == LE.pow k (a % n) b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow_nat_mont_ll_mod_base pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_comm_monoid n r d in
let k2 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
calc (==) {
LE.pow k2 a b;
(==) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b }
LE.pow k1 a b;
(==) { pow_nat_mont_is_pow n r d a b }
pow (a * d % n) b * r % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a d n }
pow (a % n * d % n) b * r % n;
(==) { pow_nat_mont_is_pow n r d (a % n) b }
LE.pow k1 (a % n) b;
(==) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu (a % n) b }
LE.pow k2 (a % n) b;
} | val pow_nat_mont_ll_mod_base:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
LE.pow k a b == LE.pow k (a % n) b))
let pow_nat_mont_ll_mod_base pbits rLen n mu a b = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_comm_monoid n r d in
let k2 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
calc ( == ) {
LE.pow k2 a b;
( == ) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b }
LE.pow k1 a b;
( == ) { pow_nat_mont_is_pow n r d a b }
pow (a * d % n) b * r % n;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l a d n }
pow ((a % n) * d % n) b * r % n;
( == ) { pow_nat_mont_is_pow n r d (a % n) b }
LE.pow k1 (a % n) b;
( == ) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu (a % n) b }
LE.pow k2 (a % n) b;
} | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Lib.NatMod.nat_mod",
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.Exponentiation.Definition.pow",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"Lib.NatMod.pow",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_is_pow_nat_mont",
"Prims.squash",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_is_pow",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end
val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont_ll pbits rLen n mu a b =
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc
val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b))
let mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
assert (aM == a * r % n);
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b;
assert (accM % n == LE.pow k2 aM b);
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
assert (acc == accM * d % n);
Math.Lemmas.lemma_mod_mul_distr_l accM d n;
mod_exp_mont_lemma n r d a b
val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b)
let mod_exp_mont_ll_lemma pbits rLen n mu a b =
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow k aM b in
assert (accM == LE.pow k aM b /\ accM < n);
Math.Lemmas.small_mod accM n;
mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM
val from_mont_exp_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = LE.pow k aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
a < n /\ c == pow_mod #n a b))
let from_mont_exp_lemma pbits rLen n mu aM b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let cM = LE.pow k1 aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
M.from_mont_lemma pbits rLen n mu cM;
M.from_mont_lemma pbits rLen n mu aM;
//assert (c == cM * d % n);
calc (==) {
cM * d % n;
(==) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b }
LE.pow k2 aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
pow (aM * d % n) b * r % n * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow a b % n;
(==) { Lib.NatMod.lemma_pow_mod #n a b }
pow_mod #n a b;
};
assert (a < n /\ c == pow_mod #n a b)
val pow_nat_mont_ll_mod_base:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
LE.pow k a b == LE.pow k (a % n) b)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow_nat_mont_ll_mod_base:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
LE.pow k a b == LE.pow k (a % n) b)) | [] | Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_mod_base | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu)
(ensures
(let k = Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid pbits rLen n mu in
Lib.Exponentiation.Definition.pow k a b == Lib.Exponentiation.Definition.pow k (a % n) b)) | {
"end_col": 5,
"end_line": 377,
"start_col": 50,
"start_line": 357
} |
FStar.Pervasives.Lemma | val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
} | val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a = | false | null | true | calc ( == ) {
(a * (1 * r % n)) * d % n;
( == ) { M.lemma_mod_mul_distr3 a r d n }
(a * r) * d % n;
( == ) { (Math.Lemmas.paren_mul_right a r d;
Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n) }
a * (r * d % n) % n;
( == ) { assert (r * d % n = 1) }
a % n;
( == ) { Math.Lemmas.small_mod a n }
a;
} | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.nat_mod",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Montgomery.Lemmas.lemma_mod_mul_distr3",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.paren_mul_right",
"Prims._assert",
"FStar.Math.Lemmas.small_mod"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a) | [] | Hacl.Spec.Exponentiation.Lemmas.lemma_mont_one | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.pos -> r: Prims.pos -> d: Prims.int{r * d % n = 1} -> a: Lib.NatMod.nat_mod n
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Exponentiation.Lemmas.mont_mul n d a (Hacl.Spec.Exponentiation.Lemmas.mont_one n r) ==
a) | {
"end_col": 5,
"end_line": 38,
"start_col": 2,
"start_line": 28
} |
FStar.Pervasives.Lemma | val from_mont_exp_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = LE.pow k aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
a < n /\ c == pow_mod #n a b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let from_mont_exp_lemma pbits rLen n mu aM b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let cM = LE.pow k1 aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
M.from_mont_lemma pbits rLen n mu cM;
M.from_mont_lemma pbits rLen n mu aM;
//assert (c == cM * d % n);
calc (==) {
cM * d % n;
(==) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b }
LE.pow k2 aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
pow (aM * d % n) b * r % n * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow a b % n;
(==) { Lib.NatMod.lemma_pow_mod #n a b }
pow_mod #n a b;
};
assert (a < n /\ c == pow_mod #n a b) | val from_mont_exp_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = LE.pow k aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
a < n /\ c == pow_mod #n a b))
let from_mont_exp_lemma pbits rLen n mu aM b = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let cM = LE.pow k1 aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
M.from_mont_lemma pbits rLen n mu cM;
M.from_mont_lemma pbits rLen n mu aM;
calc ( == ) {
cM * d % n;
( == ) { pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b }
LE.pow k2 aM b * d % n;
( == ) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
( == ) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
( == ) { () }
pow a b % n;
( == ) { Lib.NatMod.lemma_pow_mod #n a b }
pow_mod #n a b;
};
assert (a < n /\ c == pow_mod #n a b) | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims._assert",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.NatMod.pow_mod",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Lib.NatMod.pow",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_is_pow_nat_mont",
"Prims.squash",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_is_pow",
"Hacl.Spec.Montgomery.Lemmas.lemma_mont_id",
"Lib.NatMod.lemma_pow_mod",
"Hacl.Spec.Montgomery.Lemmas.from_mont_lemma",
"Hacl.Spec.Montgomery.Lemmas.from_mont",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end
val mod_exp_mont_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont_ll pbits rLen n mu a b =
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) aM b in
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
acc
val mod_exp_mont_ll_mod_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat -> accM:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
accM < r /\ accM % n == LE.pow k (a * r % n) b))
(ensures
(let aM = M.to_mont pbits rLen n mu a in
let acc = M.from_mont pbits rLen n mu accM in
acc == pow_mod #n a b))
let mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let k2 = mk_nat_mont_comm_monoid n r d in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
assert (aM == a * r % n);
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu aM b;
assert (accM % n == LE.pow k2 aM b);
let acc = M.from_mont pbits rLen n mu accM in
M.from_mont_lemma pbits rLen n mu accM;
assert (acc == accM * d % n);
Math.Lemmas.lemma_mod_mul_distr_l accM d n;
mod_exp_mont_lemma n r d a b
val mod_exp_mont_ll_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont_ll pbits rLen n mu a b == pow_mod #n a b)
let mod_exp_mont_ll_lemma pbits rLen n mu a b =
let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let aM = M.to_mont pbits rLen n mu a in
M.to_mont_lemma pbits rLen n mu a;
let accM = LE.pow k aM b in
assert (accM == LE.pow k aM b /\ accM < n);
Math.Lemmas.small_mod accM n;
mod_exp_mont_ll_mod_lemma pbits rLen n mu a b accM
val from_mont_exp_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = LE.pow k aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
a < n /\ c == pow_mod #n a b)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_mont_exp_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> b:nat -> Lemma
(requires
M.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = LE.pow k aM b in
let c = M.from_mont pbits rLen n mu cM in
let a = M.from_mont pbits rLen n mu aM in
a < n /\ c == pow_mod #n a b)) | [] | Hacl.Spec.Exponentiation.Lemmas.from_mont_exp_lemma | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat ->
aM: Prims.nat ->
b: Prims.nat
-> FStar.Pervasives.Lemma
(requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ aM < n)
(ensures
(let k = Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid pbits rLen n mu in
let cM = Lib.Exponentiation.Definition.pow k aM b in
let c = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu cM in
let a = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM in
a < n /\ c == Lib.NatMod.pow_mod a b)) | {
"end_col": 39,
"end_line": 344,
"start_col": 46,
"start_line": 316
} |
FStar.Pervasives.Lemma | val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0 then begin
LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1 end
else begin
LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
//assert (LE.pow k1 a b == k1.LE.fmul a (LE.pow k1 a (b - 1)));
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
() end | val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b))
let rec pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a b = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let k0 = mk_nat_mont_comm_monoid n r d in
let k1 = mk_nat_mont_ll_comm_monoid pbits rLen n mu in
if b = 0
then
(LE.lemma_pow0 k0 a;
LE.lemma_pow0 k1 a;
M.to_mont_lemma pbits rLen n mu 1)
else
(LE.lemma_pow_unfold k0 a b;
LE.lemma_pow_unfold k1 a b;
M.mont_mul_lemma pbits rLen n mu a (LE.pow k1 a (b - 1));
pow_nat_mont_ll_is_pow_nat_mont pbits rLen n mu a (b - 1);
()) | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Lib.NatMod.nat_mod",
"Prims.int",
"Prims.op_Equality",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Prims.unit",
"Lib.Exponentiation.Definition.lemma_pow0",
"Prims.bool",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_is_pow_nat_mont",
"Prims.op_Subtraction",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma",
"Lib.Exponentiation.Definition.pow",
"Lib.Exponentiation.Definition.lemma_pow_unfold",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"FStar.Mul.op_Star",
"Prims.pow2"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b
(* Modular exponentiation with Montgomery arithmetic
using functions from Hacl.Spec.Montgomery.Lemmas *)
val mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> nat_mod n
let mont_one_ll pbits rLen n mu =
M.mont_one_lemma pbits rLen n mu;
M.mont_one pbits rLen n mu
val mont_mul_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul_ll pbits rLen n mu a b =
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul pbits rLen n mu a b
val lemma_mont_one_ll: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu} -> a:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a (mont_one_ll pbits rLen n mu) == a)
let lemma_mont_one_ll pbits rLen n mu a =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
let mont_one = mont_one_ll pbits rLen n mu in
M.mont_one_lemma pbits rLen n mu;
assert (mont_one == 1 * r % n);
M.mont_mul_lemma pbits rLen n mu a mont_one;
lemma_mont_one n r d a
val lemma_mont_mul_ll_assoc: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c ==
mont_mul_ll pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c))
let lemma_mont_mul_ll_assoc pbits rLen n mu a b c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu (mont_mul_ll pbits rLen n mu a b) c;
M.mont_mul_lemma pbits rLen n mu b c;
M.mont_mul_lemma pbits rLen n mu a (mont_mul_ll pbits rLen n mu b c);
lemma_mont_mul_assoc n d a b c
val lemma_mont_mul_ll_comm: pbits:pos -> rLen:pos -> n:pos -> mu:nat{M.mont_pre pbits rLen n mu}
-> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul_ll pbits rLen n mu a b == mont_mul_ll pbits rLen n mu b a)
let lemma_mont_mul_ll_comm pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
M.mont_mul_lemma pbits rLen n mu a b;
M.mont_mul_lemma pbits rLen n mu b a;
lemma_mont_mul_comm n d a b
let mk_nat_mont_ll_comm_monoid (pbits:pos) (rLen:pos)
(n:pos) (mu:nat{M.mont_pre pbits rLen n mu}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one_ll pbits rLen n mu;
LE.mul = mont_mul_ll pbits rLen n mu;
LE.lemma_one = lemma_mont_one_ll pbits rLen n mu;
LE.lemma_mul_assoc = lemma_mont_mul_ll_assoc pbits rLen n mu;
LE.lemma_mul_comm = lemma_mont_mul_ll_comm pbits rLen n mu;
}
val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b)) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow_nat_mont_ll_is_pow_nat_mont:
pbits:pos -> rLen:pos
-> n:pos -> mu:nat
-> a:nat_mod n -> b:nat -> Lemma
(requires M.mont_pre pbits rLen n mu)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
M.mont_preconditions_d pbits rLen n;
LE.pow (mk_nat_mont_comm_monoid n r d) a b ==
LE.pow (mk_nat_mont_ll_comm_monoid pbits rLen n mu) a b)) | [
"recursion"
] | Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_is_pow_nat_mont | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
rLen: Prims.pos ->
n: Prims.pos ->
mu: Prims.nat ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu)
(ensures
(let r = Prims.pow2 (pbits * rLen) in
let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in
Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d pbits rLen n;
Lib.Exponentiation.Definition.pow (Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid
n
r
d)
a
b ==
Lib.Exponentiation.Definition.pow (Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid
pbits
rLen
n
mu)
a
b)
<:
Type0)) | {
"end_col": 10,
"end_line": 244,
"start_col": 61,
"start_line": 226
} |
FStar.Pervasives.Lemma | val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_exp_mont_lemma n r d a b =
let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
//let accM = LE.pow k aM b in
//let acc = accM * d % n in
calc (==) { // acc
LE.pow k aM b * d % n;
(==) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
(==) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
(==) { }
pow (a * r % n * d % n) b % n;
(==) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
(==) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b | val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b)
let mod_exp_mont_lemma n r d a b = | false | null | true | let k = mk_nat_mont_comm_monoid n r d in
let aM = a * r % n in
calc ( == ) {
LE.pow k aM b * d % n;
( == ) { pow_nat_mont_is_pow n r d aM b }
(pow (aM * d % n) b * r % n) * d % n;
( == ) { M.lemma_mont_id n r d (pow (aM * d % n) b) }
pow (aM * d % n) b % n;
( == ) { () }
pow ((a * r % n) * d % n) b % n;
( == ) { M.lemma_mont_id n r d a }
pow (a % n) b % n;
( == ) { Math.Lemmas.small_mod a n }
pow a b % n;
};
assert (mod_exp_mont n r d a b == pow a b % n);
lemma_pow_mod #n a b | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.nat_mod",
"Prims.nat",
"Lib.NatMod.lemma_pow_mod",
"Prims.unit",
"Prims._assert",
"Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont",
"Lib.NatMod.pow",
"FStar.Calc.calc_finish",
"Lib.Exponentiation.Definition.pow",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_is_pow",
"Prims.squash",
"Hacl.Spec.Montgomery.Lemmas.lemma_mont_id",
"FStar.Math.Lemmas.small_mod",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end
val mod_exp_mont: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat -> nat_mod n
let mod_exp_mont n r d a b =
let aM = a * r % n in
let accM = LE.pow (mk_nat_mont_comm_monoid n r d) aM b in
let acc = accM * d % n in
acc
val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_exp_mont_lemma: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat_mod n -> b:nat ->
Lemma (mod_exp_mont n r d a b == pow_mod #n a b) | [] | Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont_lemma | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.pos ->
r: Prims.pos ->
d: Prims.int{r * d % n == 1} ->
a: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures Hacl.Spec.Exponentiation.Lemmas.mod_exp_mont n r d a b == Lib.NatMod.pow_mod a b) | {
"end_col": 22,
"end_line": 141,
"start_col": 34,
"start_line": 121
} |
FStar.Pervasives.Lemma | val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Exponentiation",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec pow_nat_mont_is_pow n r d aM b =
let k = mk_nat_mont_comm_monoid n r d in
if b = 0 then begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow0 (aM * d % n) }
1 * r % n;
(==) { LE.lemma_pow0 k aM }
LE.pow k aM b;
}; () end
else begin
calc (==) {
pow (aM * d % n) b * r % n;
(==) { lemma_pow_unfold (aM * d % n) b }
(aM * d % n) * pow (aM * d % n) (b - 1) * r % n;
(==) {
Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
(==) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
aM * d * LE.pow k aM (b - 1) % n;
(==) {
Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d }
aM * LE.pow k aM (b - 1) * d % n;
(==) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
}; () end | val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b)
let rec pow_nat_mont_is_pow n r d aM b = | false | null | true | let k = mk_nat_mont_comm_monoid n r d in
if b = 0
then
(calc ( == ) {
pow (aM * d % n) b * r % n;
( == ) { lemma_pow0 (aM * d % n) }
1 * r % n;
( == ) { LE.lemma_pow0 k aM }
LE.pow k aM b;
};
())
else
(calc ( == ) {
pow (aM * d % n) b * r % n;
( == ) { lemma_pow_unfold (aM * d % n) b }
((aM * d % n) * pow (aM * d % n) (b - 1)) * r % n;
( == ) { (Math.Lemmas.paren_mul_right (aM * d % n) (pow (aM * d % n) (b - 1)) r;
Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (pow (aM * d % n) (b - 1) * r) n) }
(aM * d % n) * (pow (aM * d % n) (b - 1) * r % n) % n;
( == ) { pow_nat_mont_is_pow n r d aM (b - 1) }
(aM * d % n) * LE.pow k aM (b - 1) % n;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (LE.pow k aM (b - 1)) n }
(aM * d) * LE.pow k aM (b - 1) % n;
( == ) { (Math.Lemmas.paren_mul_right aM d (LE.pow k aM (b - 1));
Math.Lemmas.paren_mul_right aM (LE.pow k aM (b - 1)) d) }
(aM * LE.pow k aM (b - 1)) * d % n;
( == ) { LE.lemma_pow_unfold k aM b }
LE.pow k aM b;
};
()) | {
"checked_file": "Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Exponentiation.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.nat_mod",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.pow",
"Lib.Exponentiation.Definition.pow",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_pow0",
"Prims.squash",
"Lib.Exponentiation.Definition.lemma_pow0",
"Prims.bool",
"Prims.op_Subtraction",
"Lib.NatMod.lemma_pow_unfold",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.paren_mul_right",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_is_pow",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.Exponentiation.Definition.lemma_pow_unfold",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid"
] | [] | module Hacl.Spec.Exponentiation.Lemmas
open FStar.Mul
open Lib.NatMod
open Lib.Sequence
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(* Modular exponentiation with Montgomery arithmetic *)
val mont_one: n:pos -> r:pos -> nat_mod n
let mont_one n r = 1 * r % n
val mont_mul: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> nat_mod n
let mont_mul n d a b = a * b * d % n
val lemma_mont_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat_mod n ->
Lemma (mont_mul n d a (mont_one n r) == a)
let lemma_mont_one n r d a =
calc (==) {
a * (1 * r % n) * d % n;
(==) { M.lemma_mod_mul_distr3 a r d n }
a * r * d % n;
(==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n }
a * (r * d % n) % n;
(==) { assert (r * d % n = 1) }
a % n;
(==) { Math.Lemmas.small_mod a n }
a;
}
val lemma_mont_mul_assoc: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n -> c:nat_mod n ->
Lemma (mont_mul n d (mont_mul n d a b) c == mont_mul n d a (mont_mul n d b c))
let lemma_mont_mul_assoc n d a b c =
calc (==) {
mont_mul n d (mont_mul n d a b) c;
(==) { }
(a * b * d % n) * c * d % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d % n) c d }
(a * b * d % n) * (c * d) % n;
(==) { M.lemma_mod_mul_distr3 1 (a * b * d) (c * d) n }
a * b * d * (c * d) % n;
(==) { Math.Lemmas.paren_mul_right (a * b * d) c d }
a * b * d * c * d % n;
(==) { Math.Lemmas.paren_mul_right a b d; Math.Lemmas.paren_mul_right a (b * d) c }
a * (b * d * c) * d % n;
(==) { Math.Lemmas.paren_mul_right b d c; Math.Lemmas.paren_mul_right b c d }
a * (b * c * d) * d % n;
(==) { M.lemma_mod_mul_distr3 a (b * c * d) d n }
mont_mul n d a (mont_mul n d b c);
}
val lemma_mont_mul_comm: n:pos -> d:int -> a:nat_mod n -> b:nat_mod n ->
Lemma (mont_mul n d a b == mont_mul n d a b)
let lemma_mont_mul_comm n d a b = ()
let mk_nat_mont_comm_monoid (n:pos) (r:nat) (d:int{r * d % n = 1}) : LE.comm_monoid (nat_mod n) = {
LE.one = mont_one n r;
LE.mul = mont_mul n d;
LE.lemma_one = lemma_mont_one n r d;
LE.lemma_mul_assoc = lemma_mont_mul_assoc n d;
LE.lemma_mul_comm = lemma_mont_mul_comm n d;
}
val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b) | false | false | Hacl.Spec.Exponentiation.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow_nat_mont_is_pow: n:pos -> r:nat -> d:int{r * d % n = 1} -> aM:nat_mod n -> b:nat ->
Lemma (pow (aM * d % n) b * r % n == LE.pow (mk_nat_mont_comm_monoid n r d) aM b) | [
"recursion"
] | Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_is_pow | {
"file_name": "code/bignum/Hacl.Spec.Exponentiation.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Prims.pos ->
r: Prims.nat ->
d: Prims.int{r * d % n = 1} ->
aM: Lib.NatMod.nat_mod n ->
b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Lib.NatMod.pow (aM * d % n) b * r % n ==
Lib.Exponentiation.Definition.pow (Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_comm_monoid n
r
d)
aM
b) | {
"end_col": 15,
"end_line": 107,
"start_col": 40,
"start_line": 78
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Hash.Definitions",
"short_module": "HD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": "SpecVec"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "Constants"
},
{
"abbrev": true,
"full_module": "Lib.NTuple",
"short_module": "NTup"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.MultiBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NTuple",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_nblocks_vec_t (a:sha2_alg) (m:m_spec{is_supported a m}) =
upd:update_vec_t a m -> update_nblocks_vec_t' a m | let update_nblocks_vec_t (a: sha2_alg) (m: m_spec{is_supported a m}) = | false | null | false | upd: update_vec_t a m -> update_nblocks_vec_t' a m | {
"checked_file": "Hacl.Impl.SHA2.Generic.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NTuple.fsti.checked",
"Lib.MultiBuffer.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.SHA2.Vec.fst.checked",
"Hacl.Spec.SHA2.fst.checked",
"Hacl.Impl.SHA2.Core.fst.checked",
"Hacl.Hash.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA2.Generic.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.Vec.m_spec",
"Hacl.Spec.SHA2.Vec.is_supported",
"Hacl.Impl.SHA2.Generic.update_vec_t",
"Hacl.Impl.SHA2.Generic.update_nblocks_vec_t'"
] | [] | module Hacl.Impl.SHA2.Generic
open FStar.Mul
open FStar.HyperStack
open FStar.HyperStack.All
open Lib.IntTypes
open Lib.NTuple
open Lib.Buffer
open Lib.IntVector
open Lib.MultiBuffer
open Spec.Hash.Definitions
//open Hacl.Hash.Definitions
open Hacl.Spec.SHA2.Vec
open Hacl.Impl.SHA2.Core
module ST = FStar.HyperStack.ST
module NTup = Lib.NTuple
module Constants = Spec.SHA2.Constants
module Spec = Hacl.Spec.SHA2
module SpecVec = Hacl.Spec.SHA2.Vec
module VecTranspose = Lib.IntVector.Transpose
module LSeq = Lib.Sequence
module HD = Hacl.Hash.Definitions
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
(** Top-level constant arrays for the SHA2 algorithms. *)
let h224 : x:glbuffer uint32 8ul{witnessed x Constants.h224 /\ recallable x} =
createL_global Constants.h224_l
let h256 : x:glbuffer uint32 8ul{witnessed x Constants.h256 /\ recallable x} =
createL_global Constants.h256_l
let h384 : x:glbuffer uint64 8ul{witnessed x Constants.h384 /\ recallable x} =
createL_global Constants.h384_l
let h512 : x:glbuffer uint64 8ul{witnessed x Constants.h512 /\ recallable x} =
createL_global Constants.h512_l
noextract inline_for_extraction
let index_h0 (a:sha2_alg) (i:size_t) : Stack (word a)
(requires (fun _ -> size_v i < 8))
(ensures (fun h0 r h1 ->
h0 == h1 /\
r == Seq.index (Spec.h0 a) (size_v i))) =
match a with
| SHA2_224 -> recall h224; recall_contents h224 Constants.h224; h224.(i)
| SHA2_256 -> recall h256; recall_contents h256 Constants.h256; h256.(i)
| SHA2_384 -> recall h384; recall_contents h384 Constants.h384; h384.(i)
| SHA2_512 -> recall h512; recall_contents h512 Constants.h512; h512.(i)
let k224_256 : x:glbuffer uint32 64ul{witnessed x Constants.k224_256 /\ recallable x} =
createL_global Constants.k224_256_l
let k384_512 : x:glbuffer uint64 80ul{witnessed x Constants.k384_512 /\ recallable x} =
createL_global Constants.k384_512_l
noextract inline_for_extraction
let index_k0 (a:sha2_alg) (i:size_t) : Stack (word a)
(requires (fun _ -> size_v i < Spec.size_k_w a))
(ensures (fun h0 r h1 ->
h0 == h1 /\
r == Seq.index (Spec.k0 a) (size_v i))) =
match a with
| SHA2_224 | SHA2_256 ->
recall_contents k224_256 Constants.k224_256;
k224_256.(i)
| SHA2_384 | SHA2_512 ->
recall_contents k384_512 Constants.k384_512;
k384_512.(i)
inline_for_extraction noextract
val shuffle_core: #a:sha2_alg -> #m:m_spec
-> k_t:word a
-> ws_t:element_t a m
-> st:state_t a m ->
Stack unit
(requires fun h -> live h st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == SpecVec.shuffle_core_spec k_t ws_t (as_seq h0 st))
let shuffle_core #a #m k_t ws_t st =
let hp0 = ST.get() in
let a0 = st.(0ul) in
let b0 = st.(1ul) in
let c0 = st.(2ul) in
let d0 = st.(3ul) in
let e0 = st.(4ul) in
let f0 = st.(5ul) in
let g0 = st.(6ul) in
let h0 = st.(7ul) in
let k_e_t = load_element a m k_t in
let t1 = h0 +| (_Sigma1 e0) +| (_Ch e0 f0 g0) +| k_e_t +| ws_t in
let t2 = (_Sigma0 a0) +| (_Maj a0 b0 c0) in
let a1 = t1 +| t2 in
let b1 = a0 in
let c1 = b0 in
let d1 = c0 in
let e1 = d0 +| t1 in
let f1 = e0 in
let g1 = f0 in
let h1 = g0 in
create8 st a1 b1 c1 d1 e1 f1 g1 h1
#push-options "--z3rlimit 300"
inline_for_extraction noextract
val ws_next: #a:sha2_alg -> #m:m_spec -> ws:ws_t a m ->
Stack unit
(requires fun h -> live h ws)
(ensures fun h0 _ h1 -> modifies (loc ws) h0 h1 /\
as_seq h1 ws == SpecVec.ws_next (as_seq h0 ws))
let ws_next #a #m ws =
let h0 = ST.get() in
loop1 h0 16ul ws
(fun h -> ws_next_inner #a #m)
(fun i ->
Lib.LoopCombinators.unfold_repeati 16 (ws_next_inner #a #m) (as_seq h0 ws) (v i);
let t16 = ws.(i) in
let t15 = ws.((i+.1ul) %. 16ul) in
let t7 = ws.((i+.9ul) %. 16ul) in
let t2 = ws.((i+.14ul) %. 16ul) in
let s1 = _sigma1 t2 in
let s0 = _sigma0 t15 in
ws.(i) <- (s1 +| t7 +| s0 +| t16))
#pop-options
inline_for_extraction noextract
val shuffle: #a:sha2_alg -> #m:m_spec -> ws:ws_t a m -> hash:state_t a m ->
Stack unit
(requires fun h -> live h hash /\ live h ws /\ disjoint hash ws)
(ensures fun h0 _ h1 -> modifies2 ws hash h0 h1 /\
as_seq h1 hash == SpecVec.shuffle #a #m (as_seq h0 ws) (as_seq h0 hash))
let shuffle #a #m ws hash =
let h0 = ST.get() in
loop2 h0 (num_rounds16 a) ws hash
(fun h -> shuffle_inner_loop #a #m)
(fun i ->
Lib.LoopCombinators.unfold_repeati (v (num_rounds16 a)) (shuffle_inner_loop #a #m) (as_seq h0 ws, as_seq h0 hash) (v i);
let h1 = ST.get() in
loop1 h1 16ul hash
(fun h -> shuffle_inner #a #m (as_seq h1 ws) (v i))
(fun j ->
Lib.LoopCombinators.unfold_repeati 16 (shuffle_inner #a #m (as_seq h1 ws) (v i)) (as_seq h1 hash) (v j);
let k_t = index_k0 a (16ul *. i +. j) in
let ws_t = ws.(j) in
shuffle_core k_t ws_t hash);
if i <. num_rounds16 a -. 1ul then ws_next ws)
inline_for_extraction noextract
val alloc: a:sha2_alg -> m:m_spec ->
StackInline (state_t a m)
(requires fun h -> True)
(ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 (Seq.create 8 (zero_element a m)))
let alloc a m = Lib.Buffer.create 8ul (zero_element a m)
inline_for_extraction noextract
let init_vec_t (a:sha2_alg) (m:m_spec) = hash:state_t a m ->
Stack unit
(requires fun h -> live h hash)
(ensures fun h0 _ h1 -> modifies1 hash h0 h1 /\
as_seq h1 hash == SpecVec.init a m)
inline_for_extraction noextract
val init: #a:sha2_alg -> #m:m_spec -> init_vec_t a m
let init #a #m hash =
let h0 = ST.get() in
fill h0 8ul hash
(fun h i -> load_element a m (Seq.index (Spec.h0 a) i))
(fun i ->
let hi = index_h0 a i in
load_element a m hi);
let h1 = ST.get() in
LSeq.eq_intro (as_seq h1 hash) (LSeq.createi 8 (fun i -> load_element a m (Seq.index (Spec.h0 a) i)))
inline_for_extraction noextract
let update_vec_t (a:sha2_alg) (m:m_spec{is_supported a m}) =
b:multibuf (lanes a m) (HD.block_len a)
-> hash:state_t a m ->
Stack unit
(requires fun h -> live_multi h b /\ live h hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == SpecVec.update (as_seq_multi h0 b) (as_seq h0 hash))
#push-options "--z3rlimit 200"
inline_for_extraction noextract
val update: #a:sha2_alg -> #m:m_spec{is_supported a m} -> update_vec_t a m
let update #a #m b hash =
let h0 = ST.get() in
push_frame ();
let h1 = ST.get() in
let hash_old = create 8ul (zero_element a m) in
let ws = create 16ul (zero_element a m) in
assert (disjoint_multi b hash_old);
assert (disjoint_multi b ws);
assert (disjoint ws hash_old);
assert (disjoint hash hash_old);
assert (disjoint ws hash);
copy hash_old hash;
let h2 = ST.get() in
assert (live_multi h2 b);
NTup.(eq_intro (as_seq_multi h2 b) (as_seq_multi h0 b));
load_ws b ws;
let h3 = ST.get() in
assert (modifies (loc ws |+| loc hash_old) h0 h3);
assert (as_seq h3 ws == SpecVec.load_ws (as_seq_multi h2 b));
shuffle ws hash;
let h4 = ST.get() in
assert (modifies (loc hash |+| (loc ws |+| loc hash_old)) h0 h4);
assert (as_seq h4 hash == SpecVec.shuffle (as_seq h3 ws) (as_seq h0 hash));
map2T 8ul hash (+|) hash hash_old;
let h5 = ST.get() in
assert (modifies (loc hash |+| (loc ws |+| loc hash_old)) h0 h5);
reveal_opaque (`%SpecVec.update) (SpecVec.update #a #m);
assert (as_seq h5 hash == SpecVec.update (as_seq_multi h0 b) (as_seq h0 hash));
pop_frame()
#pop-options
inline_for_extraction noextract
let update_last_vec_t' (a:sha2_alg) (m:m_spec{is_supported a m}) =
totlen:len_t a
-> len:size_t{v len <= block_length a}
-> b:multibuf (lanes a m) len
-> hash:state_t a m ->
Stack unit
(requires fun h -> live_multi h b /\ live h hash /\ disjoint_multi b hash)
(ensures fun h0 _ h1 -> modifies (loc hash) h0 h1 /\
as_seq h1 hash == SpecVec.update_last totlen (v len) (as_seq_multi h0 b) (as_seq h0 hash))
inline_for_extraction noextract
let update_last_vec_t (a:sha2_alg) (m:m_spec{is_supported a m}) =
upd:update_vec_t a m -> update_last_vec_t' a m
#push-options "--z3rlimit 350"
inline_for_extraction noextract
val update_last: #a:sha2_alg -> #m:m_spec{is_supported a m} -> update_last_vec_t a m
let update_last #a #m upd totlen len b hash =
let h0 = ST.get() in
push_frame ();
let h1 = ST.get() in
let blocks = padded_blocks a len in
let fin = blocks *! HD.block_len a in
let last = create (size (lanes a m) *! 2ul *! HD.block_len a) (u8 0) in
let totlen_buf = create (len_len a) (u8 0) in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
Lib.ByteBuffer.uint_to_bytes_be #(len_int_type a) totlen_buf total_len_bits;
let h2 = ST.get () in
NTup.eq_intro (as_seq_multi h2 b) (as_seq_multi h0 b);
assert (as_seq h2 totlen_buf ==
Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits);
let (last0,last1) = load_last #a #m totlen_buf len b fin last in
let h3 = ST.get () in
assert ((as_seq_multi h3 last0, as_seq_multi h3 last1) ==
SpecVec.load_last #a #m (as_seq h2 totlen_buf) (v fin) (v len) (as_seq_multi h2 b));
assert (disjoint_multi last1 hash);
upd last0 hash;
let h4 = ST.get() in
assert (modifies (loc hash |+| loc last |+| loc totlen_buf) h1 h3);
assert (as_seq h4 hash == SpecVec.update (as_seq_multi h3 last0) (as_seq h3 hash));
NTup.eq_intro (as_seq_multi h4 last1) (as_seq_multi h3 last1);
assert (v blocks > 1 ==> blocks >. 1ul);
assert (blocks >. 1ul ==> v blocks > 1);
assert (not (blocks >. 1ul) ==> not (v blocks > 1));
if blocks >. 1ul then (
upd last1 hash;
let h5 = ST.get() in
assert (as_seq h5 hash == SpecVec.update (as_seq_multi h4 last1) (as_seq h4 hash));
assert (modifies (loc hash |+| loc last |+| loc totlen_buf) h1 h5);
assert (as_seq h5 hash == SpecVec.update_last totlen (v len) (as_seq_multi h0 b) (as_seq h0 hash));
pop_frame()
) else (
let h6 = ST.get() in
assert (h4 == h6);
assert (modifies (loc hash |+| loc totlen_buf |+| loc last) h1 h6);
assert (as_seq h6 hash == SpecVec.update_last totlen (v len) (as_seq_multi h0 b) (as_seq h0 hash));
pop_frame())
#pop-options
// The type of update_nblocks_vec_t applied to a specific update function
inline_for_extraction noextract
let update_nblocks_vec_t' (a:sha2_alg) (m:Hacl.Spec.SHA2.Vec.(m:m_spec{is_supported a m})) =
let open Lib.IntTypes in
let open Lib.MultiBuffer in
let open Lib.Buffer in
let open Hacl.Spec.SHA2.Vec in
let open Hacl.Impl.SHA2.Core in
len:size_t
-> b:multibuf (lanes a m) len
-> st:state_t a m ->
Stack unit
(requires fun h0 -> live_multi h0 b /\ live h0 st /\ disjoint_multi b st)
(ensures fun h0 _ h1 -> modifies (loc st) h0 h1 /\
(lemma_len_lt_max_a_fits_size_t a len;
as_seq h1 st == update_nblocks #a #m (v len) (as_seq_multi h0 b) (as_seq h0 st)))
inline_for_extraction noextract | false | false | Hacl.Impl.SHA2.Generic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_nblocks_vec_t : a: Spec.Hash.Definitions.sha2_alg ->
m: Hacl.Spec.SHA2.Vec.m_spec{Hacl.Spec.SHA2.Vec.is_supported a m}
-> Type0 | [] | Hacl.Impl.SHA2.Generic.update_nblocks_vec_t | {
"file_name": "code/sha2-mb/Hacl.Impl.SHA2.Generic.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
m: Hacl.Spec.SHA2.Vec.m_spec{Hacl.Spec.SHA2.Vec.is_supported a m}
-> Type0 | {
"end_col": 53,
"end_line": 315,
"start_col": 4,
"start_line": 315
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.