effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.HyperStack.ST.Stack | val check_avx512: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_avx512 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx512 () in //This is a call to the interop wrapper
x | val check_avx512: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_cpuid_enabled) /\
B.modifies B.loc_none h0 h1)
let check_avx512 () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_avx512 () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_avx512"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x
let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x
let check_rdrand () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_rdrand () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_avx512: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_avx512 | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 39,
"start_col": 21,
"start_line": 37
} |
FStar.HyperStack.ST.Stack | val check_rdrand: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> rdrand_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_rdrand () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_rdrand () in //This is a call to the interop wrapper
x | val check_rdrand: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> rdrand_enabled) /\
B.modifies B.loc_none h0 h1)
let check_rdrand () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_rdrand () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_rdrand"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x
let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_rdrand: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> rdrand_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_rdrand | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 35,
"start_col": 21,
"start_line": 33
} |
FStar.HyperStack.ST.Stack | val check_avx: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x | val check_avx: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_cpuid_enabled) /\
B.modifies B.loc_none h0 h1)
let check_avx () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_avx () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_avx"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_avx: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_avx | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 19,
"start_col": 18,
"start_line": 17
} |
FStar.HyperStack.ST.Stack | val check_movbe: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> movbe_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x | val check_movbe: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> movbe_enabled) /\
B.modifies B.loc_none h0 h1)
let check_movbe () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_movbe () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_movbe"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_movbe: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> movbe_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_movbe | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 27,
"start_col": 20,
"start_line": 25
} |
FStar.HyperStack.ST.Stack | val check_avx2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx2_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x | val check_avx2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx2_cpuid_enabled) /\
B.modifies B.loc_none h0 h1)
let check_avx2 () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_avx2 () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_avx2"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_avx2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx2_cpuid_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_avx2 | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 23,
"start_col": 19,
"start_line": 21
} |
FStar.HyperStack.ST.Stack | val check_osxsave: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> osxsave_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_osxsave () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_osxsave () in //This is a call to the interop wrapper
x | val check_osxsave: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> osxsave_enabled) /\
B.modifies B.loc_none h0 h1)
let check_osxsave () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_osxsave () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_osxsave"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x
let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x
let check_rdrand () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_rdrand () in //This is a call to the interop wrapper
x
let check_avx512 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx512 () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_osxsave: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> osxsave_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_osxsave | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 43,
"start_col": 22,
"start_line": 41
} |
FStar.HyperStack.ST.Stack | val check_sha: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sha_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x | val check_sha: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sha_enabled) /\
B.modifies B.loc_none h0 h1)
let check_sha () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_sha () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_sha"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_sha: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sha_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_sha | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 11,
"start_col": 18,
"start_line": 9
} |
FStar.HyperStack.ST.Stack | val check_adx_bmi2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> adx_enabled /\ bmi2_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x | val check_adx_bmi2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> adx_enabled /\ bmi2_enabled) /\
B.modifies B.loc_none h0 h1)
let check_adx_bmi2 () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_adx_bmi2"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_adx_bmi2: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> adx_enabled /\ bmi2_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_adx_bmi2 | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 15,
"start_col": 23,
"start_line": 13
} |
FStar.HyperStack.ST.Stack | val check_sse: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sse_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x | val check_sse: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sse_enabled) /\
B.modifies B.loc_none h0 h1)
let check_sse () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_sse () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_sse"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_sse: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> sse_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_sse | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 31,
"start_col": 18,
"start_line": 29
} |
FStar.HyperStack.ST.Stack | val check_aesni: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> aesni_enabled /\ pclmulqdq_enabled) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x | val check_aesni: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> aesni_enabled /\ pclmulqdq_enabled) /\
B.modifies B.loc_none h0 h1)
let check_aesni () = | true | null | false | let open Vale.X64.Decls in
let x, _ = Vale.Stdcalls.X64.Cpuid.check_aesni () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_aesni"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_aesni: unit -> Stack UInt64.t
(requires fun h0 -> True)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> aesni_enabled /\ pclmulqdq_enabled) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_aesni | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 7,
"start_col": 0,
"start_line": 5
} |
FStar.HyperStack.ST.Stack | val check_avx_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_xcr0) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_avx_xcr0 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx_xcr0 () in //This is a call to the interop wrapper
x | val check_avx_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_xcr0) /\
B.modifies B.loc_none h0 h1)
let check_avx_xcr0 () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_avx_xcr0 () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_avx_xcr0"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x
let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x
let check_rdrand () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_rdrand () in //This is a call to the interop wrapper
x
let check_avx512 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx512 () in //This is a call to the interop wrapper
x
let check_osxsave () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_osxsave () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_avx_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx_xcr0) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_avx_xcr0 | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 47,
"start_col": 23,
"start_line": 45
} |
FStar.HyperStack.ST.Stack | val check_avx512_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled /\ avx_xcr0)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_xcr0) /\
B.modifies B.loc_none h0 h1) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Wrapper.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_avx512_xcr0 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx512_xcr0 () in //This is a call to the interop wrapper
x | val check_avx512_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled /\ avx_xcr0)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_xcr0) /\
B.modifies B.loc_none h0 h1)
let check_avx512_xcr0 () = | true | null | false | let x, _ = Vale.Stdcalls.X64.Cpuid.check_avx512_xcr0 () in
x | {
"checked_file": "Vale.Wrapper.X64.Cpuid.fst.checked",
"dependencies": [
"Vale.X64.Decls.fsti.checked",
"Vale.Stdcalls.X64.Cpuid.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Wrapper.X64.Cpuid.fst"
} | [] | [
"Prims.unit",
"FStar.UInt64.t",
"FStar.Ghost.erased",
"Vale.Interop.X64.as_lowstar_sig_ret",
"Vale.Interop.X64.als_ret",
"Vale.Stdcalls.X64.Cpuid.check_avx512_xcr0"
] | [] | module Vale.Wrapper.X64.Cpuid
open FStar.Mul
let check_aesni () =
let open Vale.X64.Decls in
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_aesni () in //This is a call to the interop wrapper
x
let check_sha () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sha () in //This is a call to the interop wrapper
x
let check_adx_bmi2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_adx_bmi2 () in //This is a call to the interop wrapper
x
let check_avx () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx () in //This is a call to the interop wrapper
x
let check_avx2 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx2 () in //This is a call to the interop wrapper
x
let check_movbe () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_movbe () in //This is a call to the interop wrapper
x
let check_sse () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_sse () in //This is a call to the interop wrapper
x
let check_rdrand () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_rdrand () in //This is a call to the interop wrapper
x
let check_avx512 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx512 () in //This is a call to the interop wrapper
x
let check_osxsave () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_osxsave () in //This is a call to the interop wrapper
x
let check_avx_xcr0 () =
let (x, _) = Vale.Stdcalls.X64.Cpuid.check_avx_xcr0 () in //This is a call to the interop wrapper
x | false | false | Vale.Wrapper.X64.Cpuid.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_avx512_xcr0: unit -> Stack UInt64.t
(requires fun h0 -> osxsave_enabled /\ avx_xcr0)
(ensures fun h0 ret_val h1 ->
((UInt64.v ret_val) =!= 0 ==> avx512_xcr0) /\
B.modifies B.loc_none h0 h1) | [] | Vale.Wrapper.X64.Cpuid.check_avx512_xcr0 | {
"file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Cpuid.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 3,
"end_line": 51,
"start_col": 26,
"start_line": 49
} |
FStar.Pervasives.Lemma | val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24 | val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d = | false | null | true | lemma_mul_lt c d (pow2 256) (pow2 17);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24 | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.pow2_lt_compat",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims._assert",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_lt"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.fmul14_bound | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat
-> FStar.Pervasives.Lemma
(requires
a + b * Prims.pow2 256 == c * d /\ a < Prims.pow2 256 /\ c < Prims.pow2 256 /\
d < Prims.pow2 17) (ensures b * 38 < Prims.pow2 63) | {
"end_col": 34,
"end_line": 127,
"start_col": 2,
"start_line": 121
} |
FStar.Pervasives.Lemma | val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14 | val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d = | false | null | true | assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14 | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.pow2_lt_compat",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_lt",
"FStar.Pervasives.assert_norm"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.carry_wide_bound | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat
-> FStar.Pervasives.Lemma
(requires
a + b * Prims.pow2 256 == c + d * 38 /\ a < Prims.pow2 256 /\ c < Prims.pow2 256 /\
d < Prims.pow2 256) (ensures b * 38 < Prims.pow2 63) | {
"end_col": 34,
"end_line": 111,
"start_col": 2,
"start_line": 106
} |
FStar.Pervasives.Lemma | val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime | val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () = | false | null | true | assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Spec.Curve25519.prime",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_prime19 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures Prims.pow2 255 % Spec.Curve25519.prime == 19) | {
"end_col": 38,
"end_line": 37,
"start_col": 2,
"start_line": 36
} |
FStar.Pervasives.Lemma | val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_subtract_p f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
if ((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) &&
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3))
then lemma_subtract_p4_0 f f'
else lemma_subtract_p4_1 f f' | val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p f f' = | false | null | true | let f0, f1, f2, f3 = f in
let f0', f1', f2', f3' = f' in
if
((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff ||
v f0 < 0xffffffffffffffed) &&
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3))
then lemma_subtract_p4_0 f f'
else lemma_subtract_p4_1 f f' | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Curve25519.Field64.Definition.felem4",
"Lib.IntTypes.uint64",
"Prims.op_AmpAmp",
"Prims.op_BarBar",
"Prims.op_disEquality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_LessThan",
"Prims.op_Equality",
"Lib.IntTypes.range_t",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_subtract_p4_0",
"Prims.bool",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_subtract_p4_1",
"Prims.unit"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24
val carry_pass_store_bound: f:nat -> top_bit:nat -> r0:nat -> r1:nat -> c:nat -> Lemma
(requires
top_bit == f / pow2 255 /\
r0 + top_bit * pow2 255 == f /\
r1 + c * pow2 256 == r0 + 19 * top_bit /\
r0 < pow2 256 /\ r1 < pow2 256 /\
f < pow2 256 /\ top_bit <= 1)
(ensures c = 0 /\ r0 < pow2 255)
let carry_pass_store_bound f top_bit r0 r1 c = ()
val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_0 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64);
assert (as_nat4 f <= pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + (pow2 64 - 1) * pow2 64 * pow2 64 +
(pow2 63 - 1) * pow2 64 * pow2 64 * pow2 64);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime
val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_1 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f' % prime ==
(v f0' + v f1' * pow2 64 + v f2' * pow2 64 * pow2 64 + v f3' * pow2 64 * pow2 64 * pow2 64) % prime);
assert (as_nat4 f' % prime ==
(v f0 - (pow2 64 - 19) + (v f1 - (pow2 64 - 1)) * pow2 64 + (v f2 - (pow2 64 - 1)) * pow2 64 * pow2 64 +
(v f3 - (pow2 63 - 1)) * pow2 64 * pow2 64 * pow2 64) % prime);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f' % prime ==
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 +
v f3 * pow2 64 * pow2 64 * pow2 64 - prime) % prime);
FStar.Math.Lemmas.lemma_mod_sub
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64) 1 prime
val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_subtract_p | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Hacl.Spec.Curve25519.Field64.Definition.felem4 ->
f': Hacl.Spec.Curve25519.Field64.Definition.felem4
-> FStar.Pervasives.Lemma
(requires
(let _ = f in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0 f1 f2 f3 = _ in
let _ = f' in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0' f1' f2' f3' = _ in
Lib.IntTypes.v f3 < Prims.pow2 63 /\
(Lib.IntTypes.v f3 <> 0x7fffffffffffffff || Lib.IntTypes.v f2 <> 0xffffffffffffffff ||
Lib.IntTypes.v f1 <> 0xffffffffffffffff ||
Lib.IntTypes.v f0 < 0xffffffffffffffed /\
Lib.IntTypes.v f0' = Lib.IntTypes.v f0 && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 &&
Lib.IntTypes.v f2' = Lib.IntTypes.v f2 &&
Lib.IntTypes.v f3' = Lib.IntTypes.v f3 \/
Lib.IntTypes.v f3 = 0x7fffffffffffffff && Lib.IntTypes.v f2 = 0xffffffffffffffff &&
Lib.IntTypes.v f1 = 0xffffffffffffffff &&
Lib.IntTypes.v f0 >= 0xffffffffffffffed /\
Lib.IntTypes.v f0' = Lib.IntTypes.v f0 - 0xffffffffffffffed &&
Lib.IntTypes.v f1' = Lib.IntTypes.v f1 - 0xffffffffffffffff &&
Lib.IntTypes.v f2' = Lib.IntTypes.v f2 - 0xffffffffffffffff &&
Lib.IntTypes.v f3' = Lib.IntTypes.v f3 - 0x7fffffffffffffff))
<:
Type0)
<:
Type0))
(ensures
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f' ==
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f % Spec.Curve25519.prime) | {
"end_col": 31,
"end_line": 212,
"start_col": 27,
"start_line": 206
} |
FStar.Pervasives.Lemma | val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_subtract_p4_1 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f' % prime ==
(v f0' + v f1' * pow2 64 + v f2' * pow2 64 * pow2 64 + v f3' * pow2 64 * pow2 64 * pow2 64) % prime);
assert (as_nat4 f' % prime ==
(v f0 - (pow2 64 - 19) + (v f1 - (pow2 64 - 1)) * pow2 64 + (v f2 - (pow2 64 - 1)) * pow2 64 * pow2 64 +
(v f3 - (pow2 63 - 1)) * pow2 64 * pow2 64 * pow2 64) % prime);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f' % prime ==
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 +
v f3 * pow2 64 * pow2 64 * pow2 64 - prime) % prime);
FStar.Math.Lemmas.lemma_mod_sub
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64) 1 prime | val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_1 f f' = | false | null | true | let f0, f1, f2, f3 = f in
let f0', f1', f2', f3' = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f' % prime ==
(v f0' + v f1' * pow2 64 + (v f2' * pow2 64) * pow2 64 + ((v f3' * pow2 64) * pow2 64) * pow2 64
) %
prime);
assert (as_nat4 f' % prime ==
(v f0 - (pow2 64 - 19) + (v f1 - (pow2 64 - 1)) * pow2 64 +
((v f2 - (pow2 64 - 1)) * pow2 64) * pow2 64 +
(((v f3 - (pow2 63 - 1)) * pow2 64) * pow2 64) * pow2 64) %
prime);
assert_norm (((pow2 63 * pow2 64) * pow2 64) * pow2 64 = pow2 255);
assert (as_nat4 f' % prime ==
(v f0 + v f1 * pow2 64 + (v f2 * pow2 64) * pow2 64 + ((v f3 * pow2 64) * pow2 64) * pow2 64 -
prime) %
prime);
FStar.Math.Lemmas.lemma_mod_sub (v f0 + v f1 * pow2 64 + (v f2 * pow2 64) * pow2 64 +
((v f3 * pow2 64) * pow2 64) * pow2 64)
1
prime | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Curve25519.Field64.Definition.felem4",
"Lib.IntTypes.uint64",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Curve25519.Field64.Definition.as_nat4",
"Prims.op_Subtraction",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24
val carry_pass_store_bound: f:nat -> top_bit:nat -> r0:nat -> r1:nat -> c:nat -> Lemma
(requires
top_bit == f / pow2 255 /\
r0 + top_bit * pow2 255 == f /\
r1 + c * pow2 256 == r0 + 19 * top_bit /\
r0 < pow2 256 /\ r1 < pow2 256 /\
f < pow2 256 /\ top_bit <= 1)
(ensures c = 0 /\ r0 < pow2 255)
let carry_pass_store_bound f top_bit r0 r1 c = ()
val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_0 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64);
assert (as_nat4 f <= pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + (pow2 64 - 1) * pow2 64 * pow2 64 +
(pow2 63 - 1) * pow2 64 * pow2 64 * pow2 64);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime
val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_subtract_p4_1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Hacl.Spec.Curve25519.Field64.Definition.felem4 ->
f': Hacl.Spec.Curve25519.Field64.Definition.felem4
-> FStar.Pervasives.Lemma
(requires
(let _ = f in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0 f1 f2 f3 = _ in
let _ = f' in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0' f1' f2' f3' = _ in
Lib.IntTypes.v f3 = 0x7fffffffffffffff && Lib.IntTypes.v f2 = 0xffffffffffffffff &&
Lib.IntTypes.v f1 = 0xffffffffffffffff &&
Lib.IntTypes.v f0 >= 0xffffffffffffffed /\
Lib.IntTypes.v f0' = Lib.IntTypes.v f0 - 0xffffffffffffffed &&
Lib.IntTypes.v f1' = Lib.IntTypes.v f1 - 0xffffffffffffffff &&
Lib.IntTypes.v f2' = Lib.IntTypes.v f2 - 0xffffffffffffffff &&
Lib.IntTypes.v f3' = Lib.IntTypes.v f3 - 0x7fffffffffffffff)
<:
Type0)
<:
Type0))
(ensures
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f' ==
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f % Spec.Curve25519.prime) | {
"end_col": 99,
"end_line": 191,
"start_col": 30,
"start_line": 175
} |
FStar.Pervasives.Lemma | val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_subtract_p4_0 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64);
assert (as_nat4 f <= pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + (pow2 64 - 1) * pow2 64 * pow2 64 +
(pow2 63 - 1) * pow2 64 * pow2 64 * pow2 64);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime | val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_0 f f' = | false | null | true | let f0, f1, f2, f3 = f in
let f0', f1', f2', f3' = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f ==
v f0 + v f1 * pow2 64 + (v f2 * pow2 64) * pow2 64 + ((v f3 * pow2 64) * pow2 64) * pow2 64);
assert (as_nat4 f <=
pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + ((pow2 64 - 1) * pow2 64) * pow2 64 +
(((pow2 63 - 1) * pow2 64) * pow2 64) * pow2 64);
assert_norm (((pow2 63 * pow2 64) * pow2 64) * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Curve25519.Field64.Definition.felem4",
"Lib.IntTypes.uint64",
"FStar.Math.Lemmas.modulo_lemma",
"Hacl.Spec.Curve25519.Field64.Definition.as_nat4",
"Spec.Curve25519.prime",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24
val carry_pass_store_bound: f:nat -> top_bit:nat -> r0:nat -> r1:nat -> c:nat -> Lemma
(requires
top_bit == f / pow2 255 /\
r0 + top_bit * pow2 255 == f /\
r1 + c * pow2 256 == r0 + 19 * top_bit /\
r0 < pow2 256 /\ r1 < pow2 256 /\
f < pow2 256 /\ top_bit <= 1)
(ensures c = 0 /\ r0 < pow2 255)
let carry_pass_store_bound f top_bit r0 r1 c = ()
val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_subtract_p4_0 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Hacl.Spec.Curve25519.Field64.Definition.felem4 ->
f': Hacl.Spec.Curve25519.Field64.Definition.felem4
-> FStar.Pervasives.Lemma
(requires
(let _ = f in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0 f1 f2 f3 = _ in
let _ = f' in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ f0' f1' f2' f3' = _ in
Lib.IntTypes.v f3 < Prims.pow2 63 /\
Lib.IntTypes.v f3 <> 0x7fffffffffffffff || Lib.IntTypes.v f2 <> 0xffffffffffffffff ||
Lib.IntTypes.v f1 <> 0xffffffffffffffff ||
Lib.IntTypes.v f0 < 0xffffffffffffffed /\
Lib.IntTypes.v f0' = Lib.IntTypes.v f0 && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 &&
Lib.IntTypes.v f2' = Lib.IntTypes.v f2 &&
Lib.IntTypes.v f3' = Lib.IntTypes.v f3)
<:
Type0)
<:
Type0))
(ensures
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f' ==
Hacl.Spec.Curve25519.Field64.Definition.as_nat4 f % Spec.Curve25519.prime) | {
"end_col": 51,
"end_line": 163,
"start_col": 30,
"start_line": 151
} |
FStar.Pervasives.Lemma | val lemma_carry_pass_store_f3: f:lseq uint64 4 ->
Lemma (let top_bit = f.[3] >>. 63ul in
let f3' = f.[3] &. u64 0x7fffffffffffffff in
v top_bit == SD.bn_v f / pow2 255 /\ v top_bit <= 1 /\
v f3' = v f.[3] % pow2 63 /\
v f.[3] == v top_bit * pow2 63 + v f3') | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_carry_pass_store_f3 f =
let top_bit = f.[3] >>. 63ul in
assert (SL.bn_get_ith_bit f 255 == ((f.[3] >>. 63ul) &. u64 1));
mod_mask_lemma top_bit 1ul;
assert (v (mod_mask #U64 #SEC 1ul) == v (u64 1));
SL.bn_get_ith_bit_lemma f 255;
assert (v top_bit == SD.bn_v f / pow2 255 % 2);
SD.bn_eval_bound f 4;
Math.Lemmas.lemma_div_lt_nat (SD.bn_v f) 256 255;
Math.Lemmas.small_mod (SD.bn_v f / pow2 255) 2;
assert (v top_bit == SD.bn_v f / pow2 255);
let f3' = f.[3] &. u64 0x7fffffffffffffff in
mod_mask_lemma f.[3] 63ul;
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert (v (mod_mask #U64 #SEC 63ul) == v (u64 0x7fffffffffffffff));
assert (v f3' = v f.[3] % pow2 63);
Math.Lemmas.euclidean_division_definition (v f.[3]) (pow2 63);
assert (v f.[3] == v top_bit * pow2 63 + v f3');
assert (v top_bit <= 1) | val lemma_carry_pass_store_f3: f:lseq uint64 4 ->
Lemma (let top_bit = f.[3] >>. 63ul in
let f3' = f.[3] &. u64 0x7fffffffffffffff in
v top_bit == SD.bn_v f / pow2 255 /\ v top_bit <= 1 /\
v f3' = v f.[3] % pow2 63 /\
v f.[3] == v top_bit * pow2 63 + v f3')
let lemma_carry_pass_store_f3 f = | false | null | true | let top_bit = f.[ 3 ] >>. 63ul in
assert (SL.bn_get_ith_bit f 255 == ((f.[ 3 ] >>. 63ul) &. u64 1));
mod_mask_lemma top_bit 1ul;
assert (v (mod_mask #U64 #SEC 1ul) == v (u64 1));
SL.bn_get_ith_bit_lemma f 255;
assert (v top_bit == SD.bn_v f / pow2 255 % 2);
SD.bn_eval_bound f 4;
Math.Lemmas.lemma_div_lt_nat (SD.bn_v f) 256 255;
Math.Lemmas.small_mod (SD.bn_v f / pow2 255) 2;
assert (v top_bit == SD.bn_v f / pow2 255);
let f3' = f.[ 3 ] &. u64 0x7fffffffffffffff in
mod_mask_lemma f.[ 3 ] 63ul;
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert (v (mod_mask #U64 #SEC 63ul) == v (u64 0x7fffffffffffffff));
assert (v f3' = v f.[ 3 ] % pow2 63);
Math.Lemmas.euclidean_division_definition (v f.[ 3 ]) (pow2 63);
assert (v f.[ 3 ] == v top_bit * pow2 63 + v f3');
assert (v top_bit <= 1) | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.unit",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.op_String_Access",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Equality",
"Prims.op_Modulus",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u64",
"FStar.Pervasives.assert_norm",
"Prims.op_Subtraction",
"Lib.IntTypes.mod_mask_lemma",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Prims.op_Division",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Math.Lemmas.small_mod",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma",
"Hacl.Spec.Bignum.Lib.bn_get_ith_bit",
"Lib.IntTypes.op_Greater_Greater_Dot"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24
val carry_pass_store_bound: f:nat -> top_bit:nat -> r0:nat -> r1:nat -> c:nat -> Lemma
(requires
top_bit == f / pow2 255 /\
r0 + top_bit * pow2 255 == f /\
r1 + c * pow2 256 == r0 + 19 * top_bit /\
r0 < pow2 256 /\ r1 < pow2 256 /\
f < pow2 256 /\ top_bit <= 1)
(ensures c = 0 /\ r0 < pow2 255)
let carry_pass_store_bound f top_bit r0 r1 c = ()
val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_0 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64);
assert (as_nat4 f <= pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + (pow2 64 - 1) * pow2 64 * pow2 64 +
(pow2 63 - 1) * pow2 64 * pow2 64 * pow2 64);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime
val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_1 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f' % prime ==
(v f0' + v f1' * pow2 64 + v f2' * pow2 64 * pow2 64 + v f3' * pow2 64 * pow2 64 * pow2 64) % prime);
assert (as_nat4 f' % prime ==
(v f0 - (pow2 64 - 19) + (v f1 - (pow2 64 - 1)) * pow2 64 + (v f2 - (pow2 64 - 1)) * pow2 64 * pow2 64 +
(v f3 - (pow2 63 - 1)) * pow2 64 * pow2 64 * pow2 64) % prime);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f' % prime ==
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 +
v f3 * pow2 64 * pow2 64 * pow2 64 - prime) % prime);
FStar.Math.Lemmas.lemma_mod_sub
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64) 1 prime
val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
if ((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) &&
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3))
then lemma_subtract_p4_0 f f'
else lemma_subtract_p4_1 f f'
val lemma_carry_pass_store_f3: f:lseq uint64 4 ->
Lemma (let top_bit = f.[3] >>. 63ul in
let f3' = f.[3] &. u64 0x7fffffffffffffff in
v top_bit == SD.bn_v f / pow2 255 /\ v top_bit <= 1 /\
v f3' = v f.[3] % pow2 63 /\
v f.[3] == v top_bit * pow2 63 + v f3') | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_carry_pass_store_f3: f:lseq uint64 4 ->
Lemma (let top_bit = f.[3] >>. 63ul in
let f3' = f.[3] &. u64 0x7fffffffffffffff in
v top_bit == SD.bn_v f / pow2 255 /\ v top_bit <= 1 /\
v f3' = v f.[3] % pow2 63 /\
v f.[3] == v top_bit * pow2 63 + v f3') | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_carry_pass_store_f3 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Lib.Sequence.lseq Lib.IntTypes.uint64 4
-> FStar.Pervasives.Lemma
(ensures
(let top_bit = f.[ 3 ] >>. 63ul in
let f3' = f.[ 3 ] &. Lib.IntTypes.u64 0x7fffffffffffffff in
Lib.IntTypes.v top_bit == Hacl.Spec.Bignum.Definitions.bn_v f / Prims.pow2 255 /\
Lib.IntTypes.v top_bit <= 1 /\ Lib.IntTypes.v f3' = Lib.IntTypes.v f.[ 3 ] % Prims.pow2 63 /\
Lib.IntTypes.v f.[ 3 ] == Lib.IntTypes.v top_bit * Prims.pow2 63 + Lib.IntTypes.v f3')) | {
"end_col": 25,
"end_line": 242,
"start_col": 33,
"start_line": 222
} |
FStar.Pervasives.Lemma | val lemma_prime: unit -> Lemma (pow2 256 % prime == 38) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
} | val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () = | false | null | true | calc ( == ) {
pow2 256 % prime;
( == ) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
( == ) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
( == ) { Math.Lemmas.small_mod 38 prime }
38;
} | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.pow2_plus",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.sub_div_mod_1",
"FStar.Math.Lemmas.small_mod"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_prime: unit -> Lemma (pow2 256 % prime == 38) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_prime | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.Pervasives.Lemma (ensures Prims.pow2 256 % Spec.Curve25519.prime == 38) | {
"end_col": 5,
"end_line": 31,
"start_col": 2,
"start_line": 19
} |
FStar.Pervasives.Lemma | val lemma_felem64_mod255: a:lseq uint64 4 ->
Lemma (let r = a.[3] <- (a.[3] &. u64 0x7fffffffffffffff) in
BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_felem64_mod255 a =
lemma_carry_pass_store_f3 a;
let a3' = a.[3] &. u64 0x7fffffffffffffff in
assert (v a3' = v a.[3] % pow2 63);
let r = a.[3] <- a3' in
SD.bn_upd_eval a a3' 3;
assert (SD.bn_v r == SD.bn_v a - v a.[3] * pow2 192 + v a3' * pow2 192);
calc (==) { //SD.bn_v a == SD.bn_v r + v a.[3] * pow2 192 - v a3' * pow2 192
SD.bn_v r + v a.[3] * pow2 192 - v a3' * pow2 192;
(==) { }
SD.bn_v r + v a.[3] * pow2 192 - v a.[3] % pow2 63 * pow2 192;
(==) { Math.Lemmas.distributivity_sub_left (v a.[3]) (v a.[3] % pow2 63) (pow2 192) }
SD.bn_v r + (v a.[3] - v a.[3] % pow2 63) * pow2 192;
(==) { Math.Lemmas.euclidean_division_definition (v a.[3]) (pow2 63) }
SD.bn_v r + v a.[3] / pow2 63 * pow2 63 * pow2 192;
(==) { Math.Lemmas.paren_mul_right (v a.[3] / pow2 63) (pow2 63) (pow2 192); Math.Lemmas.pow2_plus 63 192 }
SD.bn_v r + v a.[3] / pow2 63 * pow2 255;
};
Math.Lemmas.modulo_addition_lemma (SD.bn_v r) (pow2 255) (v a.[3] / pow2 63);
assert (SD.bn_v a % pow2 255 == SD.bn_v r % pow2 255);
Math.Lemmas.small_mod (SD.bn_v r) (pow2 255);
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma 4 r;
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma 4 a;
assert (BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255) | val lemma_felem64_mod255: a:lseq uint64 4 ->
Lemma (let r = a.[3] <- (a.[3] &. u64 0x7fffffffffffffff) in
BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255)
let lemma_felem64_mod255 a = | false | null | true | lemma_carry_pass_store_f3 a;
let a3' = a.[ 3 ] &. u64 0x7fffffffffffffff in
assert (v a3' = v a.[ 3 ] % pow2 63);
let r = a.[ 3 ] <- a3' in
SD.bn_upd_eval a a3' 3;
assert (SD.bn_v r == SD.bn_v a - v a.[ 3 ] * pow2 192 + v a3' * pow2 192);
calc ( == ) {
SD.bn_v r + v a.[ 3 ] * pow2 192 - v a3' * pow2 192;
( == ) { () }
SD.bn_v r + v a.[ 3 ] * pow2 192 - (v a.[ 3 ] % pow2 63) * pow2 192;
( == ) { Math.Lemmas.distributivity_sub_left (v a.[ 3 ]) (v a.[ 3 ] % pow2 63) (pow2 192) }
SD.bn_v r + (v a.[ 3 ] - v a.[ 3 ] % pow2 63) * pow2 192;
( == ) { Math.Lemmas.euclidean_division_definition (v a.[ 3 ]) (pow2 63) }
SD.bn_v r + ((v a.[ 3 ] / pow2 63) * pow2 63) * pow2 192;
( == ) { (Math.Lemmas.paren_mul_right (v a.[ 3 ] / pow2 63) (pow2 63) (pow2 192);
Math.Lemmas.pow2_plus 63 192) }
SD.bn_v r + (v a.[ 3 ] / pow2 63) * pow2 255;
};
Math.Lemmas.modulo_addition_lemma (SD.bn_v r) (pow2 255) (v a.[ 3 ] / pow2 63);
assert (SD.bn_v a % pow2 255 == SD.bn_v r % pow2 255);
Math.Lemmas.small_mod (SD.bn_v r) (pow2 255);
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma 4 r;
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma 4 a;
assert (BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255) | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Prims.pow2",
"Prims.unit",
"Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma",
"FStar.Math.Lemmas.small_mod",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Math.Lemmas.modulo_addition_lemma",
"Prims.op_Division",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"FStar.Calc.calc_finish",
"Prims.op_Subtraction",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"Hacl.Spec.Bignum.Definitions.bn_upd_eval",
"Lib.IntTypes.int_t",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Prims.op_Equality",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.u64",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_carry_pass_store_f3"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
}
val lemma_mul_lt: a:nat -> b:nat -> c:pos -> d:pos -> Lemma
(requires a < c /\ b < d)
(ensures a * b < c * d)
let lemma_mul_lt a b c d = ()
val carry_wide_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c + d * 38 /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 256)
(ensures b * 38 < pow2 63)
let carry_wide_bound a b c d =
assert_norm (38 < pow2 7);
lemma_mul_lt d 38 (pow2 256) (pow2 7);
Math.Lemmas.pow2_plus 256 7;
assert (c + d * 38 < pow2 263);
Math.Lemmas.pow2_plus 7 7;
Math.Lemmas.pow2_lt_compat 63 14
val fmul14_bound: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires
a + b * pow2 256 == c * d /\
a < pow2 256 /\ c < pow2 256 /\ d < pow2 17)
(ensures b * 38 < pow2 63)
let fmul14_bound a b c d =
lemma_mul_lt c d (pow2 256) (pow2 17);
//Math.Lemmas.pow2_plus 256 17;
//assert (c * d < pow2 273);
assert (b < pow2 17);
assert_norm (38 < pow2 7);
Math.Lemmas.pow2_plus 17 7;
Math.Lemmas.pow2_lt_compat 63 24
val carry_pass_store_bound: f:nat -> top_bit:nat -> r0:nat -> r1:nat -> c:nat -> Lemma
(requires
top_bit == f / pow2 255 /\
r0 + top_bit * pow2 255 == f /\
r1 + c * pow2 256 == r0 + 19 * top_bit /\
r0 < pow2 256 /\ r1 < pow2 256 /\
f < pow2 256 /\ top_bit <= 1)
(ensures c = 0 /\ r0 < pow2 255)
let carry_pass_store_bound f top_bit r0 r1 c = ()
val lemma_subtract_p4_0: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_0 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64);
assert (as_nat4 f <= pow2 64 - 20 + (pow2 64 - 1) * pow2 64 + (pow2 64 - 1) * pow2 64 * pow2 64 +
(pow2 63 - 1) * pow2 64 * pow2 64 * pow2 64);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f < pow2 255 - 19);
assert (as_nat4 f == as_nat4 f');
FStar.Math.Lemmas.modulo_lemma (as_nat4 f') prime
val lemma_subtract_p4_1: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
(v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p4_1 f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert_norm (0xffffffffffffffff = pow2 64 - 1);
assert_norm (0xffffffffffffffed = pow2 64 - 19);
assert (as_nat4 f' % prime ==
(v f0' + v f1' * pow2 64 + v f2' * pow2 64 * pow2 64 + v f3' * pow2 64 * pow2 64 * pow2 64) % prime);
assert (as_nat4 f' % prime ==
(v f0 - (pow2 64 - 19) + (v f1 - (pow2 64 - 1)) * pow2 64 + (v f2 - (pow2 64 - 1)) * pow2 64 * pow2 64 +
(v f3 - (pow2 63 - 1)) * pow2 64 * pow2 64 * pow2 64) % prime);
assert_norm (pow2 63 * pow2 64 * pow2 64 * pow2 64 = pow2 255);
assert (as_nat4 f' % prime ==
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 +
v f3 * pow2 64 * pow2 64 * pow2 64 - prime) % prime);
FStar.Math.Lemmas.lemma_mod_sub
(v f0 + v f1 * pow2 64 + v f2 * pow2 64 * pow2 64 + v f3 * pow2 64 * pow2 64 * pow2 64) 1 prime
val lemma_subtract_p: f:felem4 -> f':felem4 -> Lemma
(requires
(let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
v f3 < pow2 63 /\
(((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) /\
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3)) \/
((v f3 = 0x7fffffffffffffff && v f2 = 0xffffffffffffffff && v f1 = 0xffffffffffffffff && v f0 >= 0xffffffffffffffed) /\
(v f0' = v f0 - 0xffffffffffffffed && v f1' = v f1 - 0xffffffffffffffff && v f2' = v f2 - 0xffffffffffffffff &&
v f3' = v f3 - 0x7fffffffffffffff)))))
(ensures as_nat4 f' == as_nat4 f % prime)
let lemma_subtract_p f f' =
let (f0, f1, f2, f3) = f in
let (f0', f1', f2', f3') = f' in
if ((v f3 <> 0x7fffffffffffffff || v f2 <> 0xffffffffffffffff || v f1 <> 0xffffffffffffffff || v f0 < 0xffffffffffffffed) &&
(v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3))
then lemma_subtract_p4_0 f f'
else lemma_subtract_p4_1 f f'
val lemma_carry_pass_store_f3: f:lseq uint64 4 ->
Lemma (let top_bit = f.[3] >>. 63ul in
let f3' = f.[3] &. u64 0x7fffffffffffffff in
v top_bit == SD.bn_v f / pow2 255 /\ v top_bit <= 1 /\
v f3' = v f.[3] % pow2 63 /\
v f.[3] == v top_bit * pow2 63 + v f3')
let lemma_carry_pass_store_f3 f =
let top_bit = f.[3] >>. 63ul in
assert (SL.bn_get_ith_bit f 255 == ((f.[3] >>. 63ul) &. u64 1));
mod_mask_lemma top_bit 1ul;
assert (v (mod_mask #U64 #SEC 1ul) == v (u64 1));
SL.bn_get_ith_bit_lemma f 255;
assert (v top_bit == SD.bn_v f / pow2 255 % 2);
SD.bn_eval_bound f 4;
Math.Lemmas.lemma_div_lt_nat (SD.bn_v f) 256 255;
Math.Lemmas.small_mod (SD.bn_v f / pow2 255) 2;
assert (v top_bit == SD.bn_v f / pow2 255);
let f3' = f.[3] &. u64 0x7fffffffffffffff in
mod_mask_lemma f.[3] 63ul;
assert_norm (0x7fffffffffffffff = pow2 63 - 1);
assert (v (mod_mask #U64 #SEC 63ul) == v (u64 0x7fffffffffffffff));
assert (v f3' = v f.[3] % pow2 63);
Math.Lemmas.euclidean_division_definition (v f.[3]) (pow2 63);
assert (v f.[3] == v top_bit * pow2 63 + v f3');
assert (v top_bit <= 1)
val lemma_felem64_mod255: a:lseq uint64 4 ->
Lemma (let r = a.[3] <- (a.[3] &. u64 0x7fffffffffffffff) in
BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_felem64_mod255: a:lseq uint64 4 ->
Lemma (let r = a.[3] <- (a.[3] &. u64 0x7fffffffffffffff) in
BSeq.nat_from_intseq_le r == BSeq.nat_from_intseq_le a % pow2 255) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_felem64_mod255 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.Sequence.lseq Lib.IntTypes.uint64 4
-> FStar.Pervasives.Lemma
(ensures
(let r = a.[ 3 ] <- a.[ 3 ] &. Lib.IntTypes.u64 0x7fffffffffffffff in
Lib.ByteSequence.nat_from_intseq_le r ==
Lib.ByteSequence.nat_from_intseq_le a % Prims.pow2 255)) | {
"end_col": 76,
"end_line": 276,
"start_col": 2,
"start_line": 250
} |
FStar.Pervasives.Lemma | val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
} | val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c = | false | null | true | calc ( == ) {
(fn + c * pow2 255) % prime;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
( == ) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
} | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_prime19"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_pow255_add | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | fn: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(fn + c * Prims.pow2 255) % Spec.Curve25519.prime == (fn + c * 19) % Spec.Curve25519.prime) | {
"end_col": 5,
"end_line": 69,
"start_col": 2,
"start_line": 59
} |
FStar.Pervasives.Lemma | val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
} | val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c = | false | null | true | calc ( == ) {
(fn + c * pow2 256) % prime;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
( == ) { lemma_prime () }
(fn + c * 38 % prime) % prime;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
} | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_prime"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_pow256_add | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | fn: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(fn + c * Prims.pow2 256) % Spec.Curve25519.prime == (fn + c * 38) % Spec.Curve25519.prime) | {
"end_col": 5,
"end_line": 53,
"start_col": 2,
"start_line": 43
} |
FStar.Pervasives.Lemma | val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_fsub4 fn1 fn2 c0 c1 =
calc (==) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
(==) { }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
(==) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
(==) { }
(fn1 - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
(==) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
} | val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime)
let lemma_fsub4 fn1 fn2 c0 c1 = | false | null | true | calc ( == ) {
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime;
( == ) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256) (- c1) }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * pow2 256) % prime;
( == ) { () }
(fn1 - fn2 + c0 * pow2 256 - c0 * 38) % prime;
( == ) { lemma_mul_pow256_add (fn1 - fn2 + c0 * pow2 256) (- c0) }
(fn1 - fn2 + c0 * pow2 256 - c0 * pow2 256) % prime;
( == ) { () }
(fn1 - fn2) % prime;
( == ) { Math.Lemmas.lemma_mod_plus_distr_l fn1 (- fn2) prime }
(fn1 % prime - fn2) % prime;
( == ) { Math.Lemmas.lemma_mod_sub_distr (fn1 % prime) fn2 prime }
(fn1 % prime - fn2 % prime) % prime;
} | {
"checked_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_pow256_add",
"Prims.op_Minus",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"FStar.Math.Lemmas.lemma_mod_sub_distr"
] | [] | module Hacl.Spec.Curve25519.Field64.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field64.Definition
module BSeq = Lib.ByteSequence
module SD = Hacl.Spec.Bignum.Definitions
module SL = Hacl.Spec.Bignum.Lib
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_prime: unit -> Lemma (pow2 256 % prime == 38)
let lemma_prime () =
calc (==) {
pow2 256 % prime;
(==) { Math.Lemmas.pow2_plus 255 1 }
2 * pow2 255 % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 (pow2 255) prime }
2 * (pow2 255 % prime) % prime;
(==) { Math.Lemmas.sub_div_mod_1 (pow2 255) prime }
2 * (19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r 2 19 prime }
38 % prime;
(==) { Math.Lemmas.small_mod 38 prime }
38;
}
val lemma_prime19: unit -> Lemma (pow2 255 % prime == 19)
let lemma_prime19 () =
assert_norm (pow2 255 % prime = 19 % prime);
FStar.Math.Lemmas.small_mod 19 prime
val lemma_mul_pow256_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 256) % prime == (fn + c * 38) % prime)
let lemma_mul_pow256_add fn c =
calc (==) {
(fn + c * pow2 256) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 256) prime }
(fn + c * pow2 256 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 256) prime }
(fn + c * (pow2 256 % prime) % prime) % prime;
(==) { lemma_prime () }
(fn + c * 38 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 38) prime }
(fn + c * 38) % prime;
}
val lemma_mul_pow255_add: fn:int -> c:int ->
Lemma ((fn + c * pow2 255) % prime == (fn + c * 19) % prime)
let lemma_mul_pow255_add fn c =
calc (==) {
(fn + c * pow2 255) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * pow2 255) prime }
(fn + c * pow2 255 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r c (pow2 255) prime }
(fn + c * (pow2 255 % prime) % prime) % prime;
(==) { lemma_prime19 () }
(fn + c * 19 % prime) % prime;
(==) { Math.Lemmas.lemma_mod_plus_distr_r fn (c * 19) prime }
(fn + c * 19) % prime;
}
val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime) | false | false | Hacl.Spec.Curve25519.Field64.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_fsub4: fn1:nat -> fn2:nat -> c0:nat -> c1:nat ->
Lemma ((fn1 - fn2 + c0 * pow2 256 - c0 * 38 + c1 * pow2 256 - c1 * 38) % prime ==
(fn1 % prime - fn2 % prime) % prime) | [] | Hacl.Spec.Curve25519.Field64.Lemmas.lemma_fsub4 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | fn1: Prims.nat -> fn2: Prims.nat -> c0: Prims.nat -> c1: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(fn1 - fn2 + c0 * Prims.pow2 256 - c0 * 38 + c1 * Prims.pow2 256 - c1 * 38) %
Spec.Curve25519.prime ==
(fn1 % Spec.Curve25519.prime - fn2 % Spec.Curve25519.prime) % Spec.Curve25519.prime) | {
"end_col": 5,
"end_line": 90,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | val sigver_vectors_sha2_384:list vec_SigVer | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sigver_vectors_sha2_384 : list vec_SigVer = [
{ msg = "fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false;
};
{ msg = "b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false;
};
{ msg = "d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true;
};
{ msg = "06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false;
};
{ msg = "59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false;
};
{ msg = "8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false;
};
{ msg = "a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false;
};
{ msg = "1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true;
};
{ msg = "3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false;
};
{ msg = "4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false;
};
{ msg = "b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false;
};
{ msg = "aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false;
};
{ msg = "98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false;
};
{ msg = "bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true;
};
{ msg = "33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false;
};
] | val sigver_vectors_sha2_384:list vec_SigVer
let sigver_vectors_sha2_384:list vec_SigVer = | false | null | false | [
{
msg
=
"fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false
};
{
msg
=
"b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false
};
{
msg
=
"d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true
};
{
msg
=
"06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false
};
{
msg
=
"59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false
};
{
msg
=
"8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false
};
{
msg
=
"a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false
};
{
msg
=
"1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true
};
{
msg
=
"3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false
};
{
msg
=
"4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false
};
{
msg
=
"b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false
};
{
msg
=
"aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false
};
{
msg
=
"98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false
};
{
msg
=
"bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true
};
{
msg
=
"33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Spec.ECDSA.Test.Vectors.Mkvec_SigVer",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
}
let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
] | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sigver_vectors_sha2_384:list vec_SigVer | [] | Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_384 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigVer | {
"end_col": 1,
"end_line": 247,
"start_col": 49,
"start_line": 141
} |
Prims.Tot | val sigver_vectors_sha2_256:list vec_SigVer | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
] | val sigver_vectors_sha2_256:list vec_SigVer
let sigver_vectors_sha2_256:list vec_SigVer = | false | null | false | [
{
msg
=
"e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false
};
{
msg
=
"069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false
};
{
msg
=
"df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false
};
{
msg
=
"e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true
};
{
msg
=
"73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true
};
{
msg
=
"666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false
};
{
msg
=
"7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false
};
{
msg
=
"1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false
};
{
msg
=
"3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false
};
{
msg
=
"983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false
};
{
msg
=
"4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false
};
{
msg
=
"0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false
};
{
msg
=
"785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false
};
{
msg
=
"76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false
};
{
msg
=
"60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Spec.ECDSA.Test.Vectors.Mkvec_SigVer",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
} | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sigver_vectors_sha2_256:list vec_SigVer | [] | Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_256 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigVer | {
"end_col": 1,
"end_line": 138,
"start_col": 49,
"start_line": 32
} |
Prims.Tot | val sigver_vectors_sha2_512:list vec_SigVer | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sigver_vectors_sha2_512 : list vec_SigVer = [
{ msg = "273b063224ab48a1bf6c7efc93429d1f89de48fc4a4fa3ffe7a49ebba1a58ff5d208a9e4bff27b418252526243ba042d1605b6df3c2ec916ceef027853a41137f7bfb6fc63844de95f58e82b9ad2565f1367d2c69bd29100f6db21a8ab7ab58affd1661add0322bd915721378df9fa233ef0b7e0a0a85be31689e21891ec8977";
qx = "484e31e69ef70bb8527853c22c6b6b4cd2a51311dde66c7b63f097dbb6ab27bf";
qy = "e1ff8177f4061d4fbbacbbc70519f0fc8c8b6053d72af0fe4f048d615004f74e";
r = "91a303d8fe3ab4176070f6406267f6b79bfe5eb5f62ae6aeb374d90667858518";
s = "e152119cefa26826ea07ec40a428869132d70812c5578c5a260e48d6800e046a";
result = false;
};
{ msg = "d64ea1a768b0de29ab018ae93baa645d078c70a2f7aa4acd4ae7526538ebd5f697a11927cfd0ddc9187c095f14ad30544cb63ede9353af8b23c18ce22843881fe2d7bde748fc69085921677858d87d2dc3e244f6c7e2c2b2bd791f450dfdd4ff0ddd35ab2ada4f1b90ab16ef2bf63b3fbe88ce8a5d5bb85430740d3744849c13";
qx = "8b75fc0129c9a78f8395c63ae9694b05cd6950665cf5da7d66118de451422624";
qy = "b394171981d4896d6e1b4ef2336d9befe7d27e1eb87f1c14b8ddda622af379dc";
r = "17e298e67ad2af76f6892fdcead00a88256573868f79dc74431b55103058f0b0";
s = "881328cd91e43d30133f6e471e0b9b04353b17893fb7614fd7333d812a3df6b4";
result = false;
};
{ msg = "1db85445c9d8d1478a97dd9d6ffbf11ebcd2114d2ed4e8b6811171d947e7d4daedea35af6177debe2ef6d93f94ff9d770b45d458e91deb4eef59856425d7b00291aff9b6c9fa02375ec1a06f71f7548721790023301cf6ac7fee1d451228106ef4472681e652c8cd59b15d6d16f1e13440d888e265817cb4a654f7246e0980df";
qx = "76e51086e078b2b116fd1e9c6fa3d53f675ae40252fb9f0cc62817bd9ce8831d";
qy = "ca7e609a0b1d14b7c9249b53da0b2050450e2a25cb6c8f81c5311974a7efb576";
r = "23b653faaa7d4552388771931803ce939dd5ee62d3fa72b019be1b2272c85592";
s = "a03c6f5c54a10861d6b8922821708e9306fd6d5d10d566845a106539cbf4fadd";
result = false;
};
{ msg = "918d9f420e927b3e0a55d276b8b40d8a2c5df748727ff72a438c7e6593f542274050dce727980d3ef90c8aa5c13d53f1e8d631ebb650dee11b94902bbd7c92b8186af9039c56c43f3110697792c8cd1614166f06d09cdb58dab168cc3680a8473b1a623bf85dba855eace579d9410d2c4ca5ede6dc1e3db81e233c34ae922f49";
qx = "bc7c8e09bd093468f706740a4130c544374fdc924a535ef02e9d3be6c6d3bbfa";
qy = "af3f813ae6646f5b6dbfb0f261fd42537705c800bb1647386343428a9f2e10fc";
r = "6bd7ce95af25abfbf14aef4b17392f1da877ab562eca38d785fe39682e9c9324";
s = "6688bea20c87bab34d420642da9bdd4c69456bdec50835887367bb4fb7cd8650";
result = false;
};
{ msg = "6e2932153301a4eef680e6428929adae988c108d668a31ff55d0489947d75ff81a46bf89e84d6401f023be6e87688fbcd784d785ca846735524acb52d00452c84040a479e7cc330936441d93bbe722a9432a6e1db112b5c9403b10272cb1347fd619d463f7a9d223ad76fde06d8a6883500fb843235abff98e241bdfb5538c3e";
qx = "9cb0cf69303dafc761d4e4687b4ecf039e6d34ab964af80810d8d558a4a8d6f7";
qy = "2d51233a1788920a86ee08a1962c79efa317fb7879e297dad2146db995fa1c78";
r = "4b9f91e4285287261a1d1c923cf619cd52c175cfe7f1be60a5258c610348ba3d";
s = "28c45f901d71c41b298638ec0d6a85d7fcb0c33bbfec5a9c810846b639289a84";
result = true;
};
{ msg = "2f48ec387f181035b350772e27f478ae6ec7487923692fae217e0f8636acd062a6ac39f7435f27a0ebcfd8187a91ef00fb68d106b8da4a1dedc5a40a4fae709e92b00fcc218de76417d75185e59dff76ec1543fb429d87c2ca8134ff5ae9b45456cad93fc67223c68293231395287dc0b756355660721a1f5df83bf5bcb8456e";
qx = "e31096c2d512fbf84f81e9bdb16f33121702897605b43a3db546f8fb695b5f6f";
qy = "6fbec6a04a8c59d61c900a851d8bf8522187d3ec2637b10fa8f377689e086bba";
r = "1b244c21c08c0c0a10477fb7a21382d405b95c755088292859ca0e71bab68361";
s = "852f4cbfd346e90f404e1dd5c4b2c1debca3ea1abefe8400685d703aea6c5c7f";
result = false;
};
{ msg = "fd2e5de421ee46c9fe6290a33f95b394bd5b7762f23178f7f6834f1f056fa9a8831446403c098ff4dd764173f974be4c89d376119613a4a1890f6fc2ddff862bda292dd49f5410d9b1cfe1d97ef4582b6152494372fc083885f540c01f86d780e6f3e75a954af2190fdae9604e3f8ab32ab0292dc0d790bd2627e37b4b4885df";
qx = "633c2ee5630b62c9ce839efd4d485a6d35e8b9430d264ffe501d28dbace79123";
qy = "4b668a1a6d1a25b089f75c2bd8d8c6a9a14fe7b729f45a82565da2e866e2c490";
r = "bf2111c93ec055a7eda90c106fce494fd866045634fd2aa28d6e018f9106994e";
s = "86b0341208a0aa55edecfd272f49cb34408ce54b7febc1d0a1c2ce77ab6988f8";
result = false;
};
{ msg = "4bc2d9a898395b12701635f1048fbfd263ec115e4150532b034d59e625238f4ed32619744c612e35ac5a23bee8d5f5651641a492217d305e5051321c273647f14bc7c4afab518554e01c82d6fc1694c8bdbeb326bb607bcaf5436303bc09f64c02c6ec50de409a484f5237f7d34e2651ada7ec429ca3b99dd87c6015d2f4b342";
qx = "f78dce40d1cb8c4af2749bf22c6f8a9a470b1e41112796215dd017e57df1b38a";
qy = "61b29b0bc03dff7fa00613b4de1e2317cfbf2badd50dee3376c032a887c5b865";
r = "4a96169a5dea36a2594011537ee0dc19e8f9f74e82c07434079447155a830152";
s = "a204eaa4e97d7553a1521d9f6baadc0b6d6183ba0f385d8593d6ca83607c4d82";
result = false;
};
{ msg = "d3356a683417508a9b913643e6ceac1281ef583f428968f9d2b6540a189d7041c477da8d207d0529720f70dab6b0da8c2168837476c1c6b63b517ed3cad48ae331cf716ecf47a0f7d00b57073ac6a4749716d49d80c4d46261d38e2e34b4f43e0f20b280842f6e3ea34fefdddfb9fa2a040ffe915e8784cfdb29b3364a34ca62";
qx = "3fcc3b3e1b103fe435ac214c756bdaad309389e1c803e6d84bbbc27039fcf900";
qy = "7f09edd1ec87a6d36dc81c1528d52a62776e666c274415a9f441d6a8df6b9237";
r = "1cac13f277354456ae67ab09b09e07eb1af2a2bf45108da70f5c8c6a4cbcd538";
s = "5d83752e540525602ba7e6fee4d4263f3eda59e67df20aac79ca67e8899fed0d";
result = false;
};
{ msg = "d7f5da9f4cf9299b7f86c52b88364ce28fe9ada55dd551a1018790f9e1205e2405ac62429d65093f74ec35a16d9f195c993cd4eb8dc0aa0dabb70a503321d8a9649160d6b3d0a0854bb68c4c39693f592ef5dd478aa2432d0865d87d48b3aea9c7d7d114165c9200e4e8d7bd02a7895ec4418e6f2fed6b244bf66209039e98a9";
qx = "5ec702d43a67ada86efbfc136cf16d96078906954a3f1f9e440674cd907e4676";
qy = "05a62044fed8470dd4fca38d89d583ce36d50d28b66ab0b51922b21da92c56d9";
r = "75f3037298f1457dba55743999976a1c2636b2b8ab2ed3df4736a6d2934acc83";
s = "19d43ad168dda1bb8ac423f8f08876515234b3d841e57faef1b5ab27359b27ef";
result = false;
};
{ msg = "68f4b444e1cc2025e8ff55e8046ead735e6e317082edf7ce65e83573501cb92c408c1c1c6c4fcca6b96ad34224f17b20be471cc9f4f97f0a5b7bfae9558bdb2ecb6e452bb743603724273d9e8d2ca22afdda35c8a371b28153d772303e4a25dc4f28e9a6dc9635331450f5af290dfa3431c3c08b91d5c97284361c03ec78f1bc";
qx = "f63afe99e1b5fc652782f86b59926af22e6072be93390fe41f541204f9c935d1";
qy = "f6e19ce5935e336183c21becf66596b8f559d2d02ee282aa87a7d6f936f7260c";
r = "cef4831e4515c77ca062282614b54a11b7dc4057e6997685c2fbfa95b392bf72";
s = "f20dc01bf38e1344ba675a22239d9893b3a3e33d9a403329a3d21650e9125b75";
result = true;
};
{ msg = "e75be05be0aaf70719b488b89aaae9008707ca528994461db7130c4368575a024bf0981c305d61265e8b97599ec35c03badd1256b80d6bf70547ad6089b983e3bcc3481828f3259e43e655e177fc423fd7e066bd3ed68d81df84f773c0f9e5f8bf4469960b8b4d7b2a372fd0edd3521f6be670908f2d90a343f416358ea70e7e";
qx = "6d11b09d2767cf8d275faee746c203486259f66dd2bfa3a65c39371a66b23385";
qy = "4eb05c73e05261e979182833f20311e5366f72f4b949665ff294f959375534c6";
r = "15a697cdb614e11c0810e1e764cd501fcabc70874c957587bc4883d9438e177f";
s = "7bf6244f92bc768063cecb5336c8eaacd23db930b28703560f241c7d93950dfd";
result = false;
};
{ msg = "0dc4a3eab66bd2e703a8fff566c34d466f9823ae42bd2104f61a6b051c0b017833fcef4d609d137ad97c209c80eebe252857aa7fafc35f16000a2bd4b4be0fa83b6e229eddfd180101f1f40d0453148053d8306833df64d59599b90194b55541d7f22dd589da9f7be519cbbb9db416c71bfe40ec090b5b7a600eec29bfd47306";
qx = "f3899caba038efb534c4cea0bd276814ffd80194473c903b81af11c8c05cb6e6";
qy = "6ea6b17402fcf2e8e737d11ffc7c2ed3b2d0bc3b8f271a381f4294cff62682c3";
r = "57b99380452e1d37b133c49b9ba493dee8630940477ca3351a43d90b99871e6a";
s = "df599c3a37105af3ecc159b3b685ccb3e151b7d5cf2d97147974ae71f466b615";
result = false;
};
{ msg = "d55e5e124a7217879ca986f285e22ac51940b35959bbf5543104b5547356fd1a0ec37c0a23209004a2ec5bcaf3335bc45e4dc990eacd29b2d9b5cf349c7ba67711356299bceab6f048df761c65f2988803133d6723a2820fefb2654cc7c5f032f833ba78a34d2878c6b0ba654ebe26b110c935abb56024bd5d0f09b367724c07";
qx = "1fd6f4b98d0755291e7a230e9f81ecf909e6350aadb08e42a3262ff19200fbd2";
qy = "5578fef79bc477acfb8ed0dc10c4f5809c14dc5492405b3792a7940650b305d7";
r = "97a99e96e407b3ada2c2dcf9ceeeb984d9a4d0aa66ddf0a74ca23cabfb1566cc";
s = "0ecac315dc199cfea3c15348c130924a1f787019fe4cd3ae47ca8b111268754a";
result = false;
};
{ msg = "7753c03b4202cb38bc0190a9f931eb31858d705d92d650320ff449fc99167fb3770b764c8988f6b34ac5a3d507a10e0aff7f88293f6a22c7ed8a24248a52dc125e416e158833fc38af29199f8ca4931068d4ccaa87e299e95642068f68c208cb782df13908f950564743ed1692502bafafaff169dc8fe674fb5e4f3ffd578c35";
qx = "2dcbd8790cee552e9f18f2b3149a2252dcd58b99ca7dc9680b92c8c43aa33874";
qy = "5dbc8bb8813c8e019d80e19acdb0792f537980fecde93db621aaf1f6d0e6ee34";
r = "2bdbd8b0d759595662cc10b10236136ef6ce429641f68cf6480f472fcc77bc9f";
s = "7e7df0c8b86f7db06caf1610166f7b9c4c75447f991d5aaf4dea720c25985c8c";
result = true;
};
] | val sigver_vectors_sha2_512:list vec_SigVer
let sigver_vectors_sha2_512:list vec_SigVer = | false | null | false | [
{
msg
=
"273b063224ab48a1bf6c7efc93429d1f89de48fc4a4fa3ffe7a49ebba1a58ff5d208a9e4bff27b418252526243ba042d1605b6df3c2ec916ceef027853a41137f7bfb6fc63844de95f58e82b9ad2565f1367d2c69bd29100f6db21a8ab7ab58affd1661add0322bd915721378df9fa233ef0b7e0a0a85be31689e21891ec8977";
qx = "484e31e69ef70bb8527853c22c6b6b4cd2a51311dde66c7b63f097dbb6ab27bf";
qy = "e1ff8177f4061d4fbbacbbc70519f0fc8c8b6053d72af0fe4f048d615004f74e";
r = "91a303d8fe3ab4176070f6406267f6b79bfe5eb5f62ae6aeb374d90667858518";
s = "e152119cefa26826ea07ec40a428869132d70812c5578c5a260e48d6800e046a";
result = false
};
{
msg
=
"d64ea1a768b0de29ab018ae93baa645d078c70a2f7aa4acd4ae7526538ebd5f697a11927cfd0ddc9187c095f14ad30544cb63ede9353af8b23c18ce22843881fe2d7bde748fc69085921677858d87d2dc3e244f6c7e2c2b2bd791f450dfdd4ff0ddd35ab2ada4f1b90ab16ef2bf63b3fbe88ce8a5d5bb85430740d3744849c13";
qx = "8b75fc0129c9a78f8395c63ae9694b05cd6950665cf5da7d66118de451422624";
qy = "b394171981d4896d6e1b4ef2336d9befe7d27e1eb87f1c14b8ddda622af379dc";
r = "17e298e67ad2af76f6892fdcead00a88256573868f79dc74431b55103058f0b0";
s = "881328cd91e43d30133f6e471e0b9b04353b17893fb7614fd7333d812a3df6b4";
result = false
};
{
msg
=
"1db85445c9d8d1478a97dd9d6ffbf11ebcd2114d2ed4e8b6811171d947e7d4daedea35af6177debe2ef6d93f94ff9d770b45d458e91deb4eef59856425d7b00291aff9b6c9fa02375ec1a06f71f7548721790023301cf6ac7fee1d451228106ef4472681e652c8cd59b15d6d16f1e13440d888e265817cb4a654f7246e0980df";
qx = "76e51086e078b2b116fd1e9c6fa3d53f675ae40252fb9f0cc62817bd9ce8831d";
qy = "ca7e609a0b1d14b7c9249b53da0b2050450e2a25cb6c8f81c5311974a7efb576";
r = "23b653faaa7d4552388771931803ce939dd5ee62d3fa72b019be1b2272c85592";
s = "a03c6f5c54a10861d6b8922821708e9306fd6d5d10d566845a106539cbf4fadd";
result = false
};
{
msg
=
"918d9f420e927b3e0a55d276b8b40d8a2c5df748727ff72a438c7e6593f542274050dce727980d3ef90c8aa5c13d53f1e8d631ebb650dee11b94902bbd7c92b8186af9039c56c43f3110697792c8cd1614166f06d09cdb58dab168cc3680a8473b1a623bf85dba855eace579d9410d2c4ca5ede6dc1e3db81e233c34ae922f49";
qx = "bc7c8e09bd093468f706740a4130c544374fdc924a535ef02e9d3be6c6d3bbfa";
qy = "af3f813ae6646f5b6dbfb0f261fd42537705c800bb1647386343428a9f2e10fc";
r = "6bd7ce95af25abfbf14aef4b17392f1da877ab562eca38d785fe39682e9c9324";
s = "6688bea20c87bab34d420642da9bdd4c69456bdec50835887367bb4fb7cd8650";
result = false
};
{
msg
=
"6e2932153301a4eef680e6428929adae988c108d668a31ff55d0489947d75ff81a46bf89e84d6401f023be6e87688fbcd784d785ca846735524acb52d00452c84040a479e7cc330936441d93bbe722a9432a6e1db112b5c9403b10272cb1347fd619d463f7a9d223ad76fde06d8a6883500fb843235abff98e241bdfb5538c3e";
qx = "9cb0cf69303dafc761d4e4687b4ecf039e6d34ab964af80810d8d558a4a8d6f7";
qy = "2d51233a1788920a86ee08a1962c79efa317fb7879e297dad2146db995fa1c78";
r = "4b9f91e4285287261a1d1c923cf619cd52c175cfe7f1be60a5258c610348ba3d";
s = "28c45f901d71c41b298638ec0d6a85d7fcb0c33bbfec5a9c810846b639289a84";
result = true
};
{
msg
=
"2f48ec387f181035b350772e27f478ae6ec7487923692fae217e0f8636acd062a6ac39f7435f27a0ebcfd8187a91ef00fb68d106b8da4a1dedc5a40a4fae709e92b00fcc218de76417d75185e59dff76ec1543fb429d87c2ca8134ff5ae9b45456cad93fc67223c68293231395287dc0b756355660721a1f5df83bf5bcb8456e";
qx = "e31096c2d512fbf84f81e9bdb16f33121702897605b43a3db546f8fb695b5f6f";
qy = "6fbec6a04a8c59d61c900a851d8bf8522187d3ec2637b10fa8f377689e086bba";
r = "1b244c21c08c0c0a10477fb7a21382d405b95c755088292859ca0e71bab68361";
s = "852f4cbfd346e90f404e1dd5c4b2c1debca3ea1abefe8400685d703aea6c5c7f";
result = false
};
{
msg
=
"fd2e5de421ee46c9fe6290a33f95b394bd5b7762f23178f7f6834f1f056fa9a8831446403c098ff4dd764173f974be4c89d376119613a4a1890f6fc2ddff862bda292dd49f5410d9b1cfe1d97ef4582b6152494372fc083885f540c01f86d780e6f3e75a954af2190fdae9604e3f8ab32ab0292dc0d790bd2627e37b4b4885df";
qx = "633c2ee5630b62c9ce839efd4d485a6d35e8b9430d264ffe501d28dbace79123";
qy = "4b668a1a6d1a25b089f75c2bd8d8c6a9a14fe7b729f45a82565da2e866e2c490";
r = "bf2111c93ec055a7eda90c106fce494fd866045634fd2aa28d6e018f9106994e";
s = "86b0341208a0aa55edecfd272f49cb34408ce54b7febc1d0a1c2ce77ab6988f8";
result = false
};
{
msg
=
"4bc2d9a898395b12701635f1048fbfd263ec115e4150532b034d59e625238f4ed32619744c612e35ac5a23bee8d5f5651641a492217d305e5051321c273647f14bc7c4afab518554e01c82d6fc1694c8bdbeb326bb607bcaf5436303bc09f64c02c6ec50de409a484f5237f7d34e2651ada7ec429ca3b99dd87c6015d2f4b342";
qx = "f78dce40d1cb8c4af2749bf22c6f8a9a470b1e41112796215dd017e57df1b38a";
qy = "61b29b0bc03dff7fa00613b4de1e2317cfbf2badd50dee3376c032a887c5b865";
r = "4a96169a5dea36a2594011537ee0dc19e8f9f74e82c07434079447155a830152";
s = "a204eaa4e97d7553a1521d9f6baadc0b6d6183ba0f385d8593d6ca83607c4d82";
result = false
};
{
msg
=
"d3356a683417508a9b913643e6ceac1281ef583f428968f9d2b6540a189d7041c477da8d207d0529720f70dab6b0da8c2168837476c1c6b63b517ed3cad48ae331cf716ecf47a0f7d00b57073ac6a4749716d49d80c4d46261d38e2e34b4f43e0f20b280842f6e3ea34fefdddfb9fa2a040ffe915e8784cfdb29b3364a34ca62";
qx = "3fcc3b3e1b103fe435ac214c756bdaad309389e1c803e6d84bbbc27039fcf900";
qy = "7f09edd1ec87a6d36dc81c1528d52a62776e666c274415a9f441d6a8df6b9237";
r = "1cac13f277354456ae67ab09b09e07eb1af2a2bf45108da70f5c8c6a4cbcd538";
s = "5d83752e540525602ba7e6fee4d4263f3eda59e67df20aac79ca67e8899fed0d";
result = false
};
{
msg
=
"d7f5da9f4cf9299b7f86c52b88364ce28fe9ada55dd551a1018790f9e1205e2405ac62429d65093f74ec35a16d9f195c993cd4eb8dc0aa0dabb70a503321d8a9649160d6b3d0a0854bb68c4c39693f592ef5dd478aa2432d0865d87d48b3aea9c7d7d114165c9200e4e8d7bd02a7895ec4418e6f2fed6b244bf66209039e98a9";
qx = "5ec702d43a67ada86efbfc136cf16d96078906954a3f1f9e440674cd907e4676";
qy = "05a62044fed8470dd4fca38d89d583ce36d50d28b66ab0b51922b21da92c56d9";
r = "75f3037298f1457dba55743999976a1c2636b2b8ab2ed3df4736a6d2934acc83";
s = "19d43ad168dda1bb8ac423f8f08876515234b3d841e57faef1b5ab27359b27ef";
result = false
};
{
msg
=
"68f4b444e1cc2025e8ff55e8046ead735e6e317082edf7ce65e83573501cb92c408c1c1c6c4fcca6b96ad34224f17b20be471cc9f4f97f0a5b7bfae9558bdb2ecb6e452bb743603724273d9e8d2ca22afdda35c8a371b28153d772303e4a25dc4f28e9a6dc9635331450f5af290dfa3431c3c08b91d5c97284361c03ec78f1bc";
qx = "f63afe99e1b5fc652782f86b59926af22e6072be93390fe41f541204f9c935d1";
qy = "f6e19ce5935e336183c21becf66596b8f559d2d02ee282aa87a7d6f936f7260c";
r = "cef4831e4515c77ca062282614b54a11b7dc4057e6997685c2fbfa95b392bf72";
s = "f20dc01bf38e1344ba675a22239d9893b3a3e33d9a403329a3d21650e9125b75";
result = true
};
{
msg
=
"e75be05be0aaf70719b488b89aaae9008707ca528994461db7130c4368575a024bf0981c305d61265e8b97599ec35c03badd1256b80d6bf70547ad6089b983e3bcc3481828f3259e43e655e177fc423fd7e066bd3ed68d81df84f773c0f9e5f8bf4469960b8b4d7b2a372fd0edd3521f6be670908f2d90a343f416358ea70e7e";
qx = "6d11b09d2767cf8d275faee746c203486259f66dd2bfa3a65c39371a66b23385";
qy = "4eb05c73e05261e979182833f20311e5366f72f4b949665ff294f959375534c6";
r = "15a697cdb614e11c0810e1e764cd501fcabc70874c957587bc4883d9438e177f";
s = "7bf6244f92bc768063cecb5336c8eaacd23db930b28703560f241c7d93950dfd";
result = false
};
{
msg
=
"0dc4a3eab66bd2e703a8fff566c34d466f9823ae42bd2104f61a6b051c0b017833fcef4d609d137ad97c209c80eebe252857aa7fafc35f16000a2bd4b4be0fa83b6e229eddfd180101f1f40d0453148053d8306833df64d59599b90194b55541d7f22dd589da9f7be519cbbb9db416c71bfe40ec090b5b7a600eec29bfd47306";
qx = "f3899caba038efb534c4cea0bd276814ffd80194473c903b81af11c8c05cb6e6";
qy = "6ea6b17402fcf2e8e737d11ffc7c2ed3b2d0bc3b8f271a381f4294cff62682c3";
r = "57b99380452e1d37b133c49b9ba493dee8630940477ca3351a43d90b99871e6a";
s = "df599c3a37105af3ecc159b3b685ccb3e151b7d5cf2d97147974ae71f466b615";
result = false
};
{
msg
=
"d55e5e124a7217879ca986f285e22ac51940b35959bbf5543104b5547356fd1a0ec37c0a23209004a2ec5bcaf3335bc45e4dc990eacd29b2d9b5cf349c7ba67711356299bceab6f048df761c65f2988803133d6723a2820fefb2654cc7c5f032f833ba78a34d2878c6b0ba654ebe26b110c935abb56024bd5d0f09b367724c07";
qx = "1fd6f4b98d0755291e7a230e9f81ecf909e6350aadb08e42a3262ff19200fbd2";
qy = "5578fef79bc477acfb8ed0dc10c4f5809c14dc5492405b3792a7940650b305d7";
r = "97a99e96e407b3ada2c2dcf9ceeeb984d9a4d0aa66ddf0a74ca23cabfb1566cc";
s = "0ecac315dc199cfea3c15348c130924a1f787019fe4cd3ae47ca8b111268754a";
result = false
};
{
msg
=
"7753c03b4202cb38bc0190a9f931eb31858d705d92d650320ff449fc99167fb3770b764c8988f6b34ac5a3d507a10e0aff7f88293f6a22c7ed8a24248a52dc125e416e158833fc38af29199f8ca4931068d4ccaa87e299e95642068f68c208cb782df13908f950564743ed1692502bafafaff169dc8fe674fb5e4f3ffd578c35";
qx = "2dcbd8790cee552e9f18f2b3149a2252dcd58b99ca7dc9680b92c8c43aa33874";
qy = "5dbc8bb8813c8e019d80e19acdb0792f537980fecde93db621aaf1f6d0e6ee34";
r = "2bdbd8b0d759595662cc10b10236136ef6ce429641f68cf6480f472fcc77bc9f";
s = "7e7df0c8b86f7db06caf1610166f7b9c4c75447f991d5aaf4dea720c25985c8c";
result = true
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Spec.ECDSA.Test.Vectors.Mkvec_SigVer",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
}
let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
]
let sigver_vectors_sha2_384 : list vec_SigVer = [
{ msg = "fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false;
};
{ msg = "b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false;
};
{ msg = "d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true;
};
{ msg = "06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false;
};
{ msg = "59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false;
};
{ msg = "8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false;
};
{ msg = "a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false;
};
{ msg = "1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true;
};
{ msg = "3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false;
};
{ msg = "4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false;
};
{ msg = "b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false;
};
{ msg = "aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false;
};
{ msg = "98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false;
};
{ msg = "bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true;
};
{ msg = "33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false;
};
] | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sigver_vectors_sha2_512:list vec_SigVer | [] | Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_512 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigVer | {
"end_col": 1,
"end_line": 356,
"start_col": 49,
"start_line": 250
} |
Prims.Tot | val siggen_vectors_sha2_256:list vec_SigGen | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let siggen_vectors_sha2_256 : list vec_SigGen = [
{ msg' = "5905238877c77421f73e43ee3da6f2d9e2ccad5fc942dcec0cbd25482935faaf416983fe165b1a045ee2bcd2e6dca3bdf46c4310a7461f9a37960ca672d3feb5473e253605fb1ddfd28065b53cb5858a8ad28175bf9bd386a5e471ea7a65c17cc934a9d791e91491eb3754d03799790fe2d308d16146d5c9b0d0debd97d79ce8";
d = "519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464";
qx' = "1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83";
qy' = "ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9";
k = "94a1bbb14b906a61a280f245f9e93c7f3b4a6247824f5d33b9670787642a68de";
r' = "f3ac8061b514795b8843e3d6629527ed2afd6b1f6a555a7acabb5e6f79c8c2ac";
s' = "8bf77819ca05a6b2786c76262bf7371cef97b218e96f175a3ccdda2acc058903";
};
{ msg' = "c35e2f092553c55772926bdbe87c9796827d17024dbb9233a545366e2e5987dd344deb72df987144b8c6c43bc41b654b94cc856e16b96d7a821c8ec039b503e3d86728c494a967d83011a0e090b5d54cd47f4e366c0912bc808fbb2ea96efac88fb3ebec9342738e225f7c7c2b011ce375b56621a20642b4d36e060db4524af1";
d = "0f56db78ca460b055c500064824bed999a25aaf48ebb519ac201537b85479813";
qx' = "e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a";
qy' = "bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39";
k = "6d3e71882c3b83b156bb14e0ab184aa9fb728068d3ae9fac421187ae0b2f34c6";
r' = "976d3a4e9d23326dc0baa9fa560b7c4e53f42864f508483a6473b6a11079b2db";
s' = "1b766e9ceb71ba6c01dcd46e0af462cd4cfa652ae5017d4555b8eeefe36e1932";
};
{ msg' = "3c054e333a94259c36af09ab5b4ff9beb3492f8d5b4282d16801daccb29f70fe61a0b37ffef5c04cd1b70e85b1f549a1c4dc672985e50f43ea037efa9964f096b5f62f7ffdf8d6bfb2cc859558f5a393cb949dbd48f269343b5263dcdb9c556eca074f2e98e6d94c2c29a677afaf806edf79b15a3fcd46e7067b7669f83188ee";
d = "e283871239837e13b95f789e6e1af63bf61c918c992e62bca040d64cad1fc2ef";
qx' = "74ccd8a62fba0e667c50929a53f78c21b8ff0c3c737b0b40b1750b2302b0bde8";
qy' = "29074e21f3a0ef88b9efdf10d06aa4c295cc1671f758ca0e4cd108803d0f2614";
k = "ad5e887eb2b380b8d8280ad6e5ff8a60f4d26243e0124c2f31a297b5d0835de2";
r' = "35fb60f5ca0f3ca08542fb3cc641c8263a2cab7a90ee6a5e1583fac2bb6f6bd1";
s' = "ee59d81bc9db1055cc0ed97b159d8784af04e98511d0a9a407b99bb292572e96";
};
{ msg' = "0989122410d522af64ceb07da2c865219046b4c3d9d99b01278c07ff63eaf1039cb787ae9e2dd46436cc0415f280c562bebb83a23e639e476a02ec8cff7ea06cd12c86dcc3adefbf1a9e9a9b6646c7599ec631b0da9a60debeb9b3e19324977f3b4f36892c8a38671c8e1cc8e50fcd50f9e51deaf98272f9266fc702e4e57c30";
d = "a3d2d3b7596f6592ce98b4bfe10d41837f10027a90d7bb75349490018cf72d07";
qx' = "322f80371bf6e044bc49391d97c1714ab87f990b949bc178cb7c43b7c22d89e1";
qy' = "3c15d54a5cc6b9f09de8457e873eb3deb1fceb54b0b295da6050294fae7fd999";
k = "24fc90e1da13f17ef9fe84cc96b9471ed1aaac17e3a4bae33a115df4e5834f18";
r' = "d7c562370af617b581c84a2468cc8bd50bb1cbf322de41b7887ce07c0e5884ca";
s' = "b46d9f2d8c4bf83546ff178f1d78937c008d64e8ecc5cbb825cb21d94d670d89";
};
{ msg' = "dc66e39f9bbfd9865318531ffe9207f934fa615a5b285708a5e9c46b7775150e818d7f24d2a123df3672fff2094e3fd3df6fbe259e3989dd5edfcccbe7d45e26a775a5c4329a084f057c42c13f3248e3fd6f0c76678f890f513c32292dd306eaa84a59abe34b16cb5e38d0e885525d10336ca443e1682aa04a7af832b0eee4e7";
d = "53a0e8a8fe93db01e7ae94e1a9882a102ebd079b3a535827d583626c272d280d";
qx' = "1bcec4570e1ec2436596b8ded58f60c3b1ebc6a403bc5543040ba82963057244";
qy' = "8af62a4c683f096b28558320737bf83b9959a46ad2521004ef74cf85e67494e1";
k = "5d833e8d24cc7a402d7ee7ec852a3587cddeb48358cea71b0bedb8fabe84e0c4";
r' = "18caaf7b663507a8bcd992b836dec9dc5703c080af5e51dfa3a9a7c387182604";
s' = "77c68928ac3b88d985fb43fb615fb7ff45c18ba5c81af796c613dfa98352d29c";
};
{ msg' = "600974e7d8c5508e2c1aab0783ad0d7c4494ab2b4da265c2fe496421c4df238b0be25f25659157c8a225fb03953607f7df996acfd402f147e37aee2f1693e3bf1c35eab3ae360a2bd91d04622ea47f83d863d2dfecb618e8b8bdc39e17d15d672eee03bb4ce2cc5cf6b217e5faf3f336fdd87d972d3a8b8a593ba85955cc9d71";
d = "4af107e8e2194c830ffb712a65511bc9186a133007855b49ab4b3833aefc4a1d";
qx' = "a32e50be3dae2c8ba3f5e4bdae14cf7645420d425ead94036c22dd6c4fc59e00";
qy' = "d623bf641160c289d6742c6257ae6ba574446dd1d0e74db3aaa80900b78d4ae9";
k = "e18f96f84dfa2fd3cdfaec9159d4c338cd54ad314134f0b31e20591fc238d0ab";
r' = "8524c5024e2d9a73bde8c72d9129f57873bbad0ed05215a372a84fdbc78f2e68";
s' = "d18c2caf3b1072f87064ec5e8953f51301cada03469c640244760328eb5a05cb";
};
{ msg' = "dfa6cb9b39adda6c74cc8b2a8b53a12c499ab9dee01b4123642b4f11af336a91a5c9ce0520eb2395a6190ecbf6169c4cba81941de8e76c9c908eb843b98ce95e0da29c5d4388040264e05e07030a577cc5d176387154eabae2af52a83e85c61c7c61da930c9b19e45d7e34c8516dc3c238fddd6e450a77455d534c48a152010b";
d = "78dfaa09f1076850b3e206e477494cddcfb822aaa0128475053592c48ebaf4ab";
qx' = "8bcfe2a721ca6d753968f564ec4315be4857e28bef1908f61a366b1f03c97479";
qy' = "0f67576a30b8e20d4232d8530b52fb4c89cbc589ede291e499ddd15fe870ab96";
k = "295544dbb2da3da170741c9b2c6551d40af7ed4e891445f11a02b66a5c258a77";
r' = "c5a186d72df452015480f7f338970bfe825087f05c0088d95305f87aacc9b254";
s' = "84a58f9e9d9e735344b316b1aa1ab5185665b85147dc82d92e969d7bee31ca30";
};
{ msg' = "51d2547cbff92431174aa7fc7302139519d98071c755ff1c92e4694b58587ea560f72f32fc6dd4dee7d22bb7387381d0256e2862d0644cdf2c277c5d740fa089830eb52bf79d1e75b8596ecf0ea58a0b9df61e0c9754bfcd62efab6ea1bd216bf181c5593da79f10135a9bc6e164f1854bc8859734341aad237ba29a81a3fc8b";
d = "80e692e3eb9fcd8c7d44e7de9f7a5952686407f90025a1d87e52c7096a62618a";
qx' = "a88bc8430279c8c0400a77d751f26c0abc93e5de4ad9a4166357952fe041e767";
qy' = "2d365a1eef25ead579cc9a069b6abc1b16b81c35f18785ce26a10ba6d1381185";
k = "7c80fd66d62cc076cef2d030c17c0a69c99611549cb32c4ff662475adbe84b22";
r' = "9d0c6afb6df3bced455b459cc21387e14929392664bb8741a3693a1795ca6902";
s' = "d7f9ddd191f1f412869429209ee3814c75c72fa46a9cccf804a2f5cc0b7e739f";
};
{ msg' = "558c2ac13026402bad4a0a83ebc9468e50f7ffab06d6f981e5db1d082098065bcff6f21a7a74558b1e8612914b8b5a0aa28ed5b574c36ac4ea5868432a62bb8ef0695d27c1e3ceaf75c7b251c65ddb268696f07c16d2767973d85beb443f211e6445e7fe5d46f0dce70d58a4cd9fe70688c035688ea8c6baec65a5fc7e2c93e8";
d = "5e666c0db0214c3b627a8e48541cc84a8b6fd15f300da4dff5d18aec6c55b881";
qx' = "1bc487570f040dc94196c9befe8ab2b6de77208b1f38bdaae28f9645c4d2bc3a";
qy' = "ec81602abd8345e71867c8210313737865b8aa186851e1b48eaca140320f5d8f";
k = "2e7625a48874d86c9e467f890aaa7cd6ebdf71c0102bfdcfa24565d6af3fdce9";
r' = "2f9e2b4e9f747c657f705bffd124ee178bbc5391c86d056717b140c153570fd9";
s' = "f5413bfd85949da8d83de83ab0d19b2986613e224d1901d76919de23ccd03199";
};
{ msg' = "4d55c99ef6bd54621662c3d110c3cb627c03d6311393b264ab97b90a4b15214a5593ba2510a53d63fb34be251facb697c973e11b665cb7920f1684b0031b4dd370cb927ca7168b0bf8ad285e05e9e31e34bc24024739fdc10b78586f29eff94412034e3b606ed850ec2c1900e8e68151fc4aee5adebb066eb6da4eaa5681378e";
d = "f73f455271c877c4d5334627e37c278f68d143014b0a05aa62f308b2101c5308";
qx' = "b8188bd68701fc396dab53125d4d28ea33a91daf6d21485f4770f6ea8c565dde";
qy' = "423f058810f277f8fe076f6db56e9285a1bf2c2a1dae145095edd9c04970bc4a";
k = "62f8665fd6e26b3fa069e85281777a9b1f0dfd2c0b9f54a086d0c109ff9fd615";
r' = "1cc628533d0004b2b20e7f4baad0b8bb5e0673db159bbccf92491aef61fc9620";
s' = "880e0bbf82a8cf818ed46ba03cf0fc6c898e36fca36cc7fdb1d2db7503634430";
};
{ msg' = "f8248ad47d97c18c984f1f5c10950dc1404713c56b6ea397e01e6dd925e903b4fadfe2c9e877169e71ce3c7fe5ce70ee4255d9cdc26f6943bf48687874de64f6cf30a012512e787b88059bbf561162bdcc23a3742c835ac144cc14167b1bd6727e940540a9c99f3cbb41fb1dcb00d76dda04995847c657f4c19d303eb09eb48a";
d = "b20d705d9bd7c2b8dc60393a5357f632990e599a0975573ac67fd89b49187906";
qx' = "51f99d2d52d4a6e734484a018b7ca2f895c2929b6754a3a03224d07ae61166ce";
qy' = "4737da963c6ef7247fb88d19f9b0c667cac7fe12837fdab88c66f10d3c14cad1";
k = "72b656f6b35b9ccbc712c9f1f3b1a14cbbebaec41c4bca8da18f492a062d6f6f";
r' = "9886ae46c1415c3bc959e82b760ad760aab66885a84e620aa339fdf102465c42";
s' = "2bf3a80bc04faa35ebecc0f4864ac02d349f6f126e0f988501b8d3075409a26c";
};
{ msg' = "3b6ee2425940b3d240d35b97b6dcd61ed3423d8e71a0ada35d47b322d17b35ea0472f35edd1d252f87b8b65ef4b716669fc9ac28b00d34a9d66ad118c9d94e7f46d0b4f6c2b2d339fd6bcd351241a387cc82609057048c12c4ec3d85c661975c45b300cb96930d89370a327c98b67defaa89497aa8ef994c77f1130f752f94a4";
d = "d4234bebfbc821050341a37e1240efe5e33763cbbb2ef76a1c79e24724e5a5e7";
qx' = "8fb287f0202ad57ae841aea35f29b2e1d53e196d0ddd9aec24813d64c0922fb7";
qy' = "1f6daff1aa2dd2d6d3741623eecb5e7b612997a1039aab2e5cf2de969cfea573";
k = "d926fe10f1bfd9855610f4f5a3d666b1a149344057e35537373372ead8b1a778";
r' = "490efd106be11fc365c7467eb89b8d39e15d65175356775deab211163c2504cb";
s' = "644300fc0da4d40fb8c6ead510d14f0bd4e1321a469e9c0a581464c7186b7aa7";
};
{ msg' = "c5204b81ec0a4df5b7e9fda3dc245f98082ae7f4efe81998dcaa286bd4507ca840a53d21b01e904f55e38f78c3757d5a5a4a44b1d5d4e480be3afb5b394a5d2840af42b1b4083d40afbfe22d702f370d32dbfd392e128ea4724d66a3701da41ae2f03bb4d91bb946c7969404cb544f71eb7a49eb4c4ec55799bda1eb545143a7";
d = "b58f5211dff440626bb56d0ad483193d606cf21f36d9830543327292f4d25d8c";
qx' = "68229b48c2fe19d3db034e4c15077eb7471a66031f28a980821873915298ba76";
qy' = "303e8ee3742a893f78b810991da697083dd8f11128c47651c27a56740a80c24c";
k = "e158bf4a2d19a99149d9cdb879294ccb7aaeae03d75ddd616ef8ae51a6dc1071";
r' = "e67a9717ccf96841489d6541f4f6adb12d17b59a6bef847b6183b8fcf16a32eb";
s' = "9ae6ba6d637706849a6a9fc388cf0232d85c26ea0d1fe7437adb48de58364333";
};
{ msg' = "72e81fe221fb402148d8b7ab03549f1180bcc03d41ca59d7653801f0ba853add1f6d29edd7f9abc621b2d548f8dbf8979bd16608d2d8fc3260b4ebc0dd42482481d548c7075711b5759649c41f439fad69954956c9326841ea6492956829f9e0dc789f73633b40f6ac77bcae6dfc7930cfe89e526d1684365c5b0be2437fdb01";
d = "54c066711cdb061eda07e5275f7e95a9962c6764b84f6f1f3ab5a588e0a2afb1";
qx' = "0a7dbb8bf50cb605eb2268b081f26d6b08e012f952c4b70a5a1e6e7d46af98bb";
qy' = "f26dd7d799930062480849962ccf5004edcfd307c044f4e8f667c9baa834eeae";
k = "646fe933e96c3b8f9f507498e907fdd201f08478d0202c752a7c2cfebf4d061a";
r' = "b53ce4da1aa7c0dc77a1896ab716b921499aed78df725b1504aba1597ba0c64b";
s' = "d7c246dc7ad0e67700c373edcfdd1c0a0495fc954549ad579df6ed1438840851";
};
{ msg' = "21188c3edd5de088dacc1076b9e1bcecd79de1003c2414c3866173054dc82dde85169baa77993adb20c269f60a5226111828578bcc7c29e6e8d2dae81806152c8ba0c6ada1986a1983ebeec1473a73a04795b6319d48662d40881c1723a706f516fe75300f92408aa1dc6ae4288d2046f23c1aa2e54b7fb6448a0da922bd7f34";
d = "34fa4682bf6cb5b16783adcd18f0e6879b92185f76d7c920409f904f522db4b1";
qx' = "105d22d9c626520faca13e7ced382dcbe93498315f00cc0ac39c4821d0d73737";
qy' = "6c47f3cbbfa97dfcebe16270b8c7d5d3a5900b888c42520d751e8faf3b401ef4";
k = "a6f463ee72c9492bc792fe98163112837aebd07bab7a84aaed05be64db3086f4";
r' = "542c40a18140a6266d6f0286e24e9a7bad7650e72ef0e2131e629c076d962663";
s' = "4f7f65305e24a6bbb5cff714ba8f5a2cee5bdc89ba8d75dcbf21966ce38eb66f";
};
] | val siggen_vectors_sha2_256:list vec_SigGen
let siggen_vectors_sha2_256:list vec_SigGen = | false | null | false | [
{
msg'
=
"5905238877c77421f73e43ee3da6f2d9e2ccad5fc942dcec0cbd25482935faaf416983fe165b1a045ee2bcd2e6dca3bdf46c4310a7461f9a37960ca672d3feb5473e253605fb1ddfd28065b53cb5858a8ad28175bf9bd386a5e471ea7a65c17cc934a9d791e91491eb3754d03799790fe2d308d16146d5c9b0d0debd97d79ce8";
d = "519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464";
qx' = "1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83";
qy' = "ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9";
k = "94a1bbb14b906a61a280f245f9e93c7f3b4a6247824f5d33b9670787642a68de";
r' = "f3ac8061b514795b8843e3d6629527ed2afd6b1f6a555a7acabb5e6f79c8c2ac";
s' = "8bf77819ca05a6b2786c76262bf7371cef97b218e96f175a3ccdda2acc058903"
};
{
msg'
=
"c35e2f092553c55772926bdbe87c9796827d17024dbb9233a545366e2e5987dd344deb72df987144b8c6c43bc41b654b94cc856e16b96d7a821c8ec039b503e3d86728c494a967d83011a0e090b5d54cd47f4e366c0912bc808fbb2ea96efac88fb3ebec9342738e225f7c7c2b011ce375b56621a20642b4d36e060db4524af1";
d = "0f56db78ca460b055c500064824bed999a25aaf48ebb519ac201537b85479813";
qx' = "e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a";
qy' = "bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39";
k = "6d3e71882c3b83b156bb14e0ab184aa9fb728068d3ae9fac421187ae0b2f34c6";
r' = "976d3a4e9d23326dc0baa9fa560b7c4e53f42864f508483a6473b6a11079b2db";
s' = "1b766e9ceb71ba6c01dcd46e0af462cd4cfa652ae5017d4555b8eeefe36e1932"
};
{
msg'
=
"3c054e333a94259c36af09ab5b4ff9beb3492f8d5b4282d16801daccb29f70fe61a0b37ffef5c04cd1b70e85b1f549a1c4dc672985e50f43ea037efa9964f096b5f62f7ffdf8d6bfb2cc859558f5a393cb949dbd48f269343b5263dcdb9c556eca074f2e98e6d94c2c29a677afaf806edf79b15a3fcd46e7067b7669f83188ee";
d = "e283871239837e13b95f789e6e1af63bf61c918c992e62bca040d64cad1fc2ef";
qx' = "74ccd8a62fba0e667c50929a53f78c21b8ff0c3c737b0b40b1750b2302b0bde8";
qy' = "29074e21f3a0ef88b9efdf10d06aa4c295cc1671f758ca0e4cd108803d0f2614";
k = "ad5e887eb2b380b8d8280ad6e5ff8a60f4d26243e0124c2f31a297b5d0835de2";
r' = "35fb60f5ca0f3ca08542fb3cc641c8263a2cab7a90ee6a5e1583fac2bb6f6bd1";
s' = "ee59d81bc9db1055cc0ed97b159d8784af04e98511d0a9a407b99bb292572e96"
};
{
msg'
=
"0989122410d522af64ceb07da2c865219046b4c3d9d99b01278c07ff63eaf1039cb787ae9e2dd46436cc0415f280c562bebb83a23e639e476a02ec8cff7ea06cd12c86dcc3adefbf1a9e9a9b6646c7599ec631b0da9a60debeb9b3e19324977f3b4f36892c8a38671c8e1cc8e50fcd50f9e51deaf98272f9266fc702e4e57c30";
d = "a3d2d3b7596f6592ce98b4bfe10d41837f10027a90d7bb75349490018cf72d07";
qx' = "322f80371bf6e044bc49391d97c1714ab87f990b949bc178cb7c43b7c22d89e1";
qy' = "3c15d54a5cc6b9f09de8457e873eb3deb1fceb54b0b295da6050294fae7fd999";
k = "24fc90e1da13f17ef9fe84cc96b9471ed1aaac17e3a4bae33a115df4e5834f18";
r' = "d7c562370af617b581c84a2468cc8bd50bb1cbf322de41b7887ce07c0e5884ca";
s' = "b46d9f2d8c4bf83546ff178f1d78937c008d64e8ecc5cbb825cb21d94d670d89"
};
{
msg'
=
"dc66e39f9bbfd9865318531ffe9207f934fa615a5b285708a5e9c46b7775150e818d7f24d2a123df3672fff2094e3fd3df6fbe259e3989dd5edfcccbe7d45e26a775a5c4329a084f057c42c13f3248e3fd6f0c76678f890f513c32292dd306eaa84a59abe34b16cb5e38d0e885525d10336ca443e1682aa04a7af832b0eee4e7";
d = "53a0e8a8fe93db01e7ae94e1a9882a102ebd079b3a535827d583626c272d280d";
qx' = "1bcec4570e1ec2436596b8ded58f60c3b1ebc6a403bc5543040ba82963057244";
qy' = "8af62a4c683f096b28558320737bf83b9959a46ad2521004ef74cf85e67494e1";
k = "5d833e8d24cc7a402d7ee7ec852a3587cddeb48358cea71b0bedb8fabe84e0c4";
r' = "18caaf7b663507a8bcd992b836dec9dc5703c080af5e51dfa3a9a7c387182604";
s' = "77c68928ac3b88d985fb43fb615fb7ff45c18ba5c81af796c613dfa98352d29c"
};
{
msg'
=
"600974e7d8c5508e2c1aab0783ad0d7c4494ab2b4da265c2fe496421c4df238b0be25f25659157c8a225fb03953607f7df996acfd402f147e37aee2f1693e3bf1c35eab3ae360a2bd91d04622ea47f83d863d2dfecb618e8b8bdc39e17d15d672eee03bb4ce2cc5cf6b217e5faf3f336fdd87d972d3a8b8a593ba85955cc9d71";
d = "4af107e8e2194c830ffb712a65511bc9186a133007855b49ab4b3833aefc4a1d";
qx' = "a32e50be3dae2c8ba3f5e4bdae14cf7645420d425ead94036c22dd6c4fc59e00";
qy' = "d623bf641160c289d6742c6257ae6ba574446dd1d0e74db3aaa80900b78d4ae9";
k = "e18f96f84dfa2fd3cdfaec9159d4c338cd54ad314134f0b31e20591fc238d0ab";
r' = "8524c5024e2d9a73bde8c72d9129f57873bbad0ed05215a372a84fdbc78f2e68";
s' = "d18c2caf3b1072f87064ec5e8953f51301cada03469c640244760328eb5a05cb"
};
{
msg'
=
"dfa6cb9b39adda6c74cc8b2a8b53a12c499ab9dee01b4123642b4f11af336a91a5c9ce0520eb2395a6190ecbf6169c4cba81941de8e76c9c908eb843b98ce95e0da29c5d4388040264e05e07030a577cc5d176387154eabae2af52a83e85c61c7c61da930c9b19e45d7e34c8516dc3c238fddd6e450a77455d534c48a152010b";
d = "78dfaa09f1076850b3e206e477494cddcfb822aaa0128475053592c48ebaf4ab";
qx' = "8bcfe2a721ca6d753968f564ec4315be4857e28bef1908f61a366b1f03c97479";
qy' = "0f67576a30b8e20d4232d8530b52fb4c89cbc589ede291e499ddd15fe870ab96";
k = "295544dbb2da3da170741c9b2c6551d40af7ed4e891445f11a02b66a5c258a77";
r' = "c5a186d72df452015480f7f338970bfe825087f05c0088d95305f87aacc9b254";
s' = "84a58f9e9d9e735344b316b1aa1ab5185665b85147dc82d92e969d7bee31ca30"
};
{
msg'
=
"51d2547cbff92431174aa7fc7302139519d98071c755ff1c92e4694b58587ea560f72f32fc6dd4dee7d22bb7387381d0256e2862d0644cdf2c277c5d740fa089830eb52bf79d1e75b8596ecf0ea58a0b9df61e0c9754bfcd62efab6ea1bd216bf181c5593da79f10135a9bc6e164f1854bc8859734341aad237ba29a81a3fc8b";
d = "80e692e3eb9fcd8c7d44e7de9f7a5952686407f90025a1d87e52c7096a62618a";
qx' = "a88bc8430279c8c0400a77d751f26c0abc93e5de4ad9a4166357952fe041e767";
qy' = "2d365a1eef25ead579cc9a069b6abc1b16b81c35f18785ce26a10ba6d1381185";
k = "7c80fd66d62cc076cef2d030c17c0a69c99611549cb32c4ff662475adbe84b22";
r' = "9d0c6afb6df3bced455b459cc21387e14929392664bb8741a3693a1795ca6902";
s' = "d7f9ddd191f1f412869429209ee3814c75c72fa46a9cccf804a2f5cc0b7e739f"
};
{
msg'
=
"558c2ac13026402bad4a0a83ebc9468e50f7ffab06d6f981e5db1d082098065bcff6f21a7a74558b1e8612914b8b5a0aa28ed5b574c36ac4ea5868432a62bb8ef0695d27c1e3ceaf75c7b251c65ddb268696f07c16d2767973d85beb443f211e6445e7fe5d46f0dce70d58a4cd9fe70688c035688ea8c6baec65a5fc7e2c93e8";
d = "5e666c0db0214c3b627a8e48541cc84a8b6fd15f300da4dff5d18aec6c55b881";
qx' = "1bc487570f040dc94196c9befe8ab2b6de77208b1f38bdaae28f9645c4d2bc3a";
qy' = "ec81602abd8345e71867c8210313737865b8aa186851e1b48eaca140320f5d8f";
k = "2e7625a48874d86c9e467f890aaa7cd6ebdf71c0102bfdcfa24565d6af3fdce9";
r' = "2f9e2b4e9f747c657f705bffd124ee178bbc5391c86d056717b140c153570fd9";
s' = "f5413bfd85949da8d83de83ab0d19b2986613e224d1901d76919de23ccd03199"
};
{
msg'
=
"4d55c99ef6bd54621662c3d110c3cb627c03d6311393b264ab97b90a4b15214a5593ba2510a53d63fb34be251facb697c973e11b665cb7920f1684b0031b4dd370cb927ca7168b0bf8ad285e05e9e31e34bc24024739fdc10b78586f29eff94412034e3b606ed850ec2c1900e8e68151fc4aee5adebb066eb6da4eaa5681378e";
d = "f73f455271c877c4d5334627e37c278f68d143014b0a05aa62f308b2101c5308";
qx' = "b8188bd68701fc396dab53125d4d28ea33a91daf6d21485f4770f6ea8c565dde";
qy' = "423f058810f277f8fe076f6db56e9285a1bf2c2a1dae145095edd9c04970bc4a";
k = "62f8665fd6e26b3fa069e85281777a9b1f0dfd2c0b9f54a086d0c109ff9fd615";
r' = "1cc628533d0004b2b20e7f4baad0b8bb5e0673db159bbccf92491aef61fc9620";
s' = "880e0bbf82a8cf818ed46ba03cf0fc6c898e36fca36cc7fdb1d2db7503634430"
};
{
msg'
=
"f8248ad47d97c18c984f1f5c10950dc1404713c56b6ea397e01e6dd925e903b4fadfe2c9e877169e71ce3c7fe5ce70ee4255d9cdc26f6943bf48687874de64f6cf30a012512e787b88059bbf561162bdcc23a3742c835ac144cc14167b1bd6727e940540a9c99f3cbb41fb1dcb00d76dda04995847c657f4c19d303eb09eb48a";
d = "b20d705d9bd7c2b8dc60393a5357f632990e599a0975573ac67fd89b49187906";
qx' = "51f99d2d52d4a6e734484a018b7ca2f895c2929b6754a3a03224d07ae61166ce";
qy' = "4737da963c6ef7247fb88d19f9b0c667cac7fe12837fdab88c66f10d3c14cad1";
k = "72b656f6b35b9ccbc712c9f1f3b1a14cbbebaec41c4bca8da18f492a062d6f6f";
r' = "9886ae46c1415c3bc959e82b760ad760aab66885a84e620aa339fdf102465c42";
s' = "2bf3a80bc04faa35ebecc0f4864ac02d349f6f126e0f988501b8d3075409a26c"
};
{
msg'
=
"3b6ee2425940b3d240d35b97b6dcd61ed3423d8e71a0ada35d47b322d17b35ea0472f35edd1d252f87b8b65ef4b716669fc9ac28b00d34a9d66ad118c9d94e7f46d0b4f6c2b2d339fd6bcd351241a387cc82609057048c12c4ec3d85c661975c45b300cb96930d89370a327c98b67defaa89497aa8ef994c77f1130f752f94a4";
d = "d4234bebfbc821050341a37e1240efe5e33763cbbb2ef76a1c79e24724e5a5e7";
qx' = "8fb287f0202ad57ae841aea35f29b2e1d53e196d0ddd9aec24813d64c0922fb7";
qy' = "1f6daff1aa2dd2d6d3741623eecb5e7b612997a1039aab2e5cf2de969cfea573";
k = "d926fe10f1bfd9855610f4f5a3d666b1a149344057e35537373372ead8b1a778";
r' = "490efd106be11fc365c7467eb89b8d39e15d65175356775deab211163c2504cb";
s' = "644300fc0da4d40fb8c6ead510d14f0bd4e1321a469e9c0a581464c7186b7aa7"
};
{
msg'
=
"c5204b81ec0a4df5b7e9fda3dc245f98082ae7f4efe81998dcaa286bd4507ca840a53d21b01e904f55e38f78c3757d5a5a4a44b1d5d4e480be3afb5b394a5d2840af42b1b4083d40afbfe22d702f370d32dbfd392e128ea4724d66a3701da41ae2f03bb4d91bb946c7969404cb544f71eb7a49eb4c4ec55799bda1eb545143a7";
d = "b58f5211dff440626bb56d0ad483193d606cf21f36d9830543327292f4d25d8c";
qx' = "68229b48c2fe19d3db034e4c15077eb7471a66031f28a980821873915298ba76";
qy' = "303e8ee3742a893f78b810991da697083dd8f11128c47651c27a56740a80c24c";
k = "e158bf4a2d19a99149d9cdb879294ccb7aaeae03d75ddd616ef8ae51a6dc1071";
r' = "e67a9717ccf96841489d6541f4f6adb12d17b59a6bef847b6183b8fcf16a32eb";
s' = "9ae6ba6d637706849a6a9fc388cf0232d85c26ea0d1fe7437adb48de58364333"
};
{
msg'
=
"72e81fe221fb402148d8b7ab03549f1180bcc03d41ca59d7653801f0ba853add1f6d29edd7f9abc621b2d548f8dbf8979bd16608d2d8fc3260b4ebc0dd42482481d548c7075711b5759649c41f439fad69954956c9326841ea6492956829f9e0dc789f73633b40f6ac77bcae6dfc7930cfe89e526d1684365c5b0be2437fdb01";
d = "54c066711cdb061eda07e5275f7e95a9962c6764b84f6f1f3ab5a588e0a2afb1";
qx' = "0a7dbb8bf50cb605eb2268b081f26d6b08e012f952c4b70a5a1e6e7d46af98bb";
qy' = "f26dd7d799930062480849962ccf5004edcfd307c044f4e8f667c9baa834eeae";
k = "646fe933e96c3b8f9f507498e907fdd201f08478d0202c752a7c2cfebf4d061a";
r' = "b53ce4da1aa7c0dc77a1896ab716b921499aed78df725b1504aba1597ba0c64b";
s' = "d7c246dc7ad0e67700c373edcfdd1c0a0495fc954549ad579df6ed1438840851"
};
{
msg'
=
"21188c3edd5de088dacc1076b9e1bcecd79de1003c2414c3866173054dc82dde85169baa77993adb20c269f60a5226111828578bcc7c29e6e8d2dae81806152c8ba0c6ada1986a1983ebeec1473a73a04795b6319d48662d40881c1723a706f516fe75300f92408aa1dc6ae4288d2046f23c1aa2e54b7fb6448a0da922bd7f34";
d = "34fa4682bf6cb5b16783adcd18f0e6879b92185f76d7c920409f904f522db4b1";
qx' = "105d22d9c626520faca13e7ced382dcbe93498315f00cc0ac39c4821d0d73737";
qy' = "6c47f3cbbfa97dfcebe16270b8c7d5d3a5900b888c42520d751e8faf3b401ef4";
k = "a6f463ee72c9492bc792fe98163112837aebd07bab7a84aaed05be64db3086f4";
r' = "542c40a18140a6266d6f0286e24e9a7bad7650e72ef0e2131e629c076d962663";
s' = "4f7f65305e24a6bbb5cff714ba8f5a2cee5bdc89ba8d75dcbf21966ce38eb66f"
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigGen",
"Spec.ECDSA.Test.Vectors.Mkvec_SigGen",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
}
let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
]
let sigver_vectors_sha2_384 : list vec_SigVer = [
{ msg = "fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false;
};
{ msg = "b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false;
};
{ msg = "d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true;
};
{ msg = "06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false;
};
{ msg = "59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false;
};
{ msg = "8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false;
};
{ msg = "a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false;
};
{ msg = "1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true;
};
{ msg = "3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false;
};
{ msg = "4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false;
};
{ msg = "b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false;
};
{ msg = "aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false;
};
{ msg = "98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false;
};
{ msg = "bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true;
};
{ msg = "33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false;
};
]
let sigver_vectors_sha2_512 : list vec_SigVer = [
{ msg = "273b063224ab48a1bf6c7efc93429d1f89de48fc4a4fa3ffe7a49ebba1a58ff5d208a9e4bff27b418252526243ba042d1605b6df3c2ec916ceef027853a41137f7bfb6fc63844de95f58e82b9ad2565f1367d2c69bd29100f6db21a8ab7ab58affd1661add0322bd915721378df9fa233ef0b7e0a0a85be31689e21891ec8977";
qx = "484e31e69ef70bb8527853c22c6b6b4cd2a51311dde66c7b63f097dbb6ab27bf";
qy = "e1ff8177f4061d4fbbacbbc70519f0fc8c8b6053d72af0fe4f048d615004f74e";
r = "91a303d8fe3ab4176070f6406267f6b79bfe5eb5f62ae6aeb374d90667858518";
s = "e152119cefa26826ea07ec40a428869132d70812c5578c5a260e48d6800e046a";
result = false;
};
{ msg = "d64ea1a768b0de29ab018ae93baa645d078c70a2f7aa4acd4ae7526538ebd5f697a11927cfd0ddc9187c095f14ad30544cb63ede9353af8b23c18ce22843881fe2d7bde748fc69085921677858d87d2dc3e244f6c7e2c2b2bd791f450dfdd4ff0ddd35ab2ada4f1b90ab16ef2bf63b3fbe88ce8a5d5bb85430740d3744849c13";
qx = "8b75fc0129c9a78f8395c63ae9694b05cd6950665cf5da7d66118de451422624";
qy = "b394171981d4896d6e1b4ef2336d9befe7d27e1eb87f1c14b8ddda622af379dc";
r = "17e298e67ad2af76f6892fdcead00a88256573868f79dc74431b55103058f0b0";
s = "881328cd91e43d30133f6e471e0b9b04353b17893fb7614fd7333d812a3df6b4";
result = false;
};
{ msg = "1db85445c9d8d1478a97dd9d6ffbf11ebcd2114d2ed4e8b6811171d947e7d4daedea35af6177debe2ef6d93f94ff9d770b45d458e91deb4eef59856425d7b00291aff9b6c9fa02375ec1a06f71f7548721790023301cf6ac7fee1d451228106ef4472681e652c8cd59b15d6d16f1e13440d888e265817cb4a654f7246e0980df";
qx = "76e51086e078b2b116fd1e9c6fa3d53f675ae40252fb9f0cc62817bd9ce8831d";
qy = "ca7e609a0b1d14b7c9249b53da0b2050450e2a25cb6c8f81c5311974a7efb576";
r = "23b653faaa7d4552388771931803ce939dd5ee62d3fa72b019be1b2272c85592";
s = "a03c6f5c54a10861d6b8922821708e9306fd6d5d10d566845a106539cbf4fadd";
result = false;
};
{ msg = "918d9f420e927b3e0a55d276b8b40d8a2c5df748727ff72a438c7e6593f542274050dce727980d3ef90c8aa5c13d53f1e8d631ebb650dee11b94902bbd7c92b8186af9039c56c43f3110697792c8cd1614166f06d09cdb58dab168cc3680a8473b1a623bf85dba855eace579d9410d2c4ca5ede6dc1e3db81e233c34ae922f49";
qx = "bc7c8e09bd093468f706740a4130c544374fdc924a535ef02e9d3be6c6d3bbfa";
qy = "af3f813ae6646f5b6dbfb0f261fd42537705c800bb1647386343428a9f2e10fc";
r = "6bd7ce95af25abfbf14aef4b17392f1da877ab562eca38d785fe39682e9c9324";
s = "6688bea20c87bab34d420642da9bdd4c69456bdec50835887367bb4fb7cd8650";
result = false;
};
{ msg = "6e2932153301a4eef680e6428929adae988c108d668a31ff55d0489947d75ff81a46bf89e84d6401f023be6e87688fbcd784d785ca846735524acb52d00452c84040a479e7cc330936441d93bbe722a9432a6e1db112b5c9403b10272cb1347fd619d463f7a9d223ad76fde06d8a6883500fb843235abff98e241bdfb5538c3e";
qx = "9cb0cf69303dafc761d4e4687b4ecf039e6d34ab964af80810d8d558a4a8d6f7";
qy = "2d51233a1788920a86ee08a1962c79efa317fb7879e297dad2146db995fa1c78";
r = "4b9f91e4285287261a1d1c923cf619cd52c175cfe7f1be60a5258c610348ba3d";
s = "28c45f901d71c41b298638ec0d6a85d7fcb0c33bbfec5a9c810846b639289a84";
result = true;
};
{ msg = "2f48ec387f181035b350772e27f478ae6ec7487923692fae217e0f8636acd062a6ac39f7435f27a0ebcfd8187a91ef00fb68d106b8da4a1dedc5a40a4fae709e92b00fcc218de76417d75185e59dff76ec1543fb429d87c2ca8134ff5ae9b45456cad93fc67223c68293231395287dc0b756355660721a1f5df83bf5bcb8456e";
qx = "e31096c2d512fbf84f81e9bdb16f33121702897605b43a3db546f8fb695b5f6f";
qy = "6fbec6a04a8c59d61c900a851d8bf8522187d3ec2637b10fa8f377689e086bba";
r = "1b244c21c08c0c0a10477fb7a21382d405b95c755088292859ca0e71bab68361";
s = "852f4cbfd346e90f404e1dd5c4b2c1debca3ea1abefe8400685d703aea6c5c7f";
result = false;
};
{ msg = "fd2e5de421ee46c9fe6290a33f95b394bd5b7762f23178f7f6834f1f056fa9a8831446403c098ff4dd764173f974be4c89d376119613a4a1890f6fc2ddff862bda292dd49f5410d9b1cfe1d97ef4582b6152494372fc083885f540c01f86d780e6f3e75a954af2190fdae9604e3f8ab32ab0292dc0d790bd2627e37b4b4885df";
qx = "633c2ee5630b62c9ce839efd4d485a6d35e8b9430d264ffe501d28dbace79123";
qy = "4b668a1a6d1a25b089f75c2bd8d8c6a9a14fe7b729f45a82565da2e866e2c490";
r = "bf2111c93ec055a7eda90c106fce494fd866045634fd2aa28d6e018f9106994e";
s = "86b0341208a0aa55edecfd272f49cb34408ce54b7febc1d0a1c2ce77ab6988f8";
result = false;
};
{ msg = "4bc2d9a898395b12701635f1048fbfd263ec115e4150532b034d59e625238f4ed32619744c612e35ac5a23bee8d5f5651641a492217d305e5051321c273647f14bc7c4afab518554e01c82d6fc1694c8bdbeb326bb607bcaf5436303bc09f64c02c6ec50de409a484f5237f7d34e2651ada7ec429ca3b99dd87c6015d2f4b342";
qx = "f78dce40d1cb8c4af2749bf22c6f8a9a470b1e41112796215dd017e57df1b38a";
qy = "61b29b0bc03dff7fa00613b4de1e2317cfbf2badd50dee3376c032a887c5b865";
r = "4a96169a5dea36a2594011537ee0dc19e8f9f74e82c07434079447155a830152";
s = "a204eaa4e97d7553a1521d9f6baadc0b6d6183ba0f385d8593d6ca83607c4d82";
result = false;
};
{ msg = "d3356a683417508a9b913643e6ceac1281ef583f428968f9d2b6540a189d7041c477da8d207d0529720f70dab6b0da8c2168837476c1c6b63b517ed3cad48ae331cf716ecf47a0f7d00b57073ac6a4749716d49d80c4d46261d38e2e34b4f43e0f20b280842f6e3ea34fefdddfb9fa2a040ffe915e8784cfdb29b3364a34ca62";
qx = "3fcc3b3e1b103fe435ac214c756bdaad309389e1c803e6d84bbbc27039fcf900";
qy = "7f09edd1ec87a6d36dc81c1528d52a62776e666c274415a9f441d6a8df6b9237";
r = "1cac13f277354456ae67ab09b09e07eb1af2a2bf45108da70f5c8c6a4cbcd538";
s = "5d83752e540525602ba7e6fee4d4263f3eda59e67df20aac79ca67e8899fed0d";
result = false;
};
{ msg = "d7f5da9f4cf9299b7f86c52b88364ce28fe9ada55dd551a1018790f9e1205e2405ac62429d65093f74ec35a16d9f195c993cd4eb8dc0aa0dabb70a503321d8a9649160d6b3d0a0854bb68c4c39693f592ef5dd478aa2432d0865d87d48b3aea9c7d7d114165c9200e4e8d7bd02a7895ec4418e6f2fed6b244bf66209039e98a9";
qx = "5ec702d43a67ada86efbfc136cf16d96078906954a3f1f9e440674cd907e4676";
qy = "05a62044fed8470dd4fca38d89d583ce36d50d28b66ab0b51922b21da92c56d9";
r = "75f3037298f1457dba55743999976a1c2636b2b8ab2ed3df4736a6d2934acc83";
s = "19d43ad168dda1bb8ac423f8f08876515234b3d841e57faef1b5ab27359b27ef";
result = false;
};
{ msg = "68f4b444e1cc2025e8ff55e8046ead735e6e317082edf7ce65e83573501cb92c408c1c1c6c4fcca6b96ad34224f17b20be471cc9f4f97f0a5b7bfae9558bdb2ecb6e452bb743603724273d9e8d2ca22afdda35c8a371b28153d772303e4a25dc4f28e9a6dc9635331450f5af290dfa3431c3c08b91d5c97284361c03ec78f1bc";
qx = "f63afe99e1b5fc652782f86b59926af22e6072be93390fe41f541204f9c935d1";
qy = "f6e19ce5935e336183c21becf66596b8f559d2d02ee282aa87a7d6f936f7260c";
r = "cef4831e4515c77ca062282614b54a11b7dc4057e6997685c2fbfa95b392bf72";
s = "f20dc01bf38e1344ba675a22239d9893b3a3e33d9a403329a3d21650e9125b75";
result = true;
};
{ msg = "e75be05be0aaf70719b488b89aaae9008707ca528994461db7130c4368575a024bf0981c305d61265e8b97599ec35c03badd1256b80d6bf70547ad6089b983e3bcc3481828f3259e43e655e177fc423fd7e066bd3ed68d81df84f773c0f9e5f8bf4469960b8b4d7b2a372fd0edd3521f6be670908f2d90a343f416358ea70e7e";
qx = "6d11b09d2767cf8d275faee746c203486259f66dd2bfa3a65c39371a66b23385";
qy = "4eb05c73e05261e979182833f20311e5366f72f4b949665ff294f959375534c6";
r = "15a697cdb614e11c0810e1e764cd501fcabc70874c957587bc4883d9438e177f";
s = "7bf6244f92bc768063cecb5336c8eaacd23db930b28703560f241c7d93950dfd";
result = false;
};
{ msg = "0dc4a3eab66bd2e703a8fff566c34d466f9823ae42bd2104f61a6b051c0b017833fcef4d609d137ad97c209c80eebe252857aa7fafc35f16000a2bd4b4be0fa83b6e229eddfd180101f1f40d0453148053d8306833df64d59599b90194b55541d7f22dd589da9f7be519cbbb9db416c71bfe40ec090b5b7a600eec29bfd47306";
qx = "f3899caba038efb534c4cea0bd276814ffd80194473c903b81af11c8c05cb6e6";
qy = "6ea6b17402fcf2e8e737d11ffc7c2ed3b2d0bc3b8f271a381f4294cff62682c3";
r = "57b99380452e1d37b133c49b9ba493dee8630940477ca3351a43d90b99871e6a";
s = "df599c3a37105af3ecc159b3b685ccb3e151b7d5cf2d97147974ae71f466b615";
result = false;
};
{ msg = "d55e5e124a7217879ca986f285e22ac51940b35959bbf5543104b5547356fd1a0ec37c0a23209004a2ec5bcaf3335bc45e4dc990eacd29b2d9b5cf349c7ba67711356299bceab6f048df761c65f2988803133d6723a2820fefb2654cc7c5f032f833ba78a34d2878c6b0ba654ebe26b110c935abb56024bd5d0f09b367724c07";
qx = "1fd6f4b98d0755291e7a230e9f81ecf909e6350aadb08e42a3262ff19200fbd2";
qy = "5578fef79bc477acfb8ed0dc10c4f5809c14dc5492405b3792a7940650b305d7";
r = "97a99e96e407b3ada2c2dcf9ceeeb984d9a4d0aa66ddf0a74ca23cabfb1566cc";
s = "0ecac315dc199cfea3c15348c130924a1f787019fe4cd3ae47ca8b111268754a";
result = false;
};
{ msg = "7753c03b4202cb38bc0190a9f931eb31858d705d92d650320ff449fc99167fb3770b764c8988f6b34ac5a3d507a10e0aff7f88293f6a22c7ed8a24248a52dc125e416e158833fc38af29199f8ca4931068d4ccaa87e299e95642068f68c208cb782df13908f950564743ed1692502bafafaff169dc8fe674fb5e4f3ffd578c35";
qx = "2dcbd8790cee552e9f18f2b3149a2252dcd58b99ca7dc9680b92c8c43aa33874";
qy = "5dbc8bb8813c8e019d80e19acdb0792f537980fecde93db621aaf1f6d0e6ee34";
r = "2bdbd8b0d759595662cc10b10236136ef6ce429641f68cf6480f472fcc77bc9f";
s = "7e7df0c8b86f7db06caf1610166f7b9c4c75447f991d5aaf4dea720c25985c8c";
result = true;
};
] | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val siggen_vectors_sha2_256:list vec_SigGen | [] | Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_256 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigGen | {
"end_col": 1,
"end_line": 480,
"start_col": 49,
"start_line": 359
} |
Prims.Tot | val siggen_vectors_sha2_384:list vec_SigGen | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let siggen_vectors_sha2_384 : list vec_SigGen = [
{ msg' = "e0b8596b375f3306bbc6e77a0b42f7469d7e83635990e74aa6d713594a3a24498feff5006790742d9c2e9b47d714bee932435db747c6e733e3d8de41f2f91311f2e9fd8e025651631ffd84f66732d3473fbd1627e63dc7194048ebec93c95c159b5039ab5e79e42c80b484a943f125de3da1e04e5bf9c16671ad55a1117d3306";
d = "b6faf2c8922235c589c27368a3b3e6e2f42eb6073bf9507f19eed0746c79dced";
qx' = "e0e7b99bc62d8dd67883e39ed9fa0657789c5ff556cc1fd8dd1e2a55e9e3f243";
qy' = "63fbfd0232b95578075c903a4dbf85ad58f8350516e1ec89b0ee1f5e1362da69";
k = "9980b9cdfcef3ab8e219b9827ed6afdd4dbf20bd927e9cd01f15762703487007";
r' = "f5087878e212b703578f5c66f434883f3ef414dc23e2e8d8ab6a8d159ed5ad83";
s' = "306b4c6c20213707982dffbb30fba99b96e792163dd59dbe606e734328dd7c8a";
};
{ msg' = "099a0131179fff4c6928e49886d2fdb3a9f239b7dd5fa828a52cbbe3fcfabecfbba3e192159b887b5d13aa1e14e6a07ccbb21f6ad8b7e88fee6bea9b86dea40ffb962f38554056fb7c5bb486418915f7e7e9b9033fe3baaf9a069db98bc02fa8af3d3d1859a11375d6f98aa2ce632606d0800dff7f55b40f971a8586ed6b39e9";
d = "118958fd0ff0f0b0ed11d3cf8fa664bc17cdb5fed1f4a8fc52d0b1ae30412181";
qx' = "afda82260c9f42122a3f11c6058839488f6d7977f6f2a263c67d06e27ea2c355";
qy' = "0ae2bbdd2207c590332c5bfeb4c8b5b16622134bd4dc55382ae806435468058b";
k = "23129a99eeda3d99a44a5778a46e8e7568b91c31fb7a8628c5d9820d4bed4a6b";
r' = "e446600cab1286ebc3bb332012a2f5cc33b0a5ef7291d5a62a84de5969d77946";
s' = "cf89b12793ee1792eb26283b48fa0bdcb45ae6f6ad4b02564bf786bb97057d5a";
};
{ msg' = "0fbc07ea947c946bea26afa10c51511039b94ddbc4e2e4184ca3559260da24a14522d1497ca5e77a5d1a8e86583aeea1f5d4ff9b04a6aa0de79cd88fdb85e01f171143535f2f7c23b050289d7e05cebccdd131888572534bae0061bdcc3015206b9270b0d5af9f1da2f9de91772d178a632c3261a1e7b3fb255608b3801962f9";
d = "3e647357cd5b754fad0fdb876eaf9b1abd7b60536f383c81ce5745ec80826431";
qx' = "702b2c94d039e590dd5c8f9736e753cf5824aacf33ee3de74fe1f5f7c858d5ed";
qy' = "0c28894e907af99fb0d18c9e98f19ac80dd77abfa4bebe45055c0857b82a0f4d";
k = "9beab7722f0bcb468e5f234e074170a60225255de494108459abdf603c6e8b35";
r' = "c4021fb7185a07096547af1fb06932e37cf8bd90cf593dea48d48614fa237e5e";
s' = "7fb45d09e2172bec8d3e330aa06c43fbb5f625525485234e7714b7f6e92ba8f1";
};
{ msg' = "1e38d750d936d8522e9db1873fb4996bef97f8da3c6674a1223d29263f1234a90b751785316444e9ba698bc8ab6cd010638d182c9adad4e334b2bd7529f0ae8e9a52ad60f59804b2d780ed52bdd33b0bf5400147c28b4304e5e3434505ae7ce30d4b239e7e6f0ecf058badd5b388eddbad64d24d2430dd04b4ddee98f972988f";
d = "76c17c2efc99891f3697ba4d71850e5816a1b65562cc39a13da4b6da9051b0fd";
qx' = "d12512e934c367e4c4384dbd010e93416840288a0ba00b299b4e7c0d91578b57";
qy' = "ebf8835661d9b578f18d14ae4acf9c357c0dc8b7112fc32824a685ed72754e23";
k = "77cffa6f9a73904306f9fcd3f6bbb37f52d71e39931bb4aec28f9b076e436ccf";
r' = "4d5a9d95b0f09ce8704b0f457b39059ee606092310df65d3f8ae7a2a424cf232";
s' = "7d3c014ca470a73cef1d1da86f2a541148ad542fbccaf9149d1b0b030441a7eb";
};
{ msg' = "abcf0e0f046b2e0672d1cc6c0a114905627cbbdefdf9752f0c31660aa95f2d0ede72d17919a9e9b1add3213164e0c9b5ae3c76f1a2f79d3eeb444e6741521019d8bd5ca391b28c1063347f07afcfbb705be4b52261c19ebaf1d6f054a74d86fb5d091fa7f229450996b76f0ada5f977b09b58488eebfb5f5e9539a8fd89662ab";
d = "67b9dea6a575b5103999efffce29cca688c781782a41129fdecbce76608174de";
qx' = "b4238b029fc0b7d9a5286d8c29b6f3d5a569e9108d44d889cd795c4a385905be";
qy' = "8cb3fff8f6cca7187c6a9ad0a2b1d9f40ae01b32a7e8f8c4ca75d71a1fffb309";
k = "d02617f26ede3584f0afcfc89554cdfb2ae188c192092fdde3436335fafe43f1";
r' = "26fd9147d0c86440689ff2d75569795650140506970791c90ace0924b44f1586";
s' = "00a34b00c20a8099df4b0a757cbef8fea1cb3ea7ced5fbf7e987f70b25ee6d4f";
};
{ msg' = "dc3d4884c741a4a687593c79fb4e35c5c13c781dca16db561d7e393577f7b62ca41a6e259fc1fb8d0c4e1e062517a0fdf95558b7799f20c211796167953e6372c11829beec64869d67bf3ee1f1455dd87acfbdbcc597056e7fb347a17688ad32fda7ccc3572da7677d7255c261738f07763cd45973c728c6e9adbeecadc3d961";
d = "ecf644ea9b6c3a04fdfe2de4fdcb55fdcdfcf738c0b3176575fa91515194b566";
qx' = "c3bdc7c795ec94620a2cfff614c13a3390a5e86c892e53a24d3ed22228bc85bf";
qy' = "70480fc5cf4aacd73e24618b61b5c56c1ced8c4f1b869580ea538e68c7a61ca3";
k = "53291d51f68d9a12d1dcdc58892b2f786cc15f631f16997d2a49bace513557d4";
r' = "a860c8b286edf973ce4ce4cf6e70dc9bbf3818c36c023a845677a9963705df8b";
s' = "5630f986b1c45e36e127dd7932221c4272a8cc6e255e89f0f0ca4ec3a9f76494";
};
{ msg' = "719bf1911ae5b5e08f1d97b92a5089c0ab9d6f1c175ac7199086aeeaa416a17e6d6f8486c711d386f284f096296689a54d330c8efb0f5fa1c5ba128d3234a3da856c2a94667ef7103616a64c913135f4e1dc50e38daa60610f732ad1bedfcc396f87169392520314a6b6b9af6793dbabad4599525228cc7c9c32c4d8e097ddf6";
d = "4961485cbc978f8456ec5ac7cfc9f7d9298f99415ecae69c8491b258c029bfee";
qx' = "8d40bf2299e05d758d421972e81cfb0cce68b949240dc30f315836acc70bef03";
qy' = "5674e6f77f8b46f46cca937d83b128dffbe9bd7e0d3d08aa2cbbfdfb16f72c9a";
k = "373a825b5a74b7b9e02f8d4d876b577b4c3984168d704ba9f95b19c05ed590af";
r' = "ef6fb386ad044b63feb7445fa16b10319018e9cea9ef42bca83bdad01992234a";
s' = "ac1f42f652eb1786e57be01d847c81f7efa072ba566d4583af4f1551a3f76c65";
};
{ msg' = "7cf19f4c851e97c5bca11a39f0074c3b7bd3274e7dd75d0447b7b84995dfc9f716bf08c25347f56fcc5e5149cb3f9cfb39d408ace5a5c47e75f7a827fa0bb9921bb5b23a6053dbe1fa2bba341ac874d9b1333fc4dc224854949f5c8d8a5fedd02fb26fdfcd3be351aec0fcbef18972956c6ec0effaf057eb4420b6d28e0c008c";
d = "587907e7f215cf0d2cb2c9e6963d45b6e535ed426c828a6ea2fb637cca4c5cbd";
qx' = "660da45c413cc9c9526202c16b402af602d30daaa7c342f1e722f15199407f31";
qy' = "e6f8cbb06913cc718f2d69ba2fb3137f04a41c27c676d1a80fbf30ea3ca46439";
k = "6b8eb7c0d8af9456b95dd70561a0e902863e6dfa1c28d0fd4a0509f1c2a647b2";
r' = "08fabf9b57de81875bfa7a4118e3e44cfb38ec6a9b2014940207ba3b1c583038";
s' = "a58d199b1deba7350616230d867b2747a3459421811c291836abee715b8f67b4";
};
{ msg' = "b892ffabb809e98a99b0a79895445fc734fa1b6159f9cddb6d21e510708bdab6076633ac30aaef43db566c0d21f4381db46711fe3812c5ce0fb4a40e3d5d8ab24e4e82d3560c6dc7c37794ee17d4a144065ef99c8d1c88bc22ad8c4c27d85ad518fa5747ae35276fc104829d3f5c72fc2a9ea55a1c3a87007cd133263f79e405";
d = "24b1e5676d1a9d6b645a984141a157c124531feeb92d915110aef474b1e27666";
qx' = "b4909a5bdf25f7659f4ef35e4b811429fb2c59126e3dad09100b46aea6ebe7a6";
qy' = "760ae015fa6af5c9749c4030fdb5de6e58c6b5b1944829105cf7edf7d3a22cfb";
k = "88794923d8943b5dbcc7a7a76503880ff7da632b0883aaa60a9fcc71bf880fd6";
r' = "6ec9a340b77fae3c7827fa96d997e92722ff2a928217b6dd3c628f3d49ae4ce6";
s' = "637b54bbcfb7e7d8a41ea317fcfca8ad74eb3bb6b778bc7ef9dec009281976f7";
};
{ msg' = "8144e37014c95e13231cbd6fa64772771f93b44e37f7b02f592099cc146343edd4f4ec9fa1bc68d7f2e9ee78fc370443aa2803ff4ca52ee49a2f4daf2c8181ea7b8475b3a0f608fc3279d09e2d057fbe3f2ffbe5133796124781299c6da60cfe7ecea3abc30706ded2cdf18f9d788e59f2c31662df3abe01a9b12304fb8d5c8c";
d = "bce49c7b03dcdc72393b0a67cf5aa5df870f5aaa6137ada1edc7862e0981ec67";
qx' = "c786d9421d67b72b922cf3def2a25eeb5e73f34543eb50b152e738a98afb0ca5";
qy' = "6796271e79e2496f9e74b126b1123a3d067de56b5605d6f51c8f6e1d5bb93aba";
k = "89e690d78a5e0d2b8ce9f7fcbf34e2605fd9584760fa7729043397612dd21f94";
r' = "07e5054c384839584624e8d730454dc27e673c4a90cbf129d88b91250341854d";
s' = "f7e665b88614d0c5cbb3007cafe713763d81831525971f1747d92e4d1ca263a7";
};
{ msg' = "a3683d120807f0a030feed679785326698c3702f1983eaba1b70ddfa7f0b3188060b845e2b67ed57ee68087746710450f7427cb34655d719c0acbc09ac696adb4b22aba1b9322b7111076e67053a55f62b501a4bca0ad9d50a868f51aeeb4ef27823236f5267e8da83e143047422ce140d66e05e44dc84fb3a4506b2a5d7caa8";
d = "73188a923bc0b289e81c3db48d826917910f1b957700f8925425c1fb27cabab9";
qx' = "86662c014ab666ee770723be8da38c5cd299efc6480fc6f8c3603438fa8397b9";
qy' = "f26b3307a650c3863faaa5f642f3ba1384c3d3a02edd3d48c657c269609cc3fc";
k = "ec90584ab3b383b590626f36ed4f5110e49888aec7ae7a9c5ea62dd2dc378666";
r' = "13e9ad59112fde3af4163eb5c2400b5e9a602576d5869ac1c569075f08c90ff6";
s' = "708ac65ff2b0baaccc6dd954e2a93df46016bd04457636de06798fcc17f02be5";
};
{ msg' = "b1df8051b213fc5f636537e37e212eb20b2423e6467a9c7081336a870e6373fc835899d59e546c0ac668cc81ce4921e88f42e6da2a109a03b4f4e819a17c955b8d099ec6b282fb495258dca13ec779c459da909475519a3477223c06b99afbd77f9922e7cbef844b93f3ce5f50db816b2e0d8b1575d2e17a6b8db9111d6da578";
d = "f637d55763fe819541588e0c603f288a693cc66823c6bb7b8e003bd38580ebce";
qx' = "74a4620c578601475fc169a9b84be613b4a16cb6acab8fd98848a6ec9fbd133d";
qy' = "42b9e35d347c107e63bd55f525f915bcf1e3d2b81d002d3c39acf10fc30645a1";
k = "4d578f5099636234d9c1d566f1215d5d887ae5d47022be17dbf32a11a03f053b";
r' = "113a933ebc4d94ce1cef781e4829df0c493b0685d39fb2048ce01b21c398dbba";
s' = "3005bd4ec63dbd04ce9ff0c6246ad65d27fcf62edb2b7e461589f9f0e7446ffd";
};
{ msg' = "0b918ede985b5c491797d0a81446b2933be312f419b212e3aae9ba5914c00af431747a9d287a7c7761e9bcbc8a12aaf9d4a76d13dad59fc742f8f218ef66eb67035220a07acc1a357c5b562ecb6b895cf725c4230412fefac72097f2c2b829ed58742d7c327cad0f1058df1bddd4ae9c6d2aba25480424308684cecd6517cdd8";
d = "2e357d51517ff93b821f895932fddded8347f32596b812308e6f1baf7dd8a47f";
qx' = "7e4078a1d50c669fb2996dd9bacb0c3ac7ede4f58fa0fa1222e78dbf5d1f4186";
qy' = "0014e46e90cc171fbb83ea34c6b78202ea8137a7d926f0169147ed5ae3d6596f";
k = "be522b0940b9a40d84bf790fe6abdc252877e671f2efa63a33a65a512fc2aa5c";
r' = "a26b9ad775ac37ff4c7f042cdc4872c5e4e5e800485f488ddfaaed379f468090";
s' = "f88eae2019bebbba62b453b8ee3472ca5c67c267964cffe0cf2d2933c1723dff";
};
{ msg' = "0fab26fde1a4467ca930dbe513ccc3452b70313cccde2994eead2fde85c8da1db84d7d06a024c9e88629d5344224a4eae01b21a2665d5f7f36d5524bf5367d7f8b6a71ea05d413d4afde33777f0a3be49c9e6aa29ea447746a9e77ce27232a550b31dd4e7c9bc8913485f2dc83a56298051c92461fd46b14cc895c300a4fb874";
d = "77d60cacbbac86ab89009403c97289b5900466856887d3e6112af427f7f0f50b";
qx' = "a62032dfdb87e25ed0c70cad20d927c7effeb2638e6c88ddd670f74df16090e5";
qy' = "44c5ee2cf740ded468f5d2efe13daa7c5234645a37c073af35330d03a4fed976";
k = "06c1e692b045f425a21347ecf72833d0242906c7c1094f805566cdcb1256e394";
r' = "eb173b51fb0aec318950d097e7fda5c34e529519631c3e2c9b4550b903da417d";
s' = "ca2c13574bf1b7d56e9dc18315036a31b8bceddf3e2c2902dcb40f0cc9e31b45";
};
{ msg' = "7843f157ef8566722a7d69da67de7599ee65cb3975508f70c612b3289190e364141781e0b832f2d9627122742f4b5871ceeafcd09ba5ec90cae6bcc01ae32b50f13f63918dfb5177df9797c6273b92d103c3f7a3fc2050d2b196cc872c57b77f9bdb1782d4195445fcc6236dd8bd14c8bcbc8223a6739f6a17c9a861e8c821a6";
d = "486854e77962117f49e09378de6c9e3b3522fa752b10b2c810bf48db584d7388";
qx' = "760b5624bd64d19c866e54ccd74ad7f98851afdbc3ddeae3ec2c52a135be9cfa";
qy' = "feca15ce9350877102eee0f5af18b2fed89dc86b7df0bf7bc2963c1638e36fe8";
k = "e4f77c6442eca239b01b0254e11a4182782d96f48ab521cc3d1d68df12b5a41a";
r' = "bdff14e4600309c2c77f79a25963a955b5b500a7b2d34cb172cd6acd52905c7b";
s' = "b0479cdb3df79923ec36a104a129534c5d59f622be7d613aa04530ad2507d3a2";
};
] | val siggen_vectors_sha2_384:list vec_SigGen
let siggen_vectors_sha2_384:list vec_SigGen = | false | null | false | [
{
msg'
=
"e0b8596b375f3306bbc6e77a0b42f7469d7e83635990e74aa6d713594a3a24498feff5006790742d9c2e9b47d714bee932435db747c6e733e3d8de41f2f91311f2e9fd8e025651631ffd84f66732d3473fbd1627e63dc7194048ebec93c95c159b5039ab5e79e42c80b484a943f125de3da1e04e5bf9c16671ad55a1117d3306";
d = "b6faf2c8922235c589c27368a3b3e6e2f42eb6073bf9507f19eed0746c79dced";
qx' = "e0e7b99bc62d8dd67883e39ed9fa0657789c5ff556cc1fd8dd1e2a55e9e3f243";
qy' = "63fbfd0232b95578075c903a4dbf85ad58f8350516e1ec89b0ee1f5e1362da69";
k = "9980b9cdfcef3ab8e219b9827ed6afdd4dbf20bd927e9cd01f15762703487007";
r' = "f5087878e212b703578f5c66f434883f3ef414dc23e2e8d8ab6a8d159ed5ad83";
s' = "306b4c6c20213707982dffbb30fba99b96e792163dd59dbe606e734328dd7c8a"
};
{
msg'
=
"099a0131179fff4c6928e49886d2fdb3a9f239b7dd5fa828a52cbbe3fcfabecfbba3e192159b887b5d13aa1e14e6a07ccbb21f6ad8b7e88fee6bea9b86dea40ffb962f38554056fb7c5bb486418915f7e7e9b9033fe3baaf9a069db98bc02fa8af3d3d1859a11375d6f98aa2ce632606d0800dff7f55b40f971a8586ed6b39e9";
d = "118958fd0ff0f0b0ed11d3cf8fa664bc17cdb5fed1f4a8fc52d0b1ae30412181";
qx' = "afda82260c9f42122a3f11c6058839488f6d7977f6f2a263c67d06e27ea2c355";
qy' = "0ae2bbdd2207c590332c5bfeb4c8b5b16622134bd4dc55382ae806435468058b";
k = "23129a99eeda3d99a44a5778a46e8e7568b91c31fb7a8628c5d9820d4bed4a6b";
r' = "e446600cab1286ebc3bb332012a2f5cc33b0a5ef7291d5a62a84de5969d77946";
s' = "cf89b12793ee1792eb26283b48fa0bdcb45ae6f6ad4b02564bf786bb97057d5a"
};
{
msg'
=
"0fbc07ea947c946bea26afa10c51511039b94ddbc4e2e4184ca3559260da24a14522d1497ca5e77a5d1a8e86583aeea1f5d4ff9b04a6aa0de79cd88fdb85e01f171143535f2f7c23b050289d7e05cebccdd131888572534bae0061bdcc3015206b9270b0d5af9f1da2f9de91772d178a632c3261a1e7b3fb255608b3801962f9";
d = "3e647357cd5b754fad0fdb876eaf9b1abd7b60536f383c81ce5745ec80826431";
qx' = "702b2c94d039e590dd5c8f9736e753cf5824aacf33ee3de74fe1f5f7c858d5ed";
qy' = "0c28894e907af99fb0d18c9e98f19ac80dd77abfa4bebe45055c0857b82a0f4d";
k = "9beab7722f0bcb468e5f234e074170a60225255de494108459abdf603c6e8b35";
r' = "c4021fb7185a07096547af1fb06932e37cf8bd90cf593dea48d48614fa237e5e";
s' = "7fb45d09e2172bec8d3e330aa06c43fbb5f625525485234e7714b7f6e92ba8f1"
};
{
msg'
=
"1e38d750d936d8522e9db1873fb4996bef97f8da3c6674a1223d29263f1234a90b751785316444e9ba698bc8ab6cd010638d182c9adad4e334b2bd7529f0ae8e9a52ad60f59804b2d780ed52bdd33b0bf5400147c28b4304e5e3434505ae7ce30d4b239e7e6f0ecf058badd5b388eddbad64d24d2430dd04b4ddee98f972988f";
d = "76c17c2efc99891f3697ba4d71850e5816a1b65562cc39a13da4b6da9051b0fd";
qx' = "d12512e934c367e4c4384dbd010e93416840288a0ba00b299b4e7c0d91578b57";
qy' = "ebf8835661d9b578f18d14ae4acf9c357c0dc8b7112fc32824a685ed72754e23";
k = "77cffa6f9a73904306f9fcd3f6bbb37f52d71e39931bb4aec28f9b076e436ccf";
r' = "4d5a9d95b0f09ce8704b0f457b39059ee606092310df65d3f8ae7a2a424cf232";
s' = "7d3c014ca470a73cef1d1da86f2a541148ad542fbccaf9149d1b0b030441a7eb"
};
{
msg'
=
"abcf0e0f046b2e0672d1cc6c0a114905627cbbdefdf9752f0c31660aa95f2d0ede72d17919a9e9b1add3213164e0c9b5ae3c76f1a2f79d3eeb444e6741521019d8bd5ca391b28c1063347f07afcfbb705be4b52261c19ebaf1d6f054a74d86fb5d091fa7f229450996b76f0ada5f977b09b58488eebfb5f5e9539a8fd89662ab";
d = "67b9dea6a575b5103999efffce29cca688c781782a41129fdecbce76608174de";
qx' = "b4238b029fc0b7d9a5286d8c29b6f3d5a569e9108d44d889cd795c4a385905be";
qy' = "8cb3fff8f6cca7187c6a9ad0a2b1d9f40ae01b32a7e8f8c4ca75d71a1fffb309";
k = "d02617f26ede3584f0afcfc89554cdfb2ae188c192092fdde3436335fafe43f1";
r' = "26fd9147d0c86440689ff2d75569795650140506970791c90ace0924b44f1586";
s' = "00a34b00c20a8099df4b0a757cbef8fea1cb3ea7ced5fbf7e987f70b25ee6d4f"
};
{
msg'
=
"dc3d4884c741a4a687593c79fb4e35c5c13c781dca16db561d7e393577f7b62ca41a6e259fc1fb8d0c4e1e062517a0fdf95558b7799f20c211796167953e6372c11829beec64869d67bf3ee1f1455dd87acfbdbcc597056e7fb347a17688ad32fda7ccc3572da7677d7255c261738f07763cd45973c728c6e9adbeecadc3d961";
d = "ecf644ea9b6c3a04fdfe2de4fdcb55fdcdfcf738c0b3176575fa91515194b566";
qx' = "c3bdc7c795ec94620a2cfff614c13a3390a5e86c892e53a24d3ed22228bc85bf";
qy' = "70480fc5cf4aacd73e24618b61b5c56c1ced8c4f1b869580ea538e68c7a61ca3";
k = "53291d51f68d9a12d1dcdc58892b2f786cc15f631f16997d2a49bace513557d4";
r' = "a860c8b286edf973ce4ce4cf6e70dc9bbf3818c36c023a845677a9963705df8b";
s' = "5630f986b1c45e36e127dd7932221c4272a8cc6e255e89f0f0ca4ec3a9f76494"
};
{
msg'
=
"719bf1911ae5b5e08f1d97b92a5089c0ab9d6f1c175ac7199086aeeaa416a17e6d6f8486c711d386f284f096296689a54d330c8efb0f5fa1c5ba128d3234a3da856c2a94667ef7103616a64c913135f4e1dc50e38daa60610f732ad1bedfcc396f87169392520314a6b6b9af6793dbabad4599525228cc7c9c32c4d8e097ddf6";
d = "4961485cbc978f8456ec5ac7cfc9f7d9298f99415ecae69c8491b258c029bfee";
qx' = "8d40bf2299e05d758d421972e81cfb0cce68b949240dc30f315836acc70bef03";
qy' = "5674e6f77f8b46f46cca937d83b128dffbe9bd7e0d3d08aa2cbbfdfb16f72c9a";
k = "373a825b5a74b7b9e02f8d4d876b577b4c3984168d704ba9f95b19c05ed590af";
r' = "ef6fb386ad044b63feb7445fa16b10319018e9cea9ef42bca83bdad01992234a";
s' = "ac1f42f652eb1786e57be01d847c81f7efa072ba566d4583af4f1551a3f76c65"
};
{
msg'
=
"7cf19f4c851e97c5bca11a39f0074c3b7bd3274e7dd75d0447b7b84995dfc9f716bf08c25347f56fcc5e5149cb3f9cfb39d408ace5a5c47e75f7a827fa0bb9921bb5b23a6053dbe1fa2bba341ac874d9b1333fc4dc224854949f5c8d8a5fedd02fb26fdfcd3be351aec0fcbef18972956c6ec0effaf057eb4420b6d28e0c008c";
d = "587907e7f215cf0d2cb2c9e6963d45b6e535ed426c828a6ea2fb637cca4c5cbd";
qx' = "660da45c413cc9c9526202c16b402af602d30daaa7c342f1e722f15199407f31";
qy' = "e6f8cbb06913cc718f2d69ba2fb3137f04a41c27c676d1a80fbf30ea3ca46439";
k = "6b8eb7c0d8af9456b95dd70561a0e902863e6dfa1c28d0fd4a0509f1c2a647b2";
r' = "08fabf9b57de81875bfa7a4118e3e44cfb38ec6a9b2014940207ba3b1c583038";
s' = "a58d199b1deba7350616230d867b2747a3459421811c291836abee715b8f67b4"
};
{
msg'
=
"b892ffabb809e98a99b0a79895445fc734fa1b6159f9cddb6d21e510708bdab6076633ac30aaef43db566c0d21f4381db46711fe3812c5ce0fb4a40e3d5d8ab24e4e82d3560c6dc7c37794ee17d4a144065ef99c8d1c88bc22ad8c4c27d85ad518fa5747ae35276fc104829d3f5c72fc2a9ea55a1c3a87007cd133263f79e405";
d = "24b1e5676d1a9d6b645a984141a157c124531feeb92d915110aef474b1e27666";
qx' = "b4909a5bdf25f7659f4ef35e4b811429fb2c59126e3dad09100b46aea6ebe7a6";
qy' = "760ae015fa6af5c9749c4030fdb5de6e58c6b5b1944829105cf7edf7d3a22cfb";
k = "88794923d8943b5dbcc7a7a76503880ff7da632b0883aaa60a9fcc71bf880fd6";
r' = "6ec9a340b77fae3c7827fa96d997e92722ff2a928217b6dd3c628f3d49ae4ce6";
s' = "637b54bbcfb7e7d8a41ea317fcfca8ad74eb3bb6b778bc7ef9dec009281976f7"
};
{
msg'
=
"8144e37014c95e13231cbd6fa64772771f93b44e37f7b02f592099cc146343edd4f4ec9fa1bc68d7f2e9ee78fc370443aa2803ff4ca52ee49a2f4daf2c8181ea7b8475b3a0f608fc3279d09e2d057fbe3f2ffbe5133796124781299c6da60cfe7ecea3abc30706ded2cdf18f9d788e59f2c31662df3abe01a9b12304fb8d5c8c";
d = "bce49c7b03dcdc72393b0a67cf5aa5df870f5aaa6137ada1edc7862e0981ec67";
qx' = "c786d9421d67b72b922cf3def2a25eeb5e73f34543eb50b152e738a98afb0ca5";
qy' = "6796271e79e2496f9e74b126b1123a3d067de56b5605d6f51c8f6e1d5bb93aba";
k = "89e690d78a5e0d2b8ce9f7fcbf34e2605fd9584760fa7729043397612dd21f94";
r' = "07e5054c384839584624e8d730454dc27e673c4a90cbf129d88b91250341854d";
s' = "f7e665b88614d0c5cbb3007cafe713763d81831525971f1747d92e4d1ca263a7"
};
{
msg'
=
"a3683d120807f0a030feed679785326698c3702f1983eaba1b70ddfa7f0b3188060b845e2b67ed57ee68087746710450f7427cb34655d719c0acbc09ac696adb4b22aba1b9322b7111076e67053a55f62b501a4bca0ad9d50a868f51aeeb4ef27823236f5267e8da83e143047422ce140d66e05e44dc84fb3a4506b2a5d7caa8";
d = "73188a923bc0b289e81c3db48d826917910f1b957700f8925425c1fb27cabab9";
qx' = "86662c014ab666ee770723be8da38c5cd299efc6480fc6f8c3603438fa8397b9";
qy' = "f26b3307a650c3863faaa5f642f3ba1384c3d3a02edd3d48c657c269609cc3fc";
k = "ec90584ab3b383b590626f36ed4f5110e49888aec7ae7a9c5ea62dd2dc378666";
r' = "13e9ad59112fde3af4163eb5c2400b5e9a602576d5869ac1c569075f08c90ff6";
s' = "708ac65ff2b0baaccc6dd954e2a93df46016bd04457636de06798fcc17f02be5"
};
{
msg'
=
"b1df8051b213fc5f636537e37e212eb20b2423e6467a9c7081336a870e6373fc835899d59e546c0ac668cc81ce4921e88f42e6da2a109a03b4f4e819a17c955b8d099ec6b282fb495258dca13ec779c459da909475519a3477223c06b99afbd77f9922e7cbef844b93f3ce5f50db816b2e0d8b1575d2e17a6b8db9111d6da578";
d = "f637d55763fe819541588e0c603f288a693cc66823c6bb7b8e003bd38580ebce";
qx' = "74a4620c578601475fc169a9b84be613b4a16cb6acab8fd98848a6ec9fbd133d";
qy' = "42b9e35d347c107e63bd55f525f915bcf1e3d2b81d002d3c39acf10fc30645a1";
k = "4d578f5099636234d9c1d566f1215d5d887ae5d47022be17dbf32a11a03f053b";
r' = "113a933ebc4d94ce1cef781e4829df0c493b0685d39fb2048ce01b21c398dbba";
s' = "3005bd4ec63dbd04ce9ff0c6246ad65d27fcf62edb2b7e461589f9f0e7446ffd"
};
{
msg'
=
"0b918ede985b5c491797d0a81446b2933be312f419b212e3aae9ba5914c00af431747a9d287a7c7761e9bcbc8a12aaf9d4a76d13dad59fc742f8f218ef66eb67035220a07acc1a357c5b562ecb6b895cf725c4230412fefac72097f2c2b829ed58742d7c327cad0f1058df1bddd4ae9c6d2aba25480424308684cecd6517cdd8";
d = "2e357d51517ff93b821f895932fddded8347f32596b812308e6f1baf7dd8a47f";
qx' = "7e4078a1d50c669fb2996dd9bacb0c3ac7ede4f58fa0fa1222e78dbf5d1f4186";
qy' = "0014e46e90cc171fbb83ea34c6b78202ea8137a7d926f0169147ed5ae3d6596f";
k = "be522b0940b9a40d84bf790fe6abdc252877e671f2efa63a33a65a512fc2aa5c";
r' = "a26b9ad775ac37ff4c7f042cdc4872c5e4e5e800485f488ddfaaed379f468090";
s' = "f88eae2019bebbba62b453b8ee3472ca5c67c267964cffe0cf2d2933c1723dff"
};
{
msg'
=
"0fab26fde1a4467ca930dbe513ccc3452b70313cccde2994eead2fde85c8da1db84d7d06a024c9e88629d5344224a4eae01b21a2665d5f7f36d5524bf5367d7f8b6a71ea05d413d4afde33777f0a3be49c9e6aa29ea447746a9e77ce27232a550b31dd4e7c9bc8913485f2dc83a56298051c92461fd46b14cc895c300a4fb874";
d = "77d60cacbbac86ab89009403c97289b5900466856887d3e6112af427f7f0f50b";
qx' = "a62032dfdb87e25ed0c70cad20d927c7effeb2638e6c88ddd670f74df16090e5";
qy' = "44c5ee2cf740ded468f5d2efe13daa7c5234645a37c073af35330d03a4fed976";
k = "06c1e692b045f425a21347ecf72833d0242906c7c1094f805566cdcb1256e394";
r' = "eb173b51fb0aec318950d097e7fda5c34e529519631c3e2c9b4550b903da417d";
s' = "ca2c13574bf1b7d56e9dc18315036a31b8bceddf3e2c2902dcb40f0cc9e31b45"
};
{
msg'
=
"7843f157ef8566722a7d69da67de7599ee65cb3975508f70c612b3289190e364141781e0b832f2d9627122742f4b5871ceeafcd09ba5ec90cae6bcc01ae32b50f13f63918dfb5177df9797c6273b92d103c3f7a3fc2050d2b196cc872c57b77f9bdb1782d4195445fcc6236dd8bd14c8bcbc8223a6739f6a17c9a861e8c821a6";
d = "486854e77962117f49e09378de6c9e3b3522fa752b10b2c810bf48db584d7388";
qx' = "760b5624bd64d19c866e54ccd74ad7f98851afdbc3ddeae3ec2c52a135be9cfa";
qy' = "feca15ce9350877102eee0f5af18b2fed89dc86b7df0bf7bc2963c1638e36fe8";
k = "e4f77c6442eca239b01b0254e11a4182782d96f48ab521cc3d1d68df12b5a41a";
r' = "bdff14e4600309c2c77f79a25963a955b5b500a7b2d34cb172cd6acd52905c7b";
s' = "b0479cdb3df79923ec36a104a129534c5d59f622be7d613aa04530ad2507d3a2"
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigGen",
"Spec.ECDSA.Test.Vectors.Mkvec_SigGen",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
}
let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
]
let sigver_vectors_sha2_384 : list vec_SigVer = [
{ msg = "fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false;
};
{ msg = "b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false;
};
{ msg = "d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true;
};
{ msg = "06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false;
};
{ msg = "59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false;
};
{ msg = "8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false;
};
{ msg = "a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false;
};
{ msg = "1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true;
};
{ msg = "3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false;
};
{ msg = "4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false;
};
{ msg = "b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false;
};
{ msg = "aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false;
};
{ msg = "98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false;
};
{ msg = "bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true;
};
{ msg = "33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false;
};
]
let sigver_vectors_sha2_512 : list vec_SigVer = [
{ msg = "273b063224ab48a1bf6c7efc93429d1f89de48fc4a4fa3ffe7a49ebba1a58ff5d208a9e4bff27b418252526243ba042d1605b6df3c2ec916ceef027853a41137f7bfb6fc63844de95f58e82b9ad2565f1367d2c69bd29100f6db21a8ab7ab58affd1661add0322bd915721378df9fa233ef0b7e0a0a85be31689e21891ec8977";
qx = "484e31e69ef70bb8527853c22c6b6b4cd2a51311dde66c7b63f097dbb6ab27bf";
qy = "e1ff8177f4061d4fbbacbbc70519f0fc8c8b6053d72af0fe4f048d615004f74e";
r = "91a303d8fe3ab4176070f6406267f6b79bfe5eb5f62ae6aeb374d90667858518";
s = "e152119cefa26826ea07ec40a428869132d70812c5578c5a260e48d6800e046a";
result = false;
};
{ msg = "d64ea1a768b0de29ab018ae93baa645d078c70a2f7aa4acd4ae7526538ebd5f697a11927cfd0ddc9187c095f14ad30544cb63ede9353af8b23c18ce22843881fe2d7bde748fc69085921677858d87d2dc3e244f6c7e2c2b2bd791f450dfdd4ff0ddd35ab2ada4f1b90ab16ef2bf63b3fbe88ce8a5d5bb85430740d3744849c13";
qx = "8b75fc0129c9a78f8395c63ae9694b05cd6950665cf5da7d66118de451422624";
qy = "b394171981d4896d6e1b4ef2336d9befe7d27e1eb87f1c14b8ddda622af379dc";
r = "17e298e67ad2af76f6892fdcead00a88256573868f79dc74431b55103058f0b0";
s = "881328cd91e43d30133f6e471e0b9b04353b17893fb7614fd7333d812a3df6b4";
result = false;
};
{ msg = "1db85445c9d8d1478a97dd9d6ffbf11ebcd2114d2ed4e8b6811171d947e7d4daedea35af6177debe2ef6d93f94ff9d770b45d458e91deb4eef59856425d7b00291aff9b6c9fa02375ec1a06f71f7548721790023301cf6ac7fee1d451228106ef4472681e652c8cd59b15d6d16f1e13440d888e265817cb4a654f7246e0980df";
qx = "76e51086e078b2b116fd1e9c6fa3d53f675ae40252fb9f0cc62817bd9ce8831d";
qy = "ca7e609a0b1d14b7c9249b53da0b2050450e2a25cb6c8f81c5311974a7efb576";
r = "23b653faaa7d4552388771931803ce939dd5ee62d3fa72b019be1b2272c85592";
s = "a03c6f5c54a10861d6b8922821708e9306fd6d5d10d566845a106539cbf4fadd";
result = false;
};
{ msg = "918d9f420e927b3e0a55d276b8b40d8a2c5df748727ff72a438c7e6593f542274050dce727980d3ef90c8aa5c13d53f1e8d631ebb650dee11b94902bbd7c92b8186af9039c56c43f3110697792c8cd1614166f06d09cdb58dab168cc3680a8473b1a623bf85dba855eace579d9410d2c4ca5ede6dc1e3db81e233c34ae922f49";
qx = "bc7c8e09bd093468f706740a4130c544374fdc924a535ef02e9d3be6c6d3bbfa";
qy = "af3f813ae6646f5b6dbfb0f261fd42537705c800bb1647386343428a9f2e10fc";
r = "6bd7ce95af25abfbf14aef4b17392f1da877ab562eca38d785fe39682e9c9324";
s = "6688bea20c87bab34d420642da9bdd4c69456bdec50835887367bb4fb7cd8650";
result = false;
};
{ msg = "6e2932153301a4eef680e6428929adae988c108d668a31ff55d0489947d75ff81a46bf89e84d6401f023be6e87688fbcd784d785ca846735524acb52d00452c84040a479e7cc330936441d93bbe722a9432a6e1db112b5c9403b10272cb1347fd619d463f7a9d223ad76fde06d8a6883500fb843235abff98e241bdfb5538c3e";
qx = "9cb0cf69303dafc761d4e4687b4ecf039e6d34ab964af80810d8d558a4a8d6f7";
qy = "2d51233a1788920a86ee08a1962c79efa317fb7879e297dad2146db995fa1c78";
r = "4b9f91e4285287261a1d1c923cf619cd52c175cfe7f1be60a5258c610348ba3d";
s = "28c45f901d71c41b298638ec0d6a85d7fcb0c33bbfec5a9c810846b639289a84";
result = true;
};
{ msg = "2f48ec387f181035b350772e27f478ae6ec7487923692fae217e0f8636acd062a6ac39f7435f27a0ebcfd8187a91ef00fb68d106b8da4a1dedc5a40a4fae709e92b00fcc218de76417d75185e59dff76ec1543fb429d87c2ca8134ff5ae9b45456cad93fc67223c68293231395287dc0b756355660721a1f5df83bf5bcb8456e";
qx = "e31096c2d512fbf84f81e9bdb16f33121702897605b43a3db546f8fb695b5f6f";
qy = "6fbec6a04a8c59d61c900a851d8bf8522187d3ec2637b10fa8f377689e086bba";
r = "1b244c21c08c0c0a10477fb7a21382d405b95c755088292859ca0e71bab68361";
s = "852f4cbfd346e90f404e1dd5c4b2c1debca3ea1abefe8400685d703aea6c5c7f";
result = false;
};
{ msg = "fd2e5de421ee46c9fe6290a33f95b394bd5b7762f23178f7f6834f1f056fa9a8831446403c098ff4dd764173f974be4c89d376119613a4a1890f6fc2ddff862bda292dd49f5410d9b1cfe1d97ef4582b6152494372fc083885f540c01f86d780e6f3e75a954af2190fdae9604e3f8ab32ab0292dc0d790bd2627e37b4b4885df";
qx = "633c2ee5630b62c9ce839efd4d485a6d35e8b9430d264ffe501d28dbace79123";
qy = "4b668a1a6d1a25b089f75c2bd8d8c6a9a14fe7b729f45a82565da2e866e2c490";
r = "bf2111c93ec055a7eda90c106fce494fd866045634fd2aa28d6e018f9106994e";
s = "86b0341208a0aa55edecfd272f49cb34408ce54b7febc1d0a1c2ce77ab6988f8";
result = false;
};
{ msg = "4bc2d9a898395b12701635f1048fbfd263ec115e4150532b034d59e625238f4ed32619744c612e35ac5a23bee8d5f5651641a492217d305e5051321c273647f14bc7c4afab518554e01c82d6fc1694c8bdbeb326bb607bcaf5436303bc09f64c02c6ec50de409a484f5237f7d34e2651ada7ec429ca3b99dd87c6015d2f4b342";
qx = "f78dce40d1cb8c4af2749bf22c6f8a9a470b1e41112796215dd017e57df1b38a";
qy = "61b29b0bc03dff7fa00613b4de1e2317cfbf2badd50dee3376c032a887c5b865";
r = "4a96169a5dea36a2594011537ee0dc19e8f9f74e82c07434079447155a830152";
s = "a204eaa4e97d7553a1521d9f6baadc0b6d6183ba0f385d8593d6ca83607c4d82";
result = false;
};
{ msg = "d3356a683417508a9b913643e6ceac1281ef583f428968f9d2b6540a189d7041c477da8d207d0529720f70dab6b0da8c2168837476c1c6b63b517ed3cad48ae331cf716ecf47a0f7d00b57073ac6a4749716d49d80c4d46261d38e2e34b4f43e0f20b280842f6e3ea34fefdddfb9fa2a040ffe915e8784cfdb29b3364a34ca62";
qx = "3fcc3b3e1b103fe435ac214c756bdaad309389e1c803e6d84bbbc27039fcf900";
qy = "7f09edd1ec87a6d36dc81c1528d52a62776e666c274415a9f441d6a8df6b9237";
r = "1cac13f277354456ae67ab09b09e07eb1af2a2bf45108da70f5c8c6a4cbcd538";
s = "5d83752e540525602ba7e6fee4d4263f3eda59e67df20aac79ca67e8899fed0d";
result = false;
};
{ msg = "d7f5da9f4cf9299b7f86c52b88364ce28fe9ada55dd551a1018790f9e1205e2405ac62429d65093f74ec35a16d9f195c993cd4eb8dc0aa0dabb70a503321d8a9649160d6b3d0a0854bb68c4c39693f592ef5dd478aa2432d0865d87d48b3aea9c7d7d114165c9200e4e8d7bd02a7895ec4418e6f2fed6b244bf66209039e98a9";
qx = "5ec702d43a67ada86efbfc136cf16d96078906954a3f1f9e440674cd907e4676";
qy = "05a62044fed8470dd4fca38d89d583ce36d50d28b66ab0b51922b21da92c56d9";
r = "75f3037298f1457dba55743999976a1c2636b2b8ab2ed3df4736a6d2934acc83";
s = "19d43ad168dda1bb8ac423f8f08876515234b3d841e57faef1b5ab27359b27ef";
result = false;
};
{ msg = "68f4b444e1cc2025e8ff55e8046ead735e6e317082edf7ce65e83573501cb92c408c1c1c6c4fcca6b96ad34224f17b20be471cc9f4f97f0a5b7bfae9558bdb2ecb6e452bb743603724273d9e8d2ca22afdda35c8a371b28153d772303e4a25dc4f28e9a6dc9635331450f5af290dfa3431c3c08b91d5c97284361c03ec78f1bc";
qx = "f63afe99e1b5fc652782f86b59926af22e6072be93390fe41f541204f9c935d1";
qy = "f6e19ce5935e336183c21becf66596b8f559d2d02ee282aa87a7d6f936f7260c";
r = "cef4831e4515c77ca062282614b54a11b7dc4057e6997685c2fbfa95b392bf72";
s = "f20dc01bf38e1344ba675a22239d9893b3a3e33d9a403329a3d21650e9125b75";
result = true;
};
{ msg = "e75be05be0aaf70719b488b89aaae9008707ca528994461db7130c4368575a024bf0981c305d61265e8b97599ec35c03badd1256b80d6bf70547ad6089b983e3bcc3481828f3259e43e655e177fc423fd7e066bd3ed68d81df84f773c0f9e5f8bf4469960b8b4d7b2a372fd0edd3521f6be670908f2d90a343f416358ea70e7e";
qx = "6d11b09d2767cf8d275faee746c203486259f66dd2bfa3a65c39371a66b23385";
qy = "4eb05c73e05261e979182833f20311e5366f72f4b949665ff294f959375534c6";
r = "15a697cdb614e11c0810e1e764cd501fcabc70874c957587bc4883d9438e177f";
s = "7bf6244f92bc768063cecb5336c8eaacd23db930b28703560f241c7d93950dfd";
result = false;
};
{ msg = "0dc4a3eab66bd2e703a8fff566c34d466f9823ae42bd2104f61a6b051c0b017833fcef4d609d137ad97c209c80eebe252857aa7fafc35f16000a2bd4b4be0fa83b6e229eddfd180101f1f40d0453148053d8306833df64d59599b90194b55541d7f22dd589da9f7be519cbbb9db416c71bfe40ec090b5b7a600eec29bfd47306";
qx = "f3899caba038efb534c4cea0bd276814ffd80194473c903b81af11c8c05cb6e6";
qy = "6ea6b17402fcf2e8e737d11ffc7c2ed3b2d0bc3b8f271a381f4294cff62682c3";
r = "57b99380452e1d37b133c49b9ba493dee8630940477ca3351a43d90b99871e6a";
s = "df599c3a37105af3ecc159b3b685ccb3e151b7d5cf2d97147974ae71f466b615";
result = false;
};
{ msg = "d55e5e124a7217879ca986f285e22ac51940b35959bbf5543104b5547356fd1a0ec37c0a23209004a2ec5bcaf3335bc45e4dc990eacd29b2d9b5cf349c7ba67711356299bceab6f048df761c65f2988803133d6723a2820fefb2654cc7c5f032f833ba78a34d2878c6b0ba654ebe26b110c935abb56024bd5d0f09b367724c07";
qx = "1fd6f4b98d0755291e7a230e9f81ecf909e6350aadb08e42a3262ff19200fbd2";
qy = "5578fef79bc477acfb8ed0dc10c4f5809c14dc5492405b3792a7940650b305d7";
r = "97a99e96e407b3ada2c2dcf9ceeeb984d9a4d0aa66ddf0a74ca23cabfb1566cc";
s = "0ecac315dc199cfea3c15348c130924a1f787019fe4cd3ae47ca8b111268754a";
result = false;
};
{ msg = "7753c03b4202cb38bc0190a9f931eb31858d705d92d650320ff449fc99167fb3770b764c8988f6b34ac5a3d507a10e0aff7f88293f6a22c7ed8a24248a52dc125e416e158833fc38af29199f8ca4931068d4ccaa87e299e95642068f68c208cb782df13908f950564743ed1692502bafafaff169dc8fe674fb5e4f3ffd578c35";
qx = "2dcbd8790cee552e9f18f2b3149a2252dcd58b99ca7dc9680b92c8c43aa33874";
qy = "5dbc8bb8813c8e019d80e19acdb0792f537980fecde93db621aaf1f6d0e6ee34";
r = "2bdbd8b0d759595662cc10b10236136ef6ce429641f68cf6480f472fcc77bc9f";
s = "7e7df0c8b86f7db06caf1610166f7b9c4c75447f991d5aaf4dea720c25985c8c";
result = true;
};
]
let siggen_vectors_sha2_256 : list vec_SigGen = [
{ msg' = "5905238877c77421f73e43ee3da6f2d9e2ccad5fc942dcec0cbd25482935faaf416983fe165b1a045ee2bcd2e6dca3bdf46c4310a7461f9a37960ca672d3feb5473e253605fb1ddfd28065b53cb5858a8ad28175bf9bd386a5e471ea7a65c17cc934a9d791e91491eb3754d03799790fe2d308d16146d5c9b0d0debd97d79ce8";
d = "519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464";
qx' = "1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83";
qy' = "ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9";
k = "94a1bbb14b906a61a280f245f9e93c7f3b4a6247824f5d33b9670787642a68de";
r' = "f3ac8061b514795b8843e3d6629527ed2afd6b1f6a555a7acabb5e6f79c8c2ac";
s' = "8bf77819ca05a6b2786c76262bf7371cef97b218e96f175a3ccdda2acc058903";
};
{ msg' = "c35e2f092553c55772926bdbe87c9796827d17024dbb9233a545366e2e5987dd344deb72df987144b8c6c43bc41b654b94cc856e16b96d7a821c8ec039b503e3d86728c494a967d83011a0e090b5d54cd47f4e366c0912bc808fbb2ea96efac88fb3ebec9342738e225f7c7c2b011ce375b56621a20642b4d36e060db4524af1";
d = "0f56db78ca460b055c500064824bed999a25aaf48ebb519ac201537b85479813";
qx' = "e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a";
qy' = "bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39";
k = "6d3e71882c3b83b156bb14e0ab184aa9fb728068d3ae9fac421187ae0b2f34c6";
r' = "976d3a4e9d23326dc0baa9fa560b7c4e53f42864f508483a6473b6a11079b2db";
s' = "1b766e9ceb71ba6c01dcd46e0af462cd4cfa652ae5017d4555b8eeefe36e1932";
};
{ msg' = "3c054e333a94259c36af09ab5b4ff9beb3492f8d5b4282d16801daccb29f70fe61a0b37ffef5c04cd1b70e85b1f549a1c4dc672985e50f43ea037efa9964f096b5f62f7ffdf8d6bfb2cc859558f5a393cb949dbd48f269343b5263dcdb9c556eca074f2e98e6d94c2c29a677afaf806edf79b15a3fcd46e7067b7669f83188ee";
d = "e283871239837e13b95f789e6e1af63bf61c918c992e62bca040d64cad1fc2ef";
qx' = "74ccd8a62fba0e667c50929a53f78c21b8ff0c3c737b0b40b1750b2302b0bde8";
qy' = "29074e21f3a0ef88b9efdf10d06aa4c295cc1671f758ca0e4cd108803d0f2614";
k = "ad5e887eb2b380b8d8280ad6e5ff8a60f4d26243e0124c2f31a297b5d0835de2";
r' = "35fb60f5ca0f3ca08542fb3cc641c8263a2cab7a90ee6a5e1583fac2bb6f6bd1";
s' = "ee59d81bc9db1055cc0ed97b159d8784af04e98511d0a9a407b99bb292572e96";
};
{ msg' = "0989122410d522af64ceb07da2c865219046b4c3d9d99b01278c07ff63eaf1039cb787ae9e2dd46436cc0415f280c562bebb83a23e639e476a02ec8cff7ea06cd12c86dcc3adefbf1a9e9a9b6646c7599ec631b0da9a60debeb9b3e19324977f3b4f36892c8a38671c8e1cc8e50fcd50f9e51deaf98272f9266fc702e4e57c30";
d = "a3d2d3b7596f6592ce98b4bfe10d41837f10027a90d7bb75349490018cf72d07";
qx' = "322f80371bf6e044bc49391d97c1714ab87f990b949bc178cb7c43b7c22d89e1";
qy' = "3c15d54a5cc6b9f09de8457e873eb3deb1fceb54b0b295da6050294fae7fd999";
k = "24fc90e1da13f17ef9fe84cc96b9471ed1aaac17e3a4bae33a115df4e5834f18";
r' = "d7c562370af617b581c84a2468cc8bd50bb1cbf322de41b7887ce07c0e5884ca";
s' = "b46d9f2d8c4bf83546ff178f1d78937c008d64e8ecc5cbb825cb21d94d670d89";
};
{ msg' = "dc66e39f9bbfd9865318531ffe9207f934fa615a5b285708a5e9c46b7775150e818d7f24d2a123df3672fff2094e3fd3df6fbe259e3989dd5edfcccbe7d45e26a775a5c4329a084f057c42c13f3248e3fd6f0c76678f890f513c32292dd306eaa84a59abe34b16cb5e38d0e885525d10336ca443e1682aa04a7af832b0eee4e7";
d = "53a0e8a8fe93db01e7ae94e1a9882a102ebd079b3a535827d583626c272d280d";
qx' = "1bcec4570e1ec2436596b8ded58f60c3b1ebc6a403bc5543040ba82963057244";
qy' = "8af62a4c683f096b28558320737bf83b9959a46ad2521004ef74cf85e67494e1";
k = "5d833e8d24cc7a402d7ee7ec852a3587cddeb48358cea71b0bedb8fabe84e0c4";
r' = "18caaf7b663507a8bcd992b836dec9dc5703c080af5e51dfa3a9a7c387182604";
s' = "77c68928ac3b88d985fb43fb615fb7ff45c18ba5c81af796c613dfa98352d29c";
};
{ msg' = "600974e7d8c5508e2c1aab0783ad0d7c4494ab2b4da265c2fe496421c4df238b0be25f25659157c8a225fb03953607f7df996acfd402f147e37aee2f1693e3bf1c35eab3ae360a2bd91d04622ea47f83d863d2dfecb618e8b8bdc39e17d15d672eee03bb4ce2cc5cf6b217e5faf3f336fdd87d972d3a8b8a593ba85955cc9d71";
d = "4af107e8e2194c830ffb712a65511bc9186a133007855b49ab4b3833aefc4a1d";
qx' = "a32e50be3dae2c8ba3f5e4bdae14cf7645420d425ead94036c22dd6c4fc59e00";
qy' = "d623bf641160c289d6742c6257ae6ba574446dd1d0e74db3aaa80900b78d4ae9";
k = "e18f96f84dfa2fd3cdfaec9159d4c338cd54ad314134f0b31e20591fc238d0ab";
r' = "8524c5024e2d9a73bde8c72d9129f57873bbad0ed05215a372a84fdbc78f2e68";
s' = "d18c2caf3b1072f87064ec5e8953f51301cada03469c640244760328eb5a05cb";
};
{ msg' = "dfa6cb9b39adda6c74cc8b2a8b53a12c499ab9dee01b4123642b4f11af336a91a5c9ce0520eb2395a6190ecbf6169c4cba81941de8e76c9c908eb843b98ce95e0da29c5d4388040264e05e07030a577cc5d176387154eabae2af52a83e85c61c7c61da930c9b19e45d7e34c8516dc3c238fddd6e450a77455d534c48a152010b";
d = "78dfaa09f1076850b3e206e477494cddcfb822aaa0128475053592c48ebaf4ab";
qx' = "8bcfe2a721ca6d753968f564ec4315be4857e28bef1908f61a366b1f03c97479";
qy' = "0f67576a30b8e20d4232d8530b52fb4c89cbc589ede291e499ddd15fe870ab96";
k = "295544dbb2da3da170741c9b2c6551d40af7ed4e891445f11a02b66a5c258a77";
r' = "c5a186d72df452015480f7f338970bfe825087f05c0088d95305f87aacc9b254";
s' = "84a58f9e9d9e735344b316b1aa1ab5185665b85147dc82d92e969d7bee31ca30";
};
{ msg' = "51d2547cbff92431174aa7fc7302139519d98071c755ff1c92e4694b58587ea560f72f32fc6dd4dee7d22bb7387381d0256e2862d0644cdf2c277c5d740fa089830eb52bf79d1e75b8596ecf0ea58a0b9df61e0c9754bfcd62efab6ea1bd216bf181c5593da79f10135a9bc6e164f1854bc8859734341aad237ba29a81a3fc8b";
d = "80e692e3eb9fcd8c7d44e7de9f7a5952686407f90025a1d87e52c7096a62618a";
qx' = "a88bc8430279c8c0400a77d751f26c0abc93e5de4ad9a4166357952fe041e767";
qy' = "2d365a1eef25ead579cc9a069b6abc1b16b81c35f18785ce26a10ba6d1381185";
k = "7c80fd66d62cc076cef2d030c17c0a69c99611549cb32c4ff662475adbe84b22";
r' = "9d0c6afb6df3bced455b459cc21387e14929392664bb8741a3693a1795ca6902";
s' = "d7f9ddd191f1f412869429209ee3814c75c72fa46a9cccf804a2f5cc0b7e739f";
};
{ msg' = "558c2ac13026402bad4a0a83ebc9468e50f7ffab06d6f981e5db1d082098065bcff6f21a7a74558b1e8612914b8b5a0aa28ed5b574c36ac4ea5868432a62bb8ef0695d27c1e3ceaf75c7b251c65ddb268696f07c16d2767973d85beb443f211e6445e7fe5d46f0dce70d58a4cd9fe70688c035688ea8c6baec65a5fc7e2c93e8";
d = "5e666c0db0214c3b627a8e48541cc84a8b6fd15f300da4dff5d18aec6c55b881";
qx' = "1bc487570f040dc94196c9befe8ab2b6de77208b1f38bdaae28f9645c4d2bc3a";
qy' = "ec81602abd8345e71867c8210313737865b8aa186851e1b48eaca140320f5d8f";
k = "2e7625a48874d86c9e467f890aaa7cd6ebdf71c0102bfdcfa24565d6af3fdce9";
r' = "2f9e2b4e9f747c657f705bffd124ee178bbc5391c86d056717b140c153570fd9";
s' = "f5413bfd85949da8d83de83ab0d19b2986613e224d1901d76919de23ccd03199";
};
{ msg' = "4d55c99ef6bd54621662c3d110c3cb627c03d6311393b264ab97b90a4b15214a5593ba2510a53d63fb34be251facb697c973e11b665cb7920f1684b0031b4dd370cb927ca7168b0bf8ad285e05e9e31e34bc24024739fdc10b78586f29eff94412034e3b606ed850ec2c1900e8e68151fc4aee5adebb066eb6da4eaa5681378e";
d = "f73f455271c877c4d5334627e37c278f68d143014b0a05aa62f308b2101c5308";
qx' = "b8188bd68701fc396dab53125d4d28ea33a91daf6d21485f4770f6ea8c565dde";
qy' = "423f058810f277f8fe076f6db56e9285a1bf2c2a1dae145095edd9c04970bc4a";
k = "62f8665fd6e26b3fa069e85281777a9b1f0dfd2c0b9f54a086d0c109ff9fd615";
r' = "1cc628533d0004b2b20e7f4baad0b8bb5e0673db159bbccf92491aef61fc9620";
s' = "880e0bbf82a8cf818ed46ba03cf0fc6c898e36fca36cc7fdb1d2db7503634430";
};
{ msg' = "f8248ad47d97c18c984f1f5c10950dc1404713c56b6ea397e01e6dd925e903b4fadfe2c9e877169e71ce3c7fe5ce70ee4255d9cdc26f6943bf48687874de64f6cf30a012512e787b88059bbf561162bdcc23a3742c835ac144cc14167b1bd6727e940540a9c99f3cbb41fb1dcb00d76dda04995847c657f4c19d303eb09eb48a";
d = "b20d705d9bd7c2b8dc60393a5357f632990e599a0975573ac67fd89b49187906";
qx' = "51f99d2d52d4a6e734484a018b7ca2f895c2929b6754a3a03224d07ae61166ce";
qy' = "4737da963c6ef7247fb88d19f9b0c667cac7fe12837fdab88c66f10d3c14cad1";
k = "72b656f6b35b9ccbc712c9f1f3b1a14cbbebaec41c4bca8da18f492a062d6f6f";
r' = "9886ae46c1415c3bc959e82b760ad760aab66885a84e620aa339fdf102465c42";
s' = "2bf3a80bc04faa35ebecc0f4864ac02d349f6f126e0f988501b8d3075409a26c";
};
{ msg' = "3b6ee2425940b3d240d35b97b6dcd61ed3423d8e71a0ada35d47b322d17b35ea0472f35edd1d252f87b8b65ef4b716669fc9ac28b00d34a9d66ad118c9d94e7f46d0b4f6c2b2d339fd6bcd351241a387cc82609057048c12c4ec3d85c661975c45b300cb96930d89370a327c98b67defaa89497aa8ef994c77f1130f752f94a4";
d = "d4234bebfbc821050341a37e1240efe5e33763cbbb2ef76a1c79e24724e5a5e7";
qx' = "8fb287f0202ad57ae841aea35f29b2e1d53e196d0ddd9aec24813d64c0922fb7";
qy' = "1f6daff1aa2dd2d6d3741623eecb5e7b612997a1039aab2e5cf2de969cfea573";
k = "d926fe10f1bfd9855610f4f5a3d666b1a149344057e35537373372ead8b1a778";
r' = "490efd106be11fc365c7467eb89b8d39e15d65175356775deab211163c2504cb";
s' = "644300fc0da4d40fb8c6ead510d14f0bd4e1321a469e9c0a581464c7186b7aa7";
};
{ msg' = "c5204b81ec0a4df5b7e9fda3dc245f98082ae7f4efe81998dcaa286bd4507ca840a53d21b01e904f55e38f78c3757d5a5a4a44b1d5d4e480be3afb5b394a5d2840af42b1b4083d40afbfe22d702f370d32dbfd392e128ea4724d66a3701da41ae2f03bb4d91bb946c7969404cb544f71eb7a49eb4c4ec55799bda1eb545143a7";
d = "b58f5211dff440626bb56d0ad483193d606cf21f36d9830543327292f4d25d8c";
qx' = "68229b48c2fe19d3db034e4c15077eb7471a66031f28a980821873915298ba76";
qy' = "303e8ee3742a893f78b810991da697083dd8f11128c47651c27a56740a80c24c";
k = "e158bf4a2d19a99149d9cdb879294ccb7aaeae03d75ddd616ef8ae51a6dc1071";
r' = "e67a9717ccf96841489d6541f4f6adb12d17b59a6bef847b6183b8fcf16a32eb";
s' = "9ae6ba6d637706849a6a9fc388cf0232d85c26ea0d1fe7437adb48de58364333";
};
{ msg' = "72e81fe221fb402148d8b7ab03549f1180bcc03d41ca59d7653801f0ba853add1f6d29edd7f9abc621b2d548f8dbf8979bd16608d2d8fc3260b4ebc0dd42482481d548c7075711b5759649c41f439fad69954956c9326841ea6492956829f9e0dc789f73633b40f6ac77bcae6dfc7930cfe89e526d1684365c5b0be2437fdb01";
d = "54c066711cdb061eda07e5275f7e95a9962c6764b84f6f1f3ab5a588e0a2afb1";
qx' = "0a7dbb8bf50cb605eb2268b081f26d6b08e012f952c4b70a5a1e6e7d46af98bb";
qy' = "f26dd7d799930062480849962ccf5004edcfd307c044f4e8f667c9baa834eeae";
k = "646fe933e96c3b8f9f507498e907fdd201f08478d0202c752a7c2cfebf4d061a";
r' = "b53ce4da1aa7c0dc77a1896ab716b921499aed78df725b1504aba1597ba0c64b";
s' = "d7c246dc7ad0e67700c373edcfdd1c0a0495fc954549ad579df6ed1438840851";
};
{ msg' = "21188c3edd5de088dacc1076b9e1bcecd79de1003c2414c3866173054dc82dde85169baa77993adb20c269f60a5226111828578bcc7c29e6e8d2dae81806152c8ba0c6ada1986a1983ebeec1473a73a04795b6319d48662d40881c1723a706f516fe75300f92408aa1dc6ae4288d2046f23c1aa2e54b7fb6448a0da922bd7f34";
d = "34fa4682bf6cb5b16783adcd18f0e6879b92185f76d7c920409f904f522db4b1";
qx' = "105d22d9c626520faca13e7ced382dcbe93498315f00cc0ac39c4821d0d73737";
qy' = "6c47f3cbbfa97dfcebe16270b8c7d5d3a5900b888c42520d751e8faf3b401ef4";
k = "a6f463ee72c9492bc792fe98163112837aebd07bab7a84aaed05be64db3086f4";
r' = "542c40a18140a6266d6f0286e24e9a7bad7650e72ef0e2131e629c076d962663";
s' = "4f7f65305e24a6bbb5cff714ba8f5a2cee5bdc89ba8d75dcbf21966ce38eb66f";
};
] | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val siggen_vectors_sha2_384:list vec_SigGen | [] | Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_384 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigGen | {
"end_col": 1,
"end_line": 604,
"start_col": 49,
"start_line": 483
} |
Prims.Tot | val siggen_vectors_sha2_512:list vec_SigGen | [
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let siggen_vectors_sha2_512 : list vec_SigGen = [
{ msg' = "6c8572b6a3a4a9e8e03dbeed99334d41661b8a8417074f335ab1845f6cc852adb8c01d9820fcf8e10699cc827a8fbdca2cbd46cc66e4e6b7ba41ec3efa733587e4a30ec552cd8ddab8163e148e50f4d090782897f3ddac84a41e1fcfe8c56b6152c0097b0d634b41011471ffd004f43eb4aafc038197ec6bae2b4470e869bded";
d = "9dd0d3a3d514c2a8adb162b81e3adfba3299309f7d2018f607bdb15b1a25f499";
qx' = "6b738de3398b6ac57b9591f9d7985dd4f32137ad3460dcf8970c1390cb9eaf8d";
qy' = "83bc61e26d2bbbd3cf2d2ab445a2bc4ab5dde41f4a13078fd1d3cc36ab596d57";
k = "9106192170ccb3c64684d48287bb81bbed51b40d503462c900e5c7aae43e380a";
r' = "275fa760878b4dc05e9d157fedfd8e9b1c9c861222a712748cb4b7754c043fb1";
s' = "699d906bb8435a05345af3b37e3b357786939e94caae257852f0503adb1e0f7e";
};
{ msg' = "7e3c8fe162d48cc8c5b11b5e5ebc05ebc45c439bdbc0b0902145921b8383037cb0812222031598cd1a56fa71694fbd304cc62938233465ec39c6e49f57dfe823983b6923c4e865633949183e6b90e9e06d8275f3907d97967d47b6239fe2847b7d49cf16ba69d2862083cf1bccf7afe34fdc90e21998964107b64abe6b89d126";
d = "f9bf909b7973bf0e3dad0e43dcb2d7fa8bda49dbe6e5357f8f0e2bd119be30e6";
qx' = "f2a6674d4e86152a527199bed293fa63acde1b4d8a92b62e552210ba45c38792";
qy' = "c72565c24f0eee6a094af341ddd8579747b865f91c8ed5b44cda8a19cc93776f";
k = "e547791f7185850f03d0c58419648f65b9d29cdc22ed1de2a64280220cfcafba";
r' = "4782903d2aaf8b190dab5cae2223388d2d8bd845b3875d37485c54e1ded1d3d8";
s' = "dfb40e406bfa074f0bf832771b2b9f186e2211f0bca279644a0ca8559acf39da";
};
{ msg' = "d5aa8ac9218ca661cd177756af6fbb5a40a3fecfd4eea6d5872fbb9a2884784aa9b5f0c023a6e0da5cf6364754ee6465b4ee2d0ddc745b02994c98427a213c849537da5a4477b3abfe02648be67f26e80b56a33150490d062aaac137aa47f11cfeddba855bab9e4e028532a563326d927f9e6e3292b1fb248ee90b6f429798db";
d = "724567d21ef682dfc6dc4d46853880cfa86fe6fea0efd51fac456f03c3d36ead";
qx' = "70b877b5e365fcf08140b1eca119baba662879f38e059d074a2cb60b03ea5d39";
qy' = "5f56f94d591df40b9f3b8763ac4b3dbe622c956d5bd0c55658b6f46fa3deb201";
k = "79d6c967ed23c763ece9ca4b026218004c84dc2d4ccc86cf05c5d0f791f6279b";
r' = "2ba2ea2d316f8937f184ad3028e364574d20a202e4e7513d7af57ac2456804d1";
s' = "64fe94968d18c5967c799e0349041b9e40e6c6c92ebb475e80dd82f51cf07320";
};
{ msg' = "790b06054afc9c3fc4dfe72df19dd5d68d108cfcfca6212804f6d534fd2fbe489bd8f64bf205ce04bcb50124a12ce5238fc3fe7dd76e6fa640206af52549f133d593a1bfd423ab737f3326fa79433cde293236f90d4238f0dd38ed69492ddbd9c3eae583b6325a95dec3166fe52b21658293d8c137830ef45297d67813b7a508";
d = "29c5d54d7d1f099d50f949bfce8d6073dae059c5a19cc70834722f18a7199edd";
qx' = "3088d4f45d274cc5f418c8ecc4cbcf96be87491f420250f8cbc01cdf2503ec47";
qy' = "634db48198129237ed068c88ff5809f6211921a6258f548f4b64dd125921b78b";
k = "0508ad7774908b5705895fda5c3b7a3032bf85dab7232bf981177019f3d76460";
r' = "acd9f3b63626c5f32103e90e1dd1695907b1904aa9b14f2132caef331321971b";
s' = "15c04a8bd6c13ed5e9961814b2f406f064670153e4d5465dcef63c1d9dd52a87";
};
{ msg' = "6d549aa87afdb8bfa60d22a68e2783b27e8db46041e4df04be0c261c4734b608a96f198d1cdb8d082ae48579ec9defcf21fbc72803764a58c31e5323d5452b9fb57c8991d31749140da7ef067b18bf0d7dfbae6eefd0d8064f334bf7e9ec1e028daed4e86e17635ec2e409a3ed1238048a45882c5c57501b314e636b9bc81cbe";
d = "0d8095da1abba06b0d349c226511f642dabbf1043ad41baa4e14297afe8a3117";
qx' = "75a45758ced45ecf55f755cb56ca2601d794ebeaeb2e6107fe2fc443f580e23c";
qy' = "5303d47d5a75ec821d51a2ee7548448208c699eca0cd89810ffc1aa4faf81ead";
k = "5165c54def4026ab648f7768c4f1488bcb183f6db7ffe02c7022a529a116482a";
r' = "ebc85fc4176b446b3384ccc62fc2526b45665561a0e7e9404ac376c90e450b59";
s' = "8b2c09428e62c5109d17ed0cf8f9fd7c370d018a2a73f701effc9b17d04852c6";
};
{ msg' = "1906e48b7f889ee3ff7ab0807a7aa88f53f4018808870bfed6372a77330c737647961324c2b4d46f6ee8b01190474951a701b048ae86579ff8e3fc889fecf926b17f98958ac7534e6e781ca2db2baa380dec766cfb2a3eca2a9d5818967d64dfab84f768d24ec122eebacaab0a4dc3a75f37331bb1c43dd8966cc09ec4945bbd";
d = "52fe57da3427b1a75cb816f61c4e8e0e0551b94c01382b1a80837940ed579e61";
qx' = "2177e20a2092a46667debdcc21e7e45d6da72f124adecbc5ada6a7bcc7b401d5";
qy' = "550e468f2626070a080afeeb98edd75a721eb773c8e62149f3e903cf9c4d7b61";
k = "0464fe9674b01ff5bd8be21af3399fad66f90ad30f4e8ee6e2eb9bcccfd5185c";
r' = "f8250f073f34034c1cde58f69a85e2f5a030703ebdd4dbfb98d3b3690db7d114";
s' = "a9e83e05f1d6e0fef782f186bedf43684c825ac480174d48b0e4d31505e27498";
};
{ msg' = "7b59fef13daf01afec35dea3276541be681c4916767f34d4e874464d20979863ee77ad0fd1635bcdf93e9f62ed69ae52ec90aab5bbf87f8951213747ccec9f38c775c1df1e9d7f735c2ce39b42edb3b0c5086247556cfea539995c5d9689765288ec600848ecf085c01ca738bbef11f5d12d4457db988b4add90be00781024ad";
d = "003d91611445919f59bfe3ca71fe0bfdeb0e39a7195e83ac03a37c7eceef0df2";
qx' = "7b9c592f61aae0555855d0b9ebb6fd00fb6746e8842e2523565c858630b9ba00";
qy' = "d35b2e168b1875bbc563bea5e8d63c4e38957c774a65e762959a349eaf263ba0";
k = "ef9df291ea27a4b45708f7608723c27d7d56b7df0599a54bc2c2fabbff373b40";
r' = "66d057fd39958b0e4932bacd70a1769bbadcb62e4470937b45497a3d4500fabb";
s' = "6c853b889e18b5a49ee54b54dd1aaedfdd642e30eba171c5cab677f0df9e7318";
};
{ msg' = "041a6767a935dc3d8985eb4e608b0cbfebe7f93789d4200bcfe595277ac2b0f402889b580b72def5da778a680fd380c955421f626d52dd9a83ea180187b850e1b72a4ec6dd63235e598fd15a9b19f8ce9aec1d23f0bd6ea4d92360d50f951152bc9a01354732ba0cf90aaed33c307c1de8fa3d14f9489151b8377b57c7215f0b";
d = "48f13d393899cd835c4193670ec62f28e4c4903e0bbe5817bf0996831a720bb7";
qx' = "82a1a96f4648393c5e42633ecdeb1d8245c78c5ea236b5bab460dedcc8924bc0";
qy' = "e8cbf03c34b5154f876de19f3bb6fd43cd2eabf6e7c95467bcfa8c8fc42d76fd";
k = "efed736e627899fea944007eea39a4a63c0c2e26491cd12adb546be3e5c68f7d";
r' = "cf7fc24bdaa09ac0cca8497e13298b961380668613c7493954048c06385a7044";
s' = "f38b1c8306cf82ab76ee3a772b14416b49993fe11f986e9b0f0593c52ec91525";
};
{ msg' = "7905a9036e022c78b2c9efd40b77b0a194fbc1d45462779b0b76ad30dc52c564e48a493d8249a061e62f26f453ba566538a4d43c64fb9fdbd1f36409316433c6f074e1b47b544a847de25fc67d81ac801ed9f7371a43da39001c90766f943e629d74d0436ba1240c3d7fab990d586a6d6ef1771786722df56448815f2feda48f";
d = "95c99cf9ec26480275f23de419e41bb779590f0eab5cf9095d37dd70cb75e870";
qx' = "42c292b0fbcc9f457ae361d940a9d45ad9427431a105a6e5cd90a345fe3507f7";
qy' = "313b08fd2fa351908b3178051ee782cc62b9954ad95d4119aa564900f8ade70c";
k = "4c08dd0f8b72ae9c674e1e448d4e2afe3a1ee69927fa23bbff3716f0b99553b7";
r' = "f2bc35eb1b8488b9e8d4a1dbb200e1abcb855458e1557dc1bf988278a174eb3b";
s' = "ed9a2ec043a1d578e8eba6f57217976310e8674385ad2da08d6146c629de1cd9";
};
{ msg' = "cf25e4642d4f39d15afb7aec79469d82fc9aedb8f89964e79b749a852d931d37436502804e39555f5a3c75dd958fd5291ada647c1a5e38fe7b1048f16f2b711fdd5d39acc0812ca65bd50d7f8119f2fd195ab16633503a78ee9102c1f9c4c22568e0b54bd4fa3f5ff7b49160bf23e7e2231b1ebebbdaf0e4a7d4484158a87e07";
d = "e15e835d0e2217bc7c6f05a498f20af1cd56f2f165c23d225eb3360aa2c5cbcf";
qx' = "89dd22052ec3ab4840206a62f2270c21e7836d1a9109a3407dd0974c7802b9ae";
qy' = "e91609ba35c7008b080c77a9068d97a14ca77b97299e74945217672b2fd5faf0";
k = "c9f621441c235fc47ec34eef4c08625df1ec74918e1f86075b753f2589f4c60b";
r' = "a70d1a2d555d599bfb8c9b1f0d43725341151d17a8d0845fa56f3563703528a7";
s' = "4e05c45adf41783e394a5312f86e66871c4be4896948c85966879d5c66d54b37";
};
{ msg' = "7562c445b35883cc937be6349b4cefc3556a80255d70f09e28c3f393daac19442a7eecedcdfbe8f7628e30cd8939537ec56d5c9645d43340eb4e78fc5dd4322de8a07966b262770d7ff13a071ff3dce560718e60ed3086b7e0003a6abafe91af90af86733ce8689440bf73d2aa0acfe9776036e877599acbabfcb03bb3b50faa";
d = "808c08c0d77423a6feaaffc8f98a2948f17726e67c15eeae4e672edbe388f98c";
qx' = "b0c0ad5e1f6001d8e9018ec611b2e3b91923e69fa6c98690ab644d650f640c42";
qy' = "610539c0b9ed21ac0a2f27527c1a61d9b47cbf033187b1a6ada006eb5b2662ed";
k = "1f6d4a905c761a53d54c362976717d0d7fc94d222bb5489e4830080a1a67535d";
r' = "83404dcf8320baf206381800071e6a75160342d19743b4f176960d669dd03d07";
s' = "3f75dcf102008b2989f81683ae45e9f1d4b67a6ef6fd5c8af44828af80e1cfb5";
};
{ msg' = "051c2db8e71e44653ea1cb0afc9e0abdf12658e9e761bfb767c20c7ab4adfcb18ed9b5c372a3ac11d8a43c55f7f99b33355437891686d42362abd71db8b6d84dd694d6982f0612178a937aa934b9ac3c0794c39027bdd767841c4370666c80dbc0f8132ca27474f553d266deefd7c9dbad6d734f9006bb557567701bb7e6a7c9";
d = "f7c6315f0081acd8f09c7a2c3ec1b7ece20180b0a6365a27dcd8f71b729558f9";
qx' = "250f7112d381c1751860045d9bcaf20dbeb25a001431f96ac6f19109362ffebb";
qy' = "49fba9efe73546135a5a31ab3753e247034741ce839d3d94bd73936c4a17e4aa";
k = "68c299be2c0c6d52d208d5d1a9e0ffa2af19b4833271404e5876e0aa93987866";
r' = "7b195e92d2ba95911cda7570607e112d02a1c847ddaa33924734b51f5d81adab";
s' = "10d9f206755cef70ab5143ac43f3f8d38aea2644f31d52eaf3b472ee816e11e5";
};
{ msg' = "4dcb7b62ba31b866fce7c1feedf0be1f67bf611dbc2e2e86f004422f67b3bc1839c6958eb1dc3ead137c3d7f88aa97244577a775c8021b1642a8647bba82871e3c15d0749ed343ea6cad38f123835d8ef66b0719273105e924e8685b65fd5dc430efbc35b05a6097f17ebc5943cdcd9abcba752b7f8f37027409bd6e11cd158f";
d = "f547735a9409386dbff719ce2dae03c50cb437d6b30cc7fa3ea20d9aec17e5a5";
qx' = "4ca87c5845fb04c2f76ae3273073b0523e356a445e4e95737260eba9e2d021db";
qy' = "0f86475d07f82655320fdf2cd8db23b21905b1b1f2f9c48e2df87e24119c4880";
k = "91bd7d97f7ed3253cedefc144771bb8acbbda6eb24f9d752bbe1dd018e1384c7";
r' = "008c1755d3df81e64e25270dbaa9396641556df7ffc7ac9add6739c382705397";
s' = "77df443c729b039aded5b516b1077fecdd9986402d2c4b01734ba91e055e87fc";
};
{ msg' = "efe55737771070d5ac79236b04e3fbaf4f2e9bed187d1930680fcf1aba769674bf426310f21245006f528779347d28b8aeacd2b1d5e3456dcbf188b2be8c07f19219e4067c1e7c9714784285d8bac79a76b56f2e2676ea93994f11eb573af1d03fc8ed1118eafc7f07a82f3263c33eb85e497e18f435d4076a774f42d276c323";
d = "26a1aa4b927a516b661986895aff58f40b78cc5d0c767eda7eaa3dbb835b5628";
qx' = "28afa3b0f81a0e95ad302f487a9b679fcdef8d3f40236ec4d4dbf4bb0cbba8b2";
qy' = "bb4ac1be8405cbae8a553fbc28e29e2e689fabe7def26d653a1dafc023f3cecf";
k = "f98e1933c7fad4acbe94d95c1b013e1d6931fa8f67e6dbb677b564ef7c3e56ce";
r' = "15a9a5412d6a03edd71b84c121ce9a94cdd166e40da9ce4d79f1afff6a395a53";
s' = "86bbc2b6c63bad706ec0b093578e3f064736ec69c0dba59b9e3e7f73762a4dc3";
};
{ msg' = "ea95859cc13cccb37198d919803be89c2ee10befdcaf5d5afa09dcc529d333ae1e4ffd3bd8ba8642203badd7a80a3f77eeee9402eed365d53f05c1a995c536f8236ba6b6ff8897393506660cc8ea82b2163aa6a1855251c87d935e23857fe35b889427b449de7274d7754bdeace960b4303c5dd5f745a5cfd580293d6548c832";
d = "6a5ca39aae2d45aa331f18a8598a3f2db32781f7c92efd4f64ee3bbe0c4c4e49";
qx' = "c62cc4a39ace01006ad48cf49a3e71466955bbeeca5d318d672695df926b3aa4";
qy' = "c85ccf517bf2ebd9ad6a9e99254def0d74d1d2fd611e328b4a3988d4f045fe6f";
k = "dac00c462bc85bf39c31b5e01df33e2ec1569e6efcb334bf18f0951992ac6160";
r' = "6e7ff8ec7a5c48e0877224a9fa8481283de45fcbee23b4c252b0c622442c26ad";
s' = "3dfac320b9c873318117da6bd856000a392b815659e5aa2a6a1852ccb2501df3";
};
] | val siggen_vectors_sha2_512:list vec_SigGen
let siggen_vectors_sha2_512:list vec_SigGen = | false | null | false | [
{
msg'
=
"6c8572b6a3a4a9e8e03dbeed99334d41661b8a8417074f335ab1845f6cc852adb8c01d9820fcf8e10699cc827a8fbdca2cbd46cc66e4e6b7ba41ec3efa733587e4a30ec552cd8ddab8163e148e50f4d090782897f3ddac84a41e1fcfe8c56b6152c0097b0d634b41011471ffd004f43eb4aafc038197ec6bae2b4470e869bded";
d = "9dd0d3a3d514c2a8adb162b81e3adfba3299309f7d2018f607bdb15b1a25f499";
qx' = "6b738de3398b6ac57b9591f9d7985dd4f32137ad3460dcf8970c1390cb9eaf8d";
qy' = "83bc61e26d2bbbd3cf2d2ab445a2bc4ab5dde41f4a13078fd1d3cc36ab596d57";
k = "9106192170ccb3c64684d48287bb81bbed51b40d503462c900e5c7aae43e380a";
r' = "275fa760878b4dc05e9d157fedfd8e9b1c9c861222a712748cb4b7754c043fb1";
s' = "699d906bb8435a05345af3b37e3b357786939e94caae257852f0503adb1e0f7e"
};
{
msg'
=
"7e3c8fe162d48cc8c5b11b5e5ebc05ebc45c439bdbc0b0902145921b8383037cb0812222031598cd1a56fa71694fbd304cc62938233465ec39c6e49f57dfe823983b6923c4e865633949183e6b90e9e06d8275f3907d97967d47b6239fe2847b7d49cf16ba69d2862083cf1bccf7afe34fdc90e21998964107b64abe6b89d126";
d = "f9bf909b7973bf0e3dad0e43dcb2d7fa8bda49dbe6e5357f8f0e2bd119be30e6";
qx' = "f2a6674d4e86152a527199bed293fa63acde1b4d8a92b62e552210ba45c38792";
qy' = "c72565c24f0eee6a094af341ddd8579747b865f91c8ed5b44cda8a19cc93776f";
k = "e547791f7185850f03d0c58419648f65b9d29cdc22ed1de2a64280220cfcafba";
r' = "4782903d2aaf8b190dab5cae2223388d2d8bd845b3875d37485c54e1ded1d3d8";
s' = "dfb40e406bfa074f0bf832771b2b9f186e2211f0bca279644a0ca8559acf39da"
};
{
msg'
=
"d5aa8ac9218ca661cd177756af6fbb5a40a3fecfd4eea6d5872fbb9a2884784aa9b5f0c023a6e0da5cf6364754ee6465b4ee2d0ddc745b02994c98427a213c849537da5a4477b3abfe02648be67f26e80b56a33150490d062aaac137aa47f11cfeddba855bab9e4e028532a563326d927f9e6e3292b1fb248ee90b6f429798db";
d = "724567d21ef682dfc6dc4d46853880cfa86fe6fea0efd51fac456f03c3d36ead";
qx' = "70b877b5e365fcf08140b1eca119baba662879f38e059d074a2cb60b03ea5d39";
qy' = "5f56f94d591df40b9f3b8763ac4b3dbe622c956d5bd0c55658b6f46fa3deb201";
k = "79d6c967ed23c763ece9ca4b026218004c84dc2d4ccc86cf05c5d0f791f6279b";
r' = "2ba2ea2d316f8937f184ad3028e364574d20a202e4e7513d7af57ac2456804d1";
s' = "64fe94968d18c5967c799e0349041b9e40e6c6c92ebb475e80dd82f51cf07320"
};
{
msg'
=
"790b06054afc9c3fc4dfe72df19dd5d68d108cfcfca6212804f6d534fd2fbe489bd8f64bf205ce04bcb50124a12ce5238fc3fe7dd76e6fa640206af52549f133d593a1bfd423ab737f3326fa79433cde293236f90d4238f0dd38ed69492ddbd9c3eae583b6325a95dec3166fe52b21658293d8c137830ef45297d67813b7a508";
d = "29c5d54d7d1f099d50f949bfce8d6073dae059c5a19cc70834722f18a7199edd";
qx' = "3088d4f45d274cc5f418c8ecc4cbcf96be87491f420250f8cbc01cdf2503ec47";
qy' = "634db48198129237ed068c88ff5809f6211921a6258f548f4b64dd125921b78b";
k = "0508ad7774908b5705895fda5c3b7a3032bf85dab7232bf981177019f3d76460";
r' = "acd9f3b63626c5f32103e90e1dd1695907b1904aa9b14f2132caef331321971b";
s' = "15c04a8bd6c13ed5e9961814b2f406f064670153e4d5465dcef63c1d9dd52a87"
};
{
msg'
=
"6d549aa87afdb8bfa60d22a68e2783b27e8db46041e4df04be0c261c4734b608a96f198d1cdb8d082ae48579ec9defcf21fbc72803764a58c31e5323d5452b9fb57c8991d31749140da7ef067b18bf0d7dfbae6eefd0d8064f334bf7e9ec1e028daed4e86e17635ec2e409a3ed1238048a45882c5c57501b314e636b9bc81cbe";
d = "0d8095da1abba06b0d349c226511f642dabbf1043ad41baa4e14297afe8a3117";
qx' = "75a45758ced45ecf55f755cb56ca2601d794ebeaeb2e6107fe2fc443f580e23c";
qy' = "5303d47d5a75ec821d51a2ee7548448208c699eca0cd89810ffc1aa4faf81ead";
k = "5165c54def4026ab648f7768c4f1488bcb183f6db7ffe02c7022a529a116482a";
r' = "ebc85fc4176b446b3384ccc62fc2526b45665561a0e7e9404ac376c90e450b59";
s' = "8b2c09428e62c5109d17ed0cf8f9fd7c370d018a2a73f701effc9b17d04852c6"
};
{
msg'
=
"1906e48b7f889ee3ff7ab0807a7aa88f53f4018808870bfed6372a77330c737647961324c2b4d46f6ee8b01190474951a701b048ae86579ff8e3fc889fecf926b17f98958ac7534e6e781ca2db2baa380dec766cfb2a3eca2a9d5818967d64dfab84f768d24ec122eebacaab0a4dc3a75f37331bb1c43dd8966cc09ec4945bbd";
d = "52fe57da3427b1a75cb816f61c4e8e0e0551b94c01382b1a80837940ed579e61";
qx' = "2177e20a2092a46667debdcc21e7e45d6da72f124adecbc5ada6a7bcc7b401d5";
qy' = "550e468f2626070a080afeeb98edd75a721eb773c8e62149f3e903cf9c4d7b61";
k = "0464fe9674b01ff5bd8be21af3399fad66f90ad30f4e8ee6e2eb9bcccfd5185c";
r' = "f8250f073f34034c1cde58f69a85e2f5a030703ebdd4dbfb98d3b3690db7d114";
s' = "a9e83e05f1d6e0fef782f186bedf43684c825ac480174d48b0e4d31505e27498"
};
{
msg'
=
"7b59fef13daf01afec35dea3276541be681c4916767f34d4e874464d20979863ee77ad0fd1635bcdf93e9f62ed69ae52ec90aab5bbf87f8951213747ccec9f38c775c1df1e9d7f735c2ce39b42edb3b0c5086247556cfea539995c5d9689765288ec600848ecf085c01ca738bbef11f5d12d4457db988b4add90be00781024ad";
d = "003d91611445919f59bfe3ca71fe0bfdeb0e39a7195e83ac03a37c7eceef0df2";
qx' = "7b9c592f61aae0555855d0b9ebb6fd00fb6746e8842e2523565c858630b9ba00";
qy' = "d35b2e168b1875bbc563bea5e8d63c4e38957c774a65e762959a349eaf263ba0";
k = "ef9df291ea27a4b45708f7608723c27d7d56b7df0599a54bc2c2fabbff373b40";
r' = "66d057fd39958b0e4932bacd70a1769bbadcb62e4470937b45497a3d4500fabb";
s' = "6c853b889e18b5a49ee54b54dd1aaedfdd642e30eba171c5cab677f0df9e7318"
};
{
msg'
=
"041a6767a935dc3d8985eb4e608b0cbfebe7f93789d4200bcfe595277ac2b0f402889b580b72def5da778a680fd380c955421f626d52dd9a83ea180187b850e1b72a4ec6dd63235e598fd15a9b19f8ce9aec1d23f0bd6ea4d92360d50f951152bc9a01354732ba0cf90aaed33c307c1de8fa3d14f9489151b8377b57c7215f0b";
d = "48f13d393899cd835c4193670ec62f28e4c4903e0bbe5817bf0996831a720bb7";
qx' = "82a1a96f4648393c5e42633ecdeb1d8245c78c5ea236b5bab460dedcc8924bc0";
qy' = "e8cbf03c34b5154f876de19f3bb6fd43cd2eabf6e7c95467bcfa8c8fc42d76fd";
k = "efed736e627899fea944007eea39a4a63c0c2e26491cd12adb546be3e5c68f7d";
r' = "cf7fc24bdaa09ac0cca8497e13298b961380668613c7493954048c06385a7044";
s' = "f38b1c8306cf82ab76ee3a772b14416b49993fe11f986e9b0f0593c52ec91525"
};
{
msg'
=
"7905a9036e022c78b2c9efd40b77b0a194fbc1d45462779b0b76ad30dc52c564e48a493d8249a061e62f26f453ba566538a4d43c64fb9fdbd1f36409316433c6f074e1b47b544a847de25fc67d81ac801ed9f7371a43da39001c90766f943e629d74d0436ba1240c3d7fab990d586a6d6ef1771786722df56448815f2feda48f";
d = "95c99cf9ec26480275f23de419e41bb779590f0eab5cf9095d37dd70cb75e870";
qx' = "42c292b0fbcc9f457ae361d940a9d45ad9427431a105a6e5cd90a345fe3507f7";
qy' = "313b08fd2fa351908b3178051ee782cc62b9954ad95d4119aa564900f8ade70c";
k = "4c08dd0f8b72ae9c674e1e448d4e2afe3a1ee69927fa23bbff3716f0b99553b7";
r' = "f2bc35eb1b8488b9e8d4a1dbb200e1abcb855458e1557dc1bf988278a174eb3b";
s' = "ed9a2ec043a1d578e8eba6f57217976310e8674385ad2da08d6146c629de1cd9"
};
{
msg'
=
"cf25e4642d4f39d15afb7aec79469d82fc9aedb8f89964e79b749a852d931d37436502804e39555f5a3c75dd958fd5291ada647c1a5e38fe7b1048f16f2b711fdd5d39acc0812ca65bd50d7f8119f2fd195ab16633503a78ee9102c1f9c4c22568e0b54bd4fa3f5ff7b49160bf23e7e2231b1ebebbdaf0e4a7d4484158a87e07";
d = "e15e835d0e2217bc7c6f05a498f20af1cd56f2f165c23d225eb3360aa2c5cbcf";
qx' = "89dd22052ec3ab4840206a62f2270c21e7836d1a9109a3407dd0974c7802b9ae";
qy' = "e91609ba35c7008b080c77a9068d97a14ca77b97299e74945217672b2fd5faf0";
k = "c9f621441c235fc47ec34eef4c08625df1ec74918e1f86075b753f2589f4c60b";
r' = "a70d1a2d555d599bfb8c9b1f0d43725341151d17a8d0845fa56f3563703528a7";
s' = "4e05c45adf41783e394a5312f86e66871c4be4896948c85966879d5c66d54b37"
};
{
msg'
=
"7562c445b35883cc937be6349b4cefc3556a80255d70f09e28c3f393daac19442a7eecedcdfbe8f7628e30cd8939537ec56d5c9645d43340eb4e78fc5dd4322de8a07966b262770d7ff13a071ff3dce560718e60ed3086b7e0003a6abafe91af90af86733ce8689440bf73d2aa0acfe9776036e877599acbabfcb03bb3b50faa";
d = "808c08c0d77423a6feaaffc8f98a2948f17726e67c15eeae4e672edbe388f98c";
qx' = "b0c0ad5e1f6001d8e9018ec611b2e3b91923e69fa6c98690ab644d650f640c42";
qy' = "610539c0b9ed21ac0a2f27527c1a61d9b47cbf033187b1a6ada006eb5b2662ed";
k = "1f6d4a905c761a53d54c362976717d0d7fc94d222bb5489e4830080a1a67535d";
r' = "83404dcf8320baf206381800071e6a75160342d19743b4f176960d669dd03d07";
s' = "3f75dcf102008b2989f81683ae45e9f1d4b67a6ef6fd5c8af44828af80e1cfb5"
};
{
msg'
=
"051c2db8e71e44653ea1cb0afc9e0abdf12658e9e761bfb767c20c7ab4adfcb18ed9b5c372a3ac11d8a43c55f7f99b33355437891686d42362abd71db8b6d84dd694d6982f0612178a937aa934b9ac3c0794c39027bdd767841c4370666c80dbc0f8132ca27474f553d266deefd7c9dbad6d734f9006bb557567701bb7e6a7c9";
d = "f7c6315f0081acd8f09c7a2c3ec1b7ece20180b0a6365a27dcd8f71b729558f9";
qx' = "250f7112d381c1751860045d9bcaf20dbeb25a001431f96ac6f19109362ffebb";
qy' = "49fba9efe73546135a5a31ab3753e247034741ce839d3d94bd73936c4a17e4aa";
k = "68c299be2c0c6d52d208d5d1a9e0ffa2af19b4833271404e5876e0aa93987866";
r' = "7b195e92d2ba95911cda7570607e112d02a1c847ddaa33924734b51f5d81adab";
s' = "10d9f206755cef70ab5143ac43f3f8d38aea2644f31d52eaf3b472ee816e11e5"
};
{
msg'
=
"4dcb7b62ba31b866fce7c1feedf0be1f67bf611dbc2e2e86f004422f67b3bc1839c6958eb1dc3ead137c3d7f88aa97244577a775c8021b1642a8647bba82871e3c15d0749ed343ea6cad38f123835d8ef66b0719273105e924e8685b65fd5dc430efbc35b05a6097f17ebc5943cdcd9abcba752b7f8f37027409bd6e11cd158f";
d = "f547735a9409386dbff719ce2dae03c50cb437d6b30cc7fa3ea20d9aec17e5a5";
qx' = "4ca87c5845fb04c2f76ae3273073b0523e356a445e4e95737260eba9e2d021db";
qy' = "0f86475d07f82655320fdf2cd8db23b21905b1b1f2f9c48e2df87e24119c4880";
k = "91bd7d97f7ed3253cedefc144771bb8acbbda6eb24f9d752bbe1dd018e1384c7";
r' = "008c1755d3df81e64e25270dbaa9396641556df7ffc7ac9add6739c382705397";
s' = "77df443c729b039aded5b516b1077fecdd9986402d2c4b01734ba91e055e87fc"
};
{
msg'
=
"efe55737771070d5ac79236b04e3fbaf4f2e9bed187d1930680fcf1aba769674bf426310f21245006f528779347d28b8aeacd2b1d5e3456dcbf188b2be8c07f19219e4067c1e7c9714784285d8bac79a76b56f2e2676ea93994f11eb573af1d03fc8ed1118eafc7f07a82f3263c33eb85e497e18f435d4076a774f42d276c323";
d = "26a1aa4b927a516b661986895aff58f40b78cc5d0c767eda7eaa3dbb835b5628";
qx' = "28afa3b0f81a0e95ad302f487a9b679fcdef8d3f40236ec4d4dbf4bb0cbba8b2";
qy' = "bb4ac1be8405cbae8a553fbc28e29e2e689fabe7def26d653a1dafc023f3cecf";
k = "f98e1933c7fad4acbe94d95c1b013e1d6931fa8f67e6dbb677b564ef7c3e56ce";
r' = "15a9a5412d6a03edd71b84c121ce9a94cdd166e40da9ce4d79f1afff6a395a53";
s' = "86bbc2b6c63bad706ec0b093578e3f064736ec69c0dba59b9e3e7f73762a4dc3"
};
{
msg'
=
"ea95859cc13cccb37198d919803be89c2ee10befdcaf5d5afa09dcc529d333ae1e4ffd3bd8ba8642203badd7a80a3f77eeee9402eed365d53f05c1a995c536f8236ba6b6ff8897393506660cc8ea82b2163aa6a1855251c87d935e23857fe35b889427b449de7274d7754bdeace960b4303c5dd5f745a5cfd580293d6548c832";
d = "6a5ca39aae2d45aa331f18a8598a3f2db32781f7c92efd4f64ee3bbe0c4c4e49";
qx' = "c62cc4a39ace01006ad48cf49a3e71466955bbeeca5d318d672695df926b3aa4";
qy' = "c85ccf517bf2ebd9ad6a9e99254def0d74d1d2fd611e328b4a3988d4f045fe6f";
k = "dac00c462bc85bf39c31b5e01df33e2ec1569e6efcb334bf18f0951992ac6160";
r' = "6e7ff8ec7a5c48e0877224a9fa8481283de45fcbee23b4c252b0c622442c26ad";
s' = "3dfac320b9c873318117da6bd856000a392b815659e5aa2a6a1852ccb2501df3"
}
] | {
"checked_file": "Spec.ECDSA.Test.Vectors.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.ECDSA.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.ECDSA.Test.Vectors.vec_SigGen",
"Spec.ECDSA.Test.Vectors.Mkvec_SigGen",
"Prims.Nil"
] | [] | module Spec.ECDSA.Test.Vectors
open Lib.Meta
#set-options "--fuel 0 --ifuel 0"
///
/// ECDSA test vectors from NIST CAVP
/// https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures#ecdsa2vs
///
type vec_SigVer = {
msg: hex_string;
qx: hex_string;
qy: hex_string;
r: hex_string;
s: hex_string;
result: bool;
}
type vec_SigGen = {
msg': hex_string;
d: hex_string;
qx': hex_string;
qy': hex_string;
k: hex_string;
r': hex_string;
s': hex_string;
}
let sigver_vectors_sha2_256 : list vec_SigVer = [
{ msg = "e4796db5f785f207aa30d311693b3702821dff1168fd2e04c0836825aefd850d9aa60326d88cde1a23c7745351392ca2288d632c264f197d05cd424a30336c19fd09bb229654f0222fcb881a4b35c290a093ac159ce13409111ff0358411133c24f5b8e2090d6db6558afc36f06ca1f6ef779785adba68db27a409859fc4c4a0";
qx = "87f8f2b218f49845f6f10eec3877136269f5c1a54736dbdf69f89940cad41555";
qy = "e15f369036f49842fac7a86c8a2b0557609776814448b8f5e84aa9f4395205e9";
r = "d19ff48b324915576416097d2544f7cbdf8768b1454ad20e0baac50e211f23b0";
s = "a3e81e59311cdfff2d4784949f7a2cb50ba6c3a91fa54710568e61aca3e847c6";
result = false;
};
{ msg = "069a6e6b93dfee6df6ef6997cd80dd2182c36653cef10c655d524585655462d683877f95ecc6d6c81623d8fac4e900ed0019964094e7de91f1481989ae1873004565789cbf5dc56c62aedc63f62f3b894c9c6f7788c8ecaadc9bd0e81ad91b2b3569ea12260e93924fdddd3972af5273198f5efda0746219475017557616170e";
qx = "5cf02a00d205bdfee2016f7421807fc38ae69e6b7ccd064ee689fc1a94a9f7d2";
qy = "ec530ce3cc5c9d1af463f264d685afe2b4db4b5828d7e61b748930f3ce622a85";
r = "dc23d130c6117fb5751201455e99f36f59aba1a6a21cf2d0e7481a97451d6693";
s = "d6ce7708c18dbf35d4f8aa7240922dc6823f2e7058cbc1484fcad1599db5018c";
result = false;
};
{ msg = "df04a346cf4d0e331a6db78cca2d456d31b0a000aa51441defdb97bbeb20b94d8d746429a393ba88840d661615e07def615a342abedfa4ce912e562af714959896858af817317a840dcff85a057bb91a3c2bf90105500362754a6dd321cdd86128cfc5f04667b57aa78c112411e42da304f1012d48cd6a7052d7de44ebcc01de";
qx = "2ddfd145767883ffbb0ac003ab4a44346d08fa2570b3120dcce94562422244cb";
qy = "5f70c7d11ac2b7a435ccfbbae02c3df1ea6b532cc0e9db74f93fffca7c6f9a64";
r = "9913111cff6f20c5bf453a99cd2c2019a4e749a49724a08774d14e4c113edda8";
s = "9467cd4cd21ecb56b0cab0a9a453b43386845459127a952421f5c6382866c5cc";
result = false;
};
{ msg = "e1130af6a38ccb412a9c8d13e15dbfc9e69a16385af3c3f1e5da954fd5e7c45fd75e2b8c36699228e92840c0562fbf3772f07e17f1add56588dd45f7450e1217ad239922dd9c32695dc71ff2424ca0dec1321aa47064a044b7fe3c2b97d03ce470a592304c5ef21eed9f93da56bb232d1eeb0035f9bf0dfafdcc4606272b20a3";
qx = "e424dc61d4bb3cb7ef4344a7f8957a0c5134e16f7a67c074f82e6e12f49abf3c";
qy = "970eed7aa2bc48651545949de1dddaf0127e5965ac85d1243d6f60e7dfaee927";
r = "bf96b99aa49c705c910be33142017c642ff540c76349b9dab72f981fd9347f4f";
s = "17c55095819089c2e03b9cd415abdf12444e323075d98f31920b9e0f57ec871c";
result = true;
};
{ msg = "73c5f6a67456ae48209b5f85d1e7de7758bf235300c6ae2bdceb1dcb27a7730fb68c950b7fcada0ecc4661d3578230f225a875e69aaa17f1e71c6be5c831f22663bac63d0c7a9635edb0043ff8c6f26470f02a7bc56556f1437f06dfa27b487a6c4290d8bad38d4879b334e341ba092dde4e4ae694a9c09302e2dbf443581c08";
qx = "e0fc6a6f50e1c57475673ee54e3a57f9a49f3328e743bf52f335e3eeaa3d2864";
qy = "7f59d689c91e463607d9194d99faf316e25432870816dde63f5d4b373f12f22a";
r = "1d75830cd36f4c9aa181b2c4221e87f176b7f05b7c87824e82e396c88315c407";
s = "cb2acb01dac96efc53a32d4a0d85d0c2e48955214783ecf50a4f0414a319c05a";
result = true;
};
{ msg = "666036d9b4a2426ed6585a4e0fd931a8761451d29ab04bd7dc6d0c5b9e38e6c2b263ff6cb837bd04399de3d757c6c7005f6d7a987063cf6d7e8cb38a4bf0d74a282572bd01d0f41e3fd066e3021575f0fa04f27b700d5b7ddddf50965993c3f9c7118ed78888da7cb221849b3260592b8e632d7c51e935a0ceae15207bedd548";
qx = "a849bef575cac3c6920fbce675c3b787136209f855de19ffe2e8d29b31a5ad86";
qy = "bf5fe4f7858f9b805bd8dcc05ad5e7fb889de2f822f3d8b41694e6c55c16b471";
r = "25acc3aa9d9e84c7abf08f73fa4195acc506491d6fc37cb9074528a7db87b9d6";
s = "9b21d5b5259ed3f2ef07dfec6cc90d3a37855d1ce122a85ba6a333f307d31537";
result = false;
};
{ msg = "7e80436bce57339ce8da1b5660149a20240b146d108deef3ec5da4ae256f8f894edcbbc57b34ce37089c0daa17f0c46cd82b5a1599314fd79d2fd2f446bd5a25b8e32fcf05b76d644573a6df4ad1dfea707b479d97237a346f1ec632ea5660efb57e8717a8628d7f82af50a4e84b11f21bdff6839196a880ae20b2a0918d58cd";
qx = "3dfb6f40f2471b29b77fdccba72d37c21bba019efa40c1c8f91ec405d7dcc5df";
qy = "f22f953f1e395a52ead7f3ae3fc47451b438117b1e04d613bc8555b7d6e6d1bb";
r = "548886278e5ec26bed811dbb72db1e154b6f17be70deb1b210107decb1ec2a5a";
s = "e93bfebd2f14f3d827ca32b464be6e69187f5edbd52def4f96599c37d58eee75";
result = false;
};
{ msg = "1669bfb657fdc62c3ddd63269787fc1c969f1850fb04c933dda063ef74a56ce13e3a649700820f0061efabf849a85d474326c8a541d99830eea8131eaea584f22d88c353965dabcdc4bf6b55949fd529507dfb803ab6b480cd73ca0ba00ca19c438849e2cea262a1c57d8f81cd257fb58e19dec7904da97d8386e87b84948169";
qx = "69b7667056e1e11d6caf6e45643f8b21e7a4bebda463c7fdbc13bc98efbd0214";
qy = "d3f9b12eb46c7c6fda0da3fc85bc1fd831557f9abc902a3be3cb3e8be7d1aa2f";
r = "288f7a1cd391842cce21f00e6f15471c04dc182fe4b14d92dc18910879799790";
s = "247b3c4e89a3bcadfea73c7bfd361def43715fa382b8c3edf4ae15d6e55e9979";
result = false;
};
{ msg = "3fe60dd9ad6caccf5a6f583b3ae65953563446c4510b70da115ffaa0ba04c076115c7043ab8733403cd69c7d14c212c655c07b43a7c71b9a4cffe22c2684788ec6870dc2013f269172c822256f9e7cc674791bf2d8486c0f5684283e1649576efc982ede17c7b74b214754d70402fb4bb45ad086cf2cf76b3d63f7fce39ac970";
qx = "bf02cbcf6d8cc26e91766d8af0b164fc5968535e84c158eb3bc4e2d79c3cc682";
qy = "069ba6cb06b49d60812066afa16ecf7b51352f2c03bd93ec220822b1f3dfba03";
r = "f5acb06c59c2b4927fb852faa07faf4b1852bbb5d06840935e849c4d293d1bad";
s = "049dab79c89cc02f1484c437f523e080a75f134917fda752f2d5ca397addfe5d";
result = false;
};
{ msg = "983a71b9994d95e876d84d28946a041f8f0a3f544cfcc055496580f1dfd4e312a2ad418fe69dbc61db230cc0c0ed97e360abab7d6ff4b81ee970a7e97466acfd9644f828ffec538abc383d0e92326d1c88c55e1f46a668a039beaa1be631a89129938c00a81a3ae46d4aecbf9707f764dbaccea3ef7665e4c4307fa0b0a3075c";
qx = "224a4d65b958f6d6afb2904863efd2a734b31798884801fcab5a590f4d6da9de";
qy = "178d51fddada62806f097aa615d33b8f2404e6b1479f5fd4859d595734d6d2b9";
r = "87b93ee2fecfda54deb8dff8e426f3c72c8864991f8ec2b3205bb3b416de93d2";
s = "4044a24df85be0cc76f21a4430b75b8e77b932a87f51e4eccbc45c263ebf8f66";
result = false;
};
{ msg = "4a8c071ac4fd0d52faa407b0fe5dab759f7394a5832127f2a3498f34aac287339e043b4ffa79528faf199dc917f7b066ad65505dab0e11e6948515052ce20cfdb892ffb8aa9bf3f1aa5be30a5bbe85823bddf70b39fd7ebd4a93a2f75472c1d4f606247a9821f1a8c45a6cb80545de2e0c6c0174e2392088c754e9c8443eb5af";
qx = "43691c7795a57ead8c5c68536fe934538d46f12889680a9cb6d055a066228369";
qy = "f8790110b3c3b281aa1eae037d4f1234aff587d903d93ba3af225c27ddc9ccac";
r = "8acd62e8c262fa50dd9840480969f4ef70f218ebf8ef9584f199031132c6b1ce";
s = "cfca7ed3d4347fb2a29e526b43c348ae1ce6c60d44f3191b6d8ea3a2d9c92154";
result = false;
};
{ msg = "0a3a12c3084c865daf1d302c78215d39bfe0b8bf28272b3c0b74beb4b7409db0718239de700785581514321c6440a4bbaea4c76fa47401e151e68cb6c29017f0bce4631290af5ea5e2bf3ed742ae110b04ade83a5dbd7358f29a85938e23d87ac8233072b79c94670ff0959f9c7f4517862ff829452096c78f5f2e9a7e4e9216";
qx = "9157dbfcf8cf385f5bb1568ad5c6e2a8652ba6dfc63bc1753edf5268cb7eb596";
qy = "972570f4313d47fc96f7c02d5594d77d46f91e949808825b3d31f029e8296405";
r = "dfaea6f297fa320b707866125c2a7d5d515b51a503bee817de9faa343cc48eeb";
s = "8f780ad713f9c3e5a4f7fa4c519833dfefc6a7432389b1e4af463961f09764f2";
result = false;
};
{ msg = "785d07a3c54f63dca11f5d1a5f496ee2c2f9288e55007e666c78b007d95cc28581dce51f490b30fa73dc9e2d45d075d7e3a95fb8a9e1465ad191904124160b7c60fa720ef4ef1c5d2998f40570ae2a870ef3e894c2bc617d8a1dc85c3c55774928c38789b4e661349d3f84d2441a3b856a76949b9f1f80bc161648a1cad5588e";
qx = "072b10c081a4c1713a294f248aef850e297991aca47fa96a7470abe3b8acfdda";
qy = "9581145cca04a0fb94cedce752c8f0370861916d2a94e7c647c5373ce6a4c8f5";
r = "09f5483eccec80f9d104815a1be9cc1a8e5b12b6eb482a65c6907b7480cf4f19";
s = "a4f90e560c5e4eb8696cb276e5165b6a9d486345dedfb094a76e8442d026378d";
result = false;
};
{ msg = "76f987ec5448dd72219bd30bf6b66b0775c80b394851a43ff1f537f140a6e7229ef8cd72ad58b1d2d20298539d6347dd5598812bc65323aceaf05228f738b5ad3e8d9fe4100fd767c2f098c77cb99c2992843ba3eed91d32444f3b6db6cd212dd4e5609548f4bb62812a920f6e2bf1581be1ebeebdd06ec4e971862cc42055ca";
qx = "09308ea5bfad6e5adf408634b3d5ce9240d35442f7fe116452aaec0d25be8c24";
qy = "f40c93e023ef494b1c3079b2d10ef67f3170740495ce2cc57f8ee4b0618b8ee5";
r = "5cc8aa7c35743ec0c23dde88dabd5e4fcd0192d2116f6926fef788cddb754e73";
s = "9c9c045ebaa1b828c32f82ace0d18daebf5e156eb7cbfdc1eff4399a8a900ae7";
result = false;
};
{ msg = "60cd64b2cd2be6c33859b94875120361a24085f3765cb8b2bf11e026fa9d8855dbe435acf7882e84f3c7857f96e2baab4d9afe4588e4a82e17a78827bfdb5ddbd1c211fbc2e6d884cddd7cb9d90d5bf4a7311b83f352508033812c776a0e00c003c7e0d628e50736c7512df0acfa9f2320bd102229f46495ae6d0857cc452a84";
qx = "2d98ea01f754d34bbc3003df5050200abf445ec728556d7ed7d5c54c55552b6d";
qy = "9b52672742d637a32add056dfd6d8792f2a33c2e69dafabea09b960bc61e230a";
r = "06108e525f845d0155bf60193222b3219c98e3d49424c2fb2a0987f825c17959";
s = "62b5cdd591e5b507e560167ba8f6f7cda74673eb315680cb89ccbc4eec477dce";
result = true;
};
]
let sigver_vectors_sha2_384 : list vec_SigVer = [
{ msg = "fe9838f007bdc6afcd626974fcc6833f06b6fd970427b962d75c2aeadbef386bec8d018106197fe2547d2af02e7a7949965d5fbc4c5db909a95b9858426a33c080b0b25dae8b56c5cbc6c4eec3dbd81635c79457eaef4fab39e662a1d05b2481eda8c1074ae2d1704c8a3f769686a1f965ef3c87602efc288c7f9ff8cd5e22a4";
qx = "40ded13dbbe72c629c38f07f7f95cf75a50e2a524897604c84fafde5e4cafb9f";
qy = "a17202e92d7d6a37c438779349fd79567d75a40ef22b7d09ca21ccf4aec9a66c";
r = "be34730c31730b4e412e6c52c23edbd36583ace2102b39afa11d24b6848cb77f";
s = "03655202d5fd8c9e3ae971b6f080640c406112fd95e7015874e9b6ee77752b10";
result = false;
};
{ msg = "b69043b9b331da392b5dd689142dfc72324265da08f14abcedf03ad8263e6bdccbc75098a2700bbba1979de84c8f12891aa0d000f8a1abad7dde4981533f21da59cc80d9cf94517f3b61d1a7d9eecb2fcf052e1fc9e7188c031b86305e4a436a37948071f046e306befb8511dc03a53dc8769a90a86e9b4fdbf05dcdfa35ab73";
qx = "1f80e19ffeb51dd74f1c397ac3dfd3415ab16ebd0847ed119e6c3b15a1a884b8";
qy = "9b395787371dbfb55d1347d7bed1c261d2908121fb78de1d1bf2d00666a62aed";
r = "249ca2c3eb6e04ac57334c2f75dc5e658bbb485bf187100774f5099dd13ef707";
s = "97363a05202b602d13166346694e38135bbce025be94950e9233f4c8013bf5bf";
result = false;
};
{ msg = "d2fcaaede8b879c064b0aa46e68efc278a469b80a7f7e1939ec2ebc96c76206f23395967279c181fea157ebb79dfadc68e31345f07f13305c80de0d85e4330d3a45f957c5c2526b945838ce5a9c2844b6b2a665c0f70b748b1213a8cf20ba5dbdf8cab231f433da522104a5cd027d3e36bb373c4ed404d9af0cbec6f85ec2193";
qx = "ce4dcfa7384c83443ace0fb82c4ac1adfa100a9b2c7bf09f093f8b6d084e50c2";
qy = "d98ae7b91abee648d0bfde192703741ac21daad7262af418b50e406d825eb0d6";
r = "597e1e04d93a6b444ccc447a48651f17657ff43fb65fe94461d2bf816b01af40";
s = "359fe3817963548e676d6da34c2d0866aa42499237b682002889eaf8893814d2";
result = true;
};
{ msg = "06cd86481865181cef7acdc3202824970ec2d97662b519c4b588dc9e51617c068282b1a11a15bf7efc4858a2f37a3d74b05fb5790eb68338c8009b4da9b4270514d387a2e016a99ee109841e884a7909504ef31a5454e214663f830f23a5a76f91402fca5f5d61699fa874597bdbfb1ecff8f07ddbd07ef61e97d0d5262ef314";
qx = "1b677f535ac69d1acd4592c0d12fac13c9131e5a6f8ab4f9d0afdcb3a3f327e0";
qy = "5dca2c73ec89e58ef8267cba2bb5eb0f551f412f9dc087c1a6944f0ce475277a";
r = "df0b0cd76d2555d4c38b3d70bfdf964884d0beeb9f74385f0893e87d20c9642d";
s = "128299aabf1f5496112be1fe04365f5f8215b08a040abdfeca4626f4d15c005b";
result = false;
};
{ msg = "59ad297397f3503604a4a2d098a4f00a368ad95c6101b3d38f9d49d908776c5a6c8654b006adb7939ffb6c30afa325b54185d82c3cc0d836850dce54d3408b257c3a961d11fafe2b74ba8bddfc1102fa656d1028baf94c38340c26a11e992aab71ce3732271b767358671b25225926f3a4b9ec5f82c059f0c7d1446d5d9e4251";
qx = "7ffc2853f3e17887dda13b0eb43f183ce50a5ac0f8bba75fb1921172484f9b94";
qy = "4cc523d14192f80bd5b27d30b3b41e064da87bfbae15572dd382b9a176c123a2";
r = "3156176d52eb26f9391229de4251993a41b8172f78970bb70e32a245be4bb653";
s = "62827a29e12d2f29b00fb2d02dd5f2d5412e17a4455f4431a5c996881fdfc0ee";
result = false;
};
{ msg = "8215daca87e689a20392646a6511bb7b5a82d2d995ca9de89bd9d9c0b11464b7cb1e4e9a31e3e01ad8c2cd613d5a2cb44a2a8df6899fce4c282dea1e41af0df6c36be1f320036567f8d0d32aaa79c95fe53b16668f7e1a9e5d7d039ea260fd03711b7d1c177355fc52244d49ca5b238556a5541349014683cb7da326f443b752";
qx = "5569f76dc94243cde819fb6fc85144ec67e2b5d49539f62e24d406d1b68f0058";
qy = "1208c38dbe25870deab53c486f793a1e250c9d1b8e7c147ea68b71196c440730";
r = "706f2ba4025e7c06b66d6369a3f93b2fec46c51eceff42a158f7431919506cfb";
s = "b4e75ac34a96393237fc4337789e37168d79382705b248051c9c72bcbac5f516";
result = false;
};
{ msg = "a996b1fb800f692517a2eb80e837233193dd3e82484d3f49bd19ee0db8f7b440876b07e384c90aa8b9f7b6603ca0b5a4e06c1da0edb974a2fb9b6e7c720ddf3e5c0e314c2d189402903c08c0836776c361a284db887ebcc33e615de9720b01dadade585eef687b3346468bdafb490e56d657a9e7d44d92014069005a36c1cf63";
qx = "e4b470c65b2c04db060d7105ec6911589863d3c7f7ce48726ba3f369ea3467e8";
qy = "44c38d3ae098de05f5915a5868c17fee296a6e150beb1f000df5f3bec8fc4532";
r = "c9c347ee5717e4c759ddaf09e86f4e1db2c8658593177cfda4e6514b5e3ecb87";
s = "baae01e9e44a7b04d69c8eaaed77c9e3a36ce8962f95cc50a0db146b4e49eb40";
result = false;
};
{ msg = "1a6e49a377a08e992353d6acc557b687b1b69a41d83d43a75fadb97b8c928cfebadebaaf99ea7fb13148807f56ea17384a7912e578e62b1b009fefb2aafca5ac85539433619b286f10643a56f8dfa47ba4d01c02510deaec18029ea6b9682022b139dcb70814164c4c90ec717ad9d925485398531cdd5992a2524498b337f97d";
qx = "96050c5fa2ddd1b2e5451d89ee74a0b7b54347364ddc0231715a6ef1146fe8dc";
qy = "e0888a9e78aeea87f6e1e9002b2651169f36c4ee53013cfc8c9912b7fd504858";
r = "2353d6cd3c21b8ea7dbc1cd940519812dbe365a3b15cd6aebba9d11cf269867a";
s = "85f560273cd9e82e6801e4cb1c8cd29cdac34a020da211d77453756b604b8fa7";
result = true;
};
{ msg = "3e14f737c913931bc82764ebc440b12e3ce1ffe0f858c7b8f1cbd30fbbb1644fa59be1d2cca5f64a6d7dc5ed5c4420f39227516ae8eb3019ef86274d0e4d06cde7bf5e5c413243dfc421d9f141762109810e6b6a451eeb4bd8d4be1ff111426d7e44d0a916b4fe3db3594d8dd01ae90feecf8f1e230b574180cd0b8d43a3d33b";
qx = "0c07bb79f44012299fbfd5a0f31397aaf7d757f8a38437407c1b09271c6551a0";
qy = "84fe7846d5d403dc92c0091fbd39f3c5cbca3f94c10b5cae44e2e96562131b13";
r = "49e9425f82d0a8c503009cead24e12adc9d48a08594094ca4f6d13ad1e3c571d";
s = "1f1b70aaa30a8ff639aa0935944e9b88326a213ab8fce5194c1a9dec070eb433";
result = false;
};
{ msg = "4000106127a72746db77957cbc6bfd84ae3d1d63b8190087637e93689841331e2adc1930d6df4302935f4520bbee513505cdcfca99ebc6f83af7b23b0f2e7f7defba614022ceeae9c6886e8b13f7ea253a307ac301f3536720cbe3de82ba3e98310361b61801a8304ffc91ff774948e33176ddcddf1b76437b3f02c910578d46";
qx = "71db1de1a1f38f356c91feaff5cfe395d1a5b9d23cf6aa19f38ae0bcc90a486d";
qy = "ecdd6ffb174a50f1cc792985c2f9608c399c98b8a64a69d2b5b7cdd9241f67e2";
r = "b0443b33a6f249470d2f943675009d21b9ccbead1525ae57815df86bb20470bf";
s = "316dbee27d998e09128539c269e297ac8f34b9ef8249a0619168c3495c5c1198";
result = false;
};
{ msg = "b42e547d0e7ddd5e1069bb2d158a5b4d5d9c4310942a1bfd09490311a6e684bd3c29b0dcef86a9788b4b26fed7863f3d5e5439796b5b5ffe7aa2545d0f518ad020689ca21230f3a59e7f8cca465fe21df511e78d215fa805f5f0f88938e9d198515e6b9c819930755c6c6aea5114cd2904607243051c09dd7a147756cbc204a5";
qx = "8219b225aa15472262c648cac8de9aad4173d17a231ba24352a5a1c4eea70fad";
qy = "0fee2b08ad39fbf0db0016ef2896ca99adc07efc8c415f640f3720498be26037";
r = "134fb689101aaad3954de2819d9fbd12072fe2bc36f496bbf0d13fa72114ab96";
s = "e65c232bd915b59e087e7fd5ec90bf636cfa80526345c79a0adfd75003045d6f";
result = false;
};
{ msg = "aa563223a7d5201febdf13cab80a03dce6077c26e751bc98a941196a28848abc495e0324013c9a2094fb15dc65d100c3e8a136a52c1780b395f42588900b641b6d4361432e2173195a2f60189f3fcc85f4e9659cae52576f20d1852d43c2b400deea3144c8e870e1906d677425d8c85037c7a42a9d249b2da4b516e04476bd45";
qx = "c934195de33b60cf00461fc3c45dad068e9f5f7af5c7fa78591e95aeb04e2617";
qy = "b588dd5f9965fdaa523b475c2812c251bc6973e2df21d9beaace976abf5728cb";
r = "71f302440eb4ed2a939b69e33e905e6fdc545c743458d38f7e1a1d456e35f389";
s = "54eaa0eb9cd7503b19a9658f0a04955d9f0ab20ebc8a0877e33c89ee88ad068f";
result = false;
};
{ msg = "98e4babf890f52e5a04bd2a7d79bf0ae9a71967847347d87f29fb3997454c73c7979d15b5c4f4205ec3de7835d1885fb7abcf8dcde94baf08b1d691a0c74845317286540e8c9d378fefaa4762c302492f51023c0d7adbb1cc90b7b0335f11203664e71fea621bc2f59d2dbd0ee76d6597ec75510de59b6d25fa6750a71c59435";
qx = "9e1adcd48e2e3f0e4c213501808228e587c40558f52bb54ddbb6102d4048ea92";
qy = "34eff98704790938e7e0bdf87ae39807a6b77dfdc9ecdfe6dd0f241abae1aeb2";
r = "ce4f0d7480522c8dd1b02dd0eb382f22406642f038c1ede9411883d72b3e7ed0";
s = "8546e1ee3b77f9927cdaccbc2f1cf19d6b5576b0f738bb1b86a0c66b39ca56fb";
result = false;
};
{ msg = "bb6b03ad60d6ddbf0c4d17246206e61c886f916d252bb4608149da49cef9033484080e861f91bb2400baa0cd6c5d90c2f275e2fabc12d83847f7a1c3ff0eb40c8a3dd83d07d194ba3797d27238415a2f358d7292a1991af687bcb977486980f9138b3140321485638ac7bd22ecda00ffe5009b83b90397eff24ecf22c5495d67";
qx = "93edbecb0b019c2cc03060f54cb4904b920fdb34eb83badd752be9443036ae13";
qy = "b494e9295e080a9080fe7e73249b3a5904aa84e1c028121eecd3e2cf1a55f598";
r = "eec2986d47b71995892b0915d3d5becc4dcb2ab55206d772e0189541b2184ddf";
s = "8a6c1edeb6452627ad27c8319599c54ac44cdd831ea66f13f49d90affe6ad45b";
result = true;
};
{ msg = "33a5d489f671f396c776bc1acf193bc9a74306f4692dd8e05bcdfe28fdefbd5c09b831c204a1dec81d8e3541f324f7b474d692789013bb1eca066f82fbf3f1cf3ba64e9d8963e9ecc180b9251919e2e8a1ab05847a0d76ff67a47c00e170e38e5b319a56f59cc51038f90961ea27a9a7eb292a0a1aa2f4972568669246907a35";
qx = "3205bae876f9bd50b0713959e72457165e826cbbe3895d67320909daa48b0ebc";
qy = "d1592562273e5e0f57bbfb92cedd9af7f133255684ee050af9b6f02019bbcafa";
r = "0124f3f1c61ec458561a4eaa6c155bd29e59703d14556324924683db3a4cf43b";
s = "688a5c5fc0c7ba92210c50cce5b512a468a880e05acc21ca56571d89f45f603a";
result = false;
};
]
let sigver_vectors_sha2_512 : list vec_SigVer = [
{ msg = "273b063224ab48a1bf6c7efc93429d1f89de48fc4a4fa3ffe7a49ebba1a58ff5d208a9e4bff27b418252526243ba042d1605b6df3c2ec916ceef027853a41137f7bfb6fc63844de95f58e82b9ad2565f1367d2c69bd29100f6db21a8ab7ab58affd1661add0322bd915721378df9fa233ef0b7e0a0a85be31689e21891ec8977";
qx = "484e31e69ef70bb8527853c22c6b6b4cd2a51311dde66c7b63f097dbb6ab27bf";
qy = "e1ff8177f4061d4fbbacbbc70519f0fc8c8b6053d72af0fe4f048d615004f74e";
r = "91a303d8fe3ab4176070f6406267f6b79bfe5eb5f62ae6aeb374d90667858518";
s = "e152119cefa26826ea07ec40a428869132d70812c5578c5a260e48d6800e046a";
result = false;
};
{ msg = "d64ea1a768b0de29ab018ae93baa645d078c70a2f7aa4acd4ae7526538ebd5f697a11927cfd0ddc9187c095f14ad30544cb63ede9353af8b23c18ce22843881fe2d7bde748fc69085921677858d87d2dc3e244f6c7e2c2b2bd791f450dfdd4ff0ddd35ab2ada4f1b90ab16ef2bf63b3fbe88ce8a5d5bb85430740d3744849c13";
qx = "8b75fc0129c9a78f8395c63ae9694b05cd6950665cf5da7d66118de451422624";
qy = "b394171981d4896d6e1b4ef2336d9befe7d27e1eb87f1c14b8ddda622af379dc";
r = "17e298e67ad2af76f6892fdcead00a88256573868f79dc74431b55103058f0b0";
s = "881328cd91e43d30133f6e471e0b9b04353b17893fb7614fd7333d812a3df6b4";
result = false;
};
{ msg = "1db85445c9d8d1478a97dd9d6ffbf11ebcd2114d2ed4e8b6811171d947e7d4daedea35af6177debe2ef6d93f94ff9d770b45d458e91deb4eef59856425d7b00291aff9b6c9fa02375ec1a06f71f7548721790023301cf6ac7fee1d451228106ef4472681e652c8cd59b15d6d16f1e13440d888e265817cb4a654f7246e0980df";
qx = "76e51086e078b2b116fd1e9c6fa3d53f675ae40252fb9f0cc62817bd9ce8831d";
qy = "ca7e609a0b1d14b7c9249b53da0b2050450e2a25cb6c8f81c5311974a7efb576";
r = "23b653faaa7d4552388771931803ce939dd5ee62d3fa72b019be1b2272c85592";
s = "a03c6f5c54a10861d6b8922821708e9306fd6d5d10d566845a106539cbf4fadd";
result = false;
};
{ msg = "918d9f420e927b3e0a55d276b8b40d8a2c5df748727ff72a438c7e6593f542274050dce727980d3ef90c8aa5c13d53f1e8d631ebb650dee11b94902bbd7c92b8186af9039c56c43f3110697792c8cd1614166f06d09cdb58dab168cc3680a8473b1a623bf85dba855eace579d9410d2c4ca5ede6dc1e3db81e233c34ae922f49";
qx = "bc7c8e09bd093468f706740a4130c544374fdc924a535ef02e9d3be6c6d3bbfa";
qy = "af3f813ae6646f5b6dbfb0f261fd42537705c800bb1647386343428a9f2e10fc";
r = "6bd7ce95af25abfbf14aef4b17392f1da877ab562eca38d785fe39682e9c9324";
s = "6688bea20c87bab34d420642da9bdd4c69456bdec50835887367bb4fb7cd8650";
result = false;
};
{ msg = "6e2932153301a4eef680e6428929adae988c108d668a31ff55d0489947d75ff81a46bf89e84d6401f023be6e87688fbcd784d785ca846735524acb52d00452c84040a479e7cc330936441d93bbe722a9432a6e1db112b5c9403b10272cb1347fd619d463f7a9d223ad76fde06d8a6883500fb843235abff98e241bdfb5538c3e";
qx = "9cb0cf69303dafc761d4e4687b4ecf039e6d34ab964af80810d8d558a4a8d6f7";
qy = "2d51233a1788920a86ee08a1962c79efa317fb7879e297dad2146db995fa1c78";
r = "4b9f91e4285287261a1d1c923cf619cd52c175cfe7f1be60a5258c610348ba3d";
s = "28c45f901d71c41b298638ec0d6a85d7fcb0c33bbfec5a9c810846b639289a84";
result = true;
};
{ msg = "2f48ec387f181035b350772e27f478ae6ec7487923692fae217e0f8636acd062a6ac39f7435f27a0ebcfd8187a91ef00fb68d106b8da4a1dedc5a40a4fae709e92b00fcc218de76417d75185e59dff76ec1543fb429d87c2ca8134ff5ae9b45456cad93fc67223c68293231395287dc0b756355660721a1f5df83bf5bcb8456e";
qx = "e31096c2d512fbf84f81e9bdb16f33121702897605b43a3db546f8fb695b5f6f";
qy = "6fbec6a04a8c59d61c900a851d8bf8522187d3ec2637b10fa8f377689e086bba";
r = "1b244c21c08c0c0a10477fb7a21382d405b95c755088292859ca0e71bab68361";
s = "852f4cbfd346e90f404e1dd5c4b2c1debca3ea1abefe8400685d703aea6c5c7f";
result = false;
};
{ msg = "fd2e5de421ee46c9fe6290a33f95b394bd5b7762f23178f7f6834f1f056fa9a8831446403c098ff4dd764173f974be4c89d376119613a4a1890f6fc2ddff862bda292dd49f5410d9b1cfe1d97ef4582b6152494372fc083885f540c01f86d780e6f3e75a954af2190fdae9604e3f8ab32ab0292dc0d790bd2627e37b4b4885df";
qx = "633c2ee5630b62c9ce839efd4d485a6d35e8b9430d264ffe501d28dbace79123";
qy = "4b668a1a6d1a25b089f75c2bd8d8c6a9a14fe7b729f45a82565da2e866e2c490";
r = "bf2111c93ec055a7eda90c106fce494fd866045634fd2aa28d6e018f9106994e";
s = "86b0341208a0aa55edecfd272f49cb34408ce54b7febc1d0a1c2ce77ab6988f8";
result = false;
};
{ msg = "4bc2d9a898395b12701635f1048fbfd263ec115e4150532b034d59e625238f4ed32619744c612e35ac5a23bee8d5f5651641a492217d305e5051321c273647f14bc7c4afab518554e01c82d6fc1694c8bdbeb326bb607bcaf5436303bc09f64c02c6ec50de409a484f5237f7d34e2651ada7ec429ca3b99dd87c6015d2f4b342";
qx = "f78dce40d1cb8c4af2749bf22c6f8a9a470b1e41112796215dd017e57df1b38a";
qy = "61b29b0bc03dff7fa00613b4de1e2317cfbf2badd50dee3376c032a887c5b865";
r = "4a96169a5dea36a2594011537ee0dc19e8f9f74e82c07434079447155a830152";
s = "a204eaa4e97d7553a1521d9f6baadc0b6d6183ba0f385d8593d6ca83607c4d82";
result = false;
};
{ msg = "d3356a683417508a9b913643e6ceac1281ef583f428968f9d2b6540a189d7041c477da8d207d0529720f70dab6b0da8c2168837476c1c6b63b517ed3cad48ae331cf716ecf47a0f7d00b57073ac6a4749716d49d80c4d46261d38e2e34b4f43e0f20b280842f6e3ea34fefdddfb9fa2a040ffe915e8784cfdb29b3364a34ca62";
qx = "3fcc3b3e1b103fe435ac214c756bdaad309389e1c803e6d84bbbc27039fcf900";
qy = "7f09edd1ec87a6d36dc81c1528d52a62776e666c274415a9f441d6a8df6b9237";
r = "1cac13f277354456ae67ab09b09e07eb1af2a2bf45108da70f5c8c6a4cbcd538";
s = "5d83752e540525602ba7e6fee4d4263f3eda59e67df20aac79ca67e8899fed0d";
result = false;
};
{ msg = "d7f5da9f4cf9299b7f86c52b88364ce28fe9ada55dd551a1018790f9e1205e2405ac62429d65093f74ec35a16d9f195c993cd4eb8dc0aa0dabb70a503321d8a9649160d6b3d0a0854bb68c4c39693f592ef5dd478aa2432d0865d87d48b3aea9c7d7d114165c9200e4e8d7bd02a7895ec4418e6f2fed6b244bf66209039e98a9";
qx = "5ec702d43a67ada86efbfc136cf16d96078906954a3f1f9e440674cd907e4676";
qy = "05a62044fed8470dd4fca38d89d583ce36d50d28b66ab0b51922b21da92c56d9";
r = "75f3037298f1457dba55743999976a1c2636b2b8ab2ed3df4736a6d2934acc83";
s = "19d43ad168dda1bb8ac423f8f08876515234b3d841e57faef1b5ab27359b27ef";
result = false;
};
{ msg = "68f4b444e1cc2025e8ff55e8046ead735e6e317082edf7ce65e83573501cb92c408c1c1c6c4fcca6b96ad34224f17b20be471cc9f4f97f0a5b7bfae9558bdb2ecb6e452bb743603724273d9e8d2ca22afdda35c8a371b28153d772303e4a25dc4f28e9a6dc9635331450f5af290dfa3431c3c08b91d5c97284361c03ec78f1bc";
qx = "f63afe99e1b5fc652782f86b59926af22e6072be93390fe41f541204f9c935d1";
qy = "f6e19ce5935e336183c21becf66596b8f559d2d02ee282aa87a7d6f936f7260c";
r = "cef4831e4515c77ca062282614b54a11b7dc4057e6997685c2fbfa95b392bf72";
s = "f20dc01bf38e1344ba675a22239d9893b3a3e33d9a403329a3d21650e9125b75";
result = true;
};
{ msg = "e75be05be0aaf70719b488b89aaae9008707ca528994461db7130c4368575a024bf0981c305d61265e8b97599ec35c03badd1256b80d6bf70547ad6089b983e3bcc3481828f3259e43e655e177fc423fd7e066bd3ed68d81df84f773c0f9e5f8bf4469960b8b4d7b2a372fd0edd3521f6be670908f2d90a343f416358ea70e7e";
qx = "6d11b09d2767cf8d275faee746c203486259f66dd2bfa3a65c39371a66b23385";
qy = "4eb05c73e05261e979182833f20311e5366f72f4b949665ff294f959375534c6";
r = "15a697cdb614e11c0810e1e764cd501fcabc70874c957587bc4883d9438e177f";
s = "7bf6244f92bc768063cecb5336c8eaacd23db930b28703560f241c7d93950dfd";
result = false;
};
{ msg = "0dc4a3eab66bd2e703a8fff566c34d466f9823ae42bd2104f61a6b051c0b017833fcef4d609d137ad97c209c80eebe252857aa7fafc35f16000a2bd4b4be0fa83b6e229eddfd180101f1f40d0453148053d8306833df64d59599b90194b55541d7f22dd589da9f7be519cbbb9db416c71bfe40ec090b5b7a600eec29bfd47306";
qx = "f3899caba038efb534c4cea0bd276814ffd80194473c903b81af11c8c05cb6e6";
qy = "6ea6b17402fcf2e8e737d11ffc7c2ed3b2d0bc3b8f271a381f4294cff62682c3";
r = "57b99380452e1d37b133c49b9ba493dee8630940477ca3351a43d90b99871e6a";
s = "df599c3a37105af3ecc159b3b685ccb3e151b7d5cf2d97147974ae71f466b615";
result = false;
};
{ msg = "d55e5e124a7217879ca986f285e22ac51940b35959bbf5543104b5547356fd1a0ec37c0a23209004a2ec5bcaf3335bc45e4dc990eacd29b2d9b5cf349c7ba67711356299bceab6f048df761c65f2988803133d6723a2820fefb2654cc7c5f032f833ba78a34d2878c6b0ba654ebe26b110c935abb56024bd5d0f09b367724c07";
qx = "1fd6f4b98d0755291e7a230e9f81ecf909e6350aadb08e42a3262ff19200fbd2";
qy = "5578fef79bc477acfb8ed0dc10c4f5809c14dc5492405b3792a7940650b305d7";
r = "97a99e96e407b3ada2c2dcf9ceeeb984d9a4d0aa66ddf0a74ca23cabfb1566cc";
s = "0ecac315dc199cfea3c15348c130924a1f787019fe4cd3ae47ca8b111268754a";
result = false;
};
{ msg = "7753c03b4202cb38bc0190a9f931eb31858d705d92d650320ff449fc99167fb3770b764c8988f6b34ac5a3d507a10e0aff7f88293f6a22c7ed8a24248a52dc125e416e158833fc38af29199f8ca4931068d4ccaa87e299e95642068f68c208cb782df13908f950564743ed1692502bafafaff169dc8fe674fb5e4f3ffd578c35";
qx = "2dcbd8790cee552e9f18f2b3149a2252dcd58b99ca7dc9680b92c8c43aa33874";
qy = "5dbc8bb8813c8e019d80e19acdb0792f537980fecde93db621aaf1f6d0e6ee34";
r = "2bdbd8b0d759595662cc10b10236136ef6ce429641f68cf6480f472fcc77bc9f";
s = "7e7df0c8b86f7db06caf1610166f7b9c4c75447f991d5aaf4dea720c25985c8c";
result = true;
};
]
let siggen_vectors_sha2_256 : list vec_SigGen = [
{ msg' = "5905238877c77421f73e43ee3da6f2d9e2ccad5fc942dcec0cbd25482935faaf416983fe165b1a045ee2bcd2e6dca3bdf46c4310a7461f9a37960ca672d3feb5473e253605fb1ddfd28065b53cb5858a8ad28175bf9bd386a5e471ea7a65c17cc934a9d791e91491eb3754d03799790fe2d308d16146d5c9b0d0debd97d79ce8";
d = "519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464";
qx' = "1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83";
qy' = "ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9";
k = "94a1bbb14b906a61a280f245f9e93c7f3b4a6247824f5d33b9670787642a68de";
r' = "f3ac8061b514795b8843e3d6629527ed2afd6b1f6a555a7acabb5e6f79c8c2ac";
s' = "8bf77819ca05a6b2786c76262bf7371cef97b218e96f175a3ccdda2acc058903";
};
{ msg' = "c35e2f092553c55772926bdbe87c9796827d17024dbb9233a545366e2e5987dd344deb72df987144b8c6c43bc41b654b94cc856e16b96d7a821c8ec039b503e3d86728c494a967d83011a0e090b5d54cd47f4e366c0912bc808fbb2ea96efac88fb3ebec9342738e225f7c7c2b011ce375b56621a20642b4d36e060db4524af1";
d = "0f56db78ca460b055c500064824bed999a25aaf48ebb519ac201537b85479813";
qx' = "e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a";
qy' = "bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39";
k = "6d3e71882c3b83b156bb14e0ab184aa9fb728068d3ae9fac421187ae0b2f34c6";
r' = "976d3a4e9d23326dc0baa9fa560b7c4e53f42864f508483a6473b6a11079b2db";
s' = "1b766e9ceb71ba6c01dcd46e0af462cd4cfa652ae5017d4555b8eeefe36e1932";
};
{ msg' = "3c054e333a94259c36af09ab5b4ff9beb3492f8d5b4282d16801daccb29f70fe61a0b37ffef5c04cd1b70e85b1f549a1c4dc672985e50f43ea037efa9964f096b5f62f7ffdf8d6bfb2cc859558f5a393cb949dbd48f269343b5263dcdb9c556eca074f2e98e6d94c2c29a677afaf806edf79b15a3fcd46e7067b7669f83188ee";
d = "e283871239837e13b95f789e6e1af63bf61c918c992e62bca040d64cad1fc2ef";
qx' = "74ccd8a62fba0e667c50929a53f78c21b8ff0c3c737b0b40b1750b2302b0bde8";
qy' = "29074e21f3a0ef88b9efdf10d06aa4c295cc1671f758ca0e4cd108803d0f2614";
k = "ad5e887eb2b380b8d8280ad6e5ff8a60f4d26243e0124c2f31a297b5d0835de2";
r' = "35fb60f5ca0f3ca08542fb3cc641c8263a2cab7a90ee6a5e1583fac2bb6f6bd1";
s' = "ee59d81bc9db1055cc0ed97b159d8784af04e98511d0a9a407b99bb292572e96";
};
{ msg' = "0989122410d522af64ceb07da2c865219046b4c3d9d99b01278c07ff63eaf1039cb787ae9e2dd46436cc0415f280c562bebb83a23e639e476a02ec8cff7ea06cd12c86dcc3adefbf1a9e9a9b6646c7599ec631b0da9a60debeb9b3e19324977f3b4f36892c8a38671c8e1cc8e50fcd50f9e51deaf98272f9266fc702e4e57c30";
d = "a3d2d3b7596f6592ce98b4bfe10d41837f10027a90d7bb75349490018cf72d07";
qx' = "322f80371bf6e044bc49391d97c1714ab87f990b949bc178cb7c43b7c22d89e1";
qy' = "3c15d54a5cc6b9f09de8457e873eb3deb1fceb54b0b295da6050294fae7fd999";
k = "24fc90e1da13f17ef9fe84cc96b9471ed1aaac17e3a4bae33a115df4e5834f18";
r' = "d7c562370af617b581c84a2468cc8bd50bb1cbf322de41b7887ce07c0e5884ca";
s' = "b46d9f2d8c4bf83546ff178f1d78937c008d64e8ecc5cbb825cb21d94d670d89";
};
{ msg' = "dc66e39f9bbfd9865318531ffe9207f934fa615a5b285708a5e9c46b7775150e818d7f24d2a123df3672fff2094e3fd3df6fbe259e3989dd5edfcccbe7d45e26a775a5c4329a084f057c42c13f3248e3fd6f0c76678f890f513c32292dd306eaa84a59abe34b16cb5e38d0e885525d10336ca443e1682aa04a7af832b0eee4e7";
d = "53a0e8a8fe93db01e7ae94e1a9882a102ebd079b3a535827d583626c272d280d";
qx' = "1bcec4570e1ec2436596b8ded58f60c3b1ebc6a403bc5543040ba82963057244";
qy' = "8af62a4c683f096b28558320737bf83b9959a46ad2521004ef74cf85e67494e1";
k = "5d833e8d24cc7a402d7ee7ec852a3587cddeb48358cea71b0bedb8fabe84e0c4";
r' = "18caaf7b663507a8bcd992b836dec9dc5703c080af5e51dfa3a9a7c387182604";
s' = "77c68928ac3b88d985fb43fb615fb7ff45c18ba5c81af796c613dfa98352d29c";
};
{ msg' = "600974e7d8c5508e2c1aab0783ad0d7c4494ab2b4da265c2fe496421c4df238b0be25f25659157c8a225fb03953607f7df996acfd402f147e37aee2f1693e3bf1c35eab3ae360a2bd91d04622ea47f83d863d2dfecb618e8b8bdc39e17d15d672eee03bb4ce2cc5cf6b217e5faf3f336fdd87d972d3a8b8a593ba85955cc9d71";
d = "4af107e8e2194c830ffb712a65511bc9186a133007855b49ab4b3833aefc4a1d";
qx' = "a32e50be3dae2c8ba3f5e4bdae14cf7645420d425ead94036c22dd6c4fc59e00";
qy' = "d623bf641160c289d6742c6257ae6ba574446dd1d0e74db3aaa80900b78d4ae9";
k = "e18f96f84dfa2fd3cdfaec9159d4c338cd54ad314134f0b31e20591fc238d0ab";
r' = "8524c5024e2d9a73bde8c72d9129f57873bbad0ed05215a372a84fdbc78f2e68";
s' = "d18c2caf3b1072f87064ec5e8953f51301cada03469c640244760328eb5a05cb";
};
{ msg' = "dfa6cb9b39adda6c74cc8b2a8b53a12c499ab9dee01b4123642b4f11af336a91a5c9ce0520eb2395a6190ecbf6169c4cba81941de8e76c9c908eb843b98ce95e0da29c5d4388040264e05e07030a577cc5d176387154eabae2af52a83e85c61c7c61da930c9b19e45d7e34c8516dc3c238fddd6e450a77455d534c48a152010b";
d = "78dfaa09f1076850b3e206e477494cddcfb822aaa0128475053592c48ebaf4ab";
qx' = "8bcfe2a721ca6d753968f564ec4315be4857e28bef1908f61a366b1f03c97479";
qy' = "0f67576a30b8e20d4232d8530b52fb4c89cbc589ede291e499ddd15fe870ab96";
k = "295544dbb2da3da170741c9b2c6551d40af7ed4e891445f11a02b66a5c258a77";
r' = "c5a186d72df452015480f7f338970bfe825087f05c0088d95305f87aacc9b254";
s' = "84a58f9e9d9e735344b316b1aa1ab5185665b85147dc82d92e969d7bee31ca30";
};
{ msg' = "51d2547cbff92431174aa7fc7302139519d98071c755ff1c92e4694b58587ea560f72f32fc6dd4dee7d22bb7387381d0256e2862d0644cdf2c277c5d740fa089830eb52bf79d1e75b8596ecf0ea58a0b9df61e0c9754bfcd62efab6ea1bd216bf181c5593da79f10135a9bc6e164f1854bc8859734341aad237ba29a81a3fc8b";
d = "80e692e3eb9fcd8c7d44e7de9f7a5952686407f90025a1d87e52c7096a62618a";
qx' = "a88bc8430279c8c0400a77d751f26c0abc93e5de4ad9a4166357952fe041e767";
qy' = "2d365a1eef25ead579cc9a069b6abc1b16b81c35f18785ce26a10ba6d1381185";
k = "7c80fd66d62cc076cef2d030c17c0a69c99611549cb32c4ff662475adbe84b22";
r' = "9d0c6afb6df3bced455b459cc21387e14929392664bb8741a3693a1795ca6902";
s' = "d7f9ddd191f1f412869429209ee3814c75c72fa46a9cccf804a2f5cc0b7e739f";
};
{ msg' = "558c2ac13026402bad4a0a83ebc9468e50f7ffab06d6f981e5db1d082098065bcff6f21a7a74558b1e8612914b8b5a0aa28ed5b574c36ac4ea5868432a62bb8ef0695d27c1e3ceaf75c7b251c65ddb268696f07c16d2767973d85beb443f211e6445e7fe5d46f0dce70d58a4cd9fe70688c035688ea8c6baec65a5fc7e2c93e8";
d = "5e666c0db0214c3b627a8e48541cc84a8b6fd15f300da4dff5d18aec6c55b881";
qx' = "1bc487570f040dc94196c9befe8ab2b6de77208b1f38bdaae28f9645c4d2bc3a";
qy' = "ec81602abd8345e71867c8210313737865b8aa186851e1b48eaca140320f5d8f";
k = "2e7625a48874d86c9e467f890aaa7cd6ebdf71c0102bfdcfa24565d6af3fdce9";
r' = "2f9e2b4e9f747c657f705bffd124ee178bbc5391c86d056717b140c153570fd9";
s' = "f5413bfd85949da8d83de83ab0d19b2986613e224d1901d76919de23ccd03199";
};
{ msg' = "4d55c99ef6bd54621662c3d110c3cb627c03d6311393b264ab97b90a4b15214a5593ba2510a53d63fb34be251facb697c973e11b665cb7920f1684b0031b4dd370cb927ca7168b0bf8ad285e05e9e31e34bc24024739fdc10b78586f29eff94412034e3b606ed850ec2c1900e8e68151fc4aee5adebb066eb6da4eaa5681378e";
d = "f73f455271c877c4d5334627e37c278f68d143014b0a05aa62f308b2101c5308";
qx' = "b8188bd68701fc396dab53125d4d28ea33a91daf6d21485f4770f6ea8c565dde";
qy' = "423f058810f277f8fe076f6db56e9285a1bf2c2a1dae145095edd9c04970bc4a";
k = "62f8665fd6e26b3fa069e85281777a9b1f0dfd2c0b9f54a086d0c109ff9fd615";
r' = "1cc628533d0004b2b20e7f4baad0b8bb5e0673db159bbccf92491aef61fc9620";
s' = "880e0bbf82a8cf818ed46ba03cf0fc6c898e36fca36cc7fdb1d2db7503634430";
};
{ msg' = "f8248ad47d97c18c984f1f5c10950dc1404713c56b6ea397e01e6dd925e903b4fadfe2c9e877169e71ce3c7fe5ce70ee4255d9cdc26f6943bf48687874de64f6cf30a012512e787b88059bbf561162bdcc23a3742c835ac144cc14167b1bd6727e940540a9c99f3cbb41fb1dcb00d76dda04995847c657f4c19d303eb09eb48a";
d = "b20d705d9bd7c2b8dc60393a5357f632990e599a0975573ac67fd89b49187906";
qx' = "51f99d2d52d4a6e734484a018b7ca2f895c2929b6754a3a03224d07ae61166ce";
qy' = "4737da963c6ef7247fb88d19f9b0c667cac7fe12837fdab88c66f10d3c14cad1";
k = "72b656f6b35b9ccbc712c9f1f3b1a14cbbebaec41c4bca8da18f492a062d6f6f";
r' = "9886ae46c1415c3bc959e82b760ad760aab66885a84e620aa339fdf102465c42";
s' = "2bf3a80bc04faa35ebecc0f4864ac02d349f6f126e0f988501b8d3075409a26c";
};
{ msg' = "3b6ee2425940b3d240d35b97b6dcd61ed3423d8e71a0ada35d47b322d17b35ea0472f35edd1d252f87b8b65ef4b716669fc9ac28b00d34a9d66ad118c9d94e7f46d0b4f6c2b2d339fd6bcd351241a387cc82609057048c12c4ec3d85c661975c45b300cb96930d89370a327c98b67defaa89497aa8ef994c77f1130f752f94a4";
d = "d4234bebfbc821050341a37e1240efe5e33763cbbb2ef76a1c79e24724e5a5e7";
qx' = "8fb287f0202ad57ae841aea35f29b2e1d53e196d0ddd9aec24813d64c0922fb7";
qy' = "1f6daff1aa2dd2d6d3741623eecb5e7b612997a1039aab2e5cf2de969cfea573";
k = "d926fe10f1bfd9855610f4f5a3d666b1a149344057e35537373372ead8b1a778";
r' = "490efd106be11fc365c7467eb89b8d39e15d65175356775deab211163c2504cb";
s' = "644300fc0da4d40fb8c6ead510d14f0bd4e1321a469e9c0a581464c7186b7aa7";
};
{ msg' = "c5204b81ec0a4df5b7e9fda3dc245f98082ae7f4efe81998dcaa286bd4507ca840a53d21b01e904f55e38f78c3757d5a5a4a44b1d5d4e480be3afb5b394a5d2840af42b1b4083d40afbfe22d702f370d32dbfd392e128ea4724d66a3701da41ae2f03bb4d91bb946c7969404cb544f71eb7a49eb4c4ec55799bda1eb545143a7";
d = "b58f5211dff440626bb56d0ad483193d606cf21f36d9830543327292f4d25d8c";
qx' = "68229b48c2fe19d3db034e4c15077eb7471a66031f28a980821873915298ba76";
qy' = "303e8ee3742a893f78b810991da697083dd8f11128c47651c27a56740a80c24c";
k = "e158bf4a2d19a99149d9cdb879294ccb7aaeae03d75ddd616ef8ae51a6dc1071";
r' = "e67a9717ccf96841489d6541f4f6adb12d17b59a6bef847b6183b8fcf16a32eb";
s' = "9ae6ba6d637706849a6a9fc388cf0232d85c26ea0d1fe7437adb48de58364333";
};
{ msg' = "72e81fe221fb402148d8b7ab03549f1180bcc03d41ca59d7653801f0ba853add1f6d29edd7f9abc621b2d548f8dbf8979bd16608d2d8fc3260b4ebc0dd42482481d548c7075711b5759649c41f439fad69954956c9326841ea6492956829f9e0dc789f73633b40f6ac77bcae6dfc7930cfe89e526d1684365c5b0be2437fdb01";
d = "54c066711cdb061eda07e5275f7e95a9962c6764b84f6f1f3ab5a588e0a2afb1";
qx' = "0a7dbb8bf50cb605eb2268b081f26d6b08e012f952c4b70a5a1e6e7d46af98bb";
qy' = "f26dd7d799930062480849962ccf5004edcfd307c044f4e8f667c9baa834eeae";
k = "646fe933e96c3b8f9f507498e907fdd201f08478d0202c752a7c2cfebf4d061a";
r' = "b53ce4da1aa7c0dc77a1896ab716b921499aed78df725b1504aba1597ba0c64b";
s' = "d7c246dc7ad0e67700c373edcfdd1c0a0495fc954549ad579df6ed1438840851";
};
{ msg' = "21188c3edd5de088dacc1076b9e1bcecd79de1003c2414c3866173054dc82dde85169baa77993adb20c269f60a5226111828578bcc7c29e6e8d2dae81806152c8ba0c6ada1986a1983ebeec1473a73a04795b6319d48662d40881c1723a706f516fe75300f92408aa1dc6ae4288d2046f23c1aa2e54b7fb6448a0da922bd7f34";
d = "34fa4682bf6cb5b16783adcd18f0e6879b92185f76d7c920409f904f522db4b1";
qx' = "105d22d9c626520faca13e7ced382dcbe93498315f00cc0ac39c4821d0d73737";
qy' = "6c47f3cbbfa97dfcebe16270b8c7d5d3a5900b888c42520d751e8faf3b401ef4";
k = "a6f463ee72c9492bc792fe98163112837aebd07bab7a84aaed05be64db3086f4";
r' = "542c40a18140a6266d6f0286e24e9a7bad7650e72ef0e2131e629c076d962663";
s' = "4f7f65305e24a6bbb5cff714ba8f5a2cee5bdc89ba8d75dcbf21966ce38eb66f";
};
]
let siggen_vectors_sha2_384 : list vec_SigGen = [
{ msg' = "e0b8596b375f3306bbc6e77a0b42f7469d7e83635990e74aa6d713594a3a24498feff5006790742d9c2e9b47d714bee932435db747c6e733e3d8de41f2f91311f2e9fd8e025651631ffd84f66732d3473fbd1627e63dc7194048ebec93c95c159b5039ab5e79e42c80b484a943f125de3da1e04e5bf9c16671ad55a1117d3306";
d = "b6faf2c8922235c589c27368a3b3e6e2f42eb6073bf9507f19eed0746c79dced";
qx' = "e0e7b99bc62d8dd67883e39ed9fa0657789c5ff556cc1fd8dd1e2a55e9e3f243";
qy' = "63fbfd0232b95578075c903a4dbf85ad58f8350516e1ec89b0ee1f5e1362da69";
k = "9980b9cdfcef3ab8e219b9827ed6afdd4dbf20bd927e9cd01f15762703487007";
r' = "f5087878e212b703578f5c66f434883f3ef414dc23e2e8d8ab6a8d159ed5ad83";
s' = "306b4c6c20213707982dffbb30fba99b96e792163dd59dbe606e734328dd7c8a";
};
{ msg' = "099a0131179fff4c6928e49886d2fdb3a9f239b7dd5fa828a52cbbe3fcfabecfbba3e192159b887b5d13aa1e14e6a07ccbb21f6ad8b7e88fee6bea9b86dea40ffb962f38554056fb7c5bb486418915f7e7e9b9033fe3baaf9a069db98bc02fa8af3d3d1859a11375d6f98aa2ce632606d0800dff7f55b40f971a8586ed6b39e9";
d = "118958fd0ff0f0b0ed11d3cf8fa664bc17cdb5fed1f4a8fc52d0b1ae30412181";
qx' = "afda82260c9f42122a3f11c6058839488f6d7977f6f2a263c67d06e27ea2c355";
qy' = "0ae2bbdd2207c590332c5bfeb4c8b5b16622134bd4dc55382ae806435468058b";
k = "23129a99eeda3d99a44a5778a46e8e7568b91c31fb7a8628c5d9820d4bed4a6b";
r' = "e446600cab1286ebc3bb332012a2f5cc33b0a5ef7291d5a62a84de5969d77946";
s' = "cf89b12793ee1792eb26283b48fa0bdcb45ae6f6ad4b02564bf786bb97057d5a";
};
{ msg' = "0fbc07ea947c946bea26afa10c51511039b94ddbc4e2e4184ca3559260da24a14522d1497ca5e77a5d1a8e86583aeea1f5d4ff9b04a6aa0de79cd88fdb85e01f171143535f2f7c23b050289d7e05cebccdd131888572534bae0061bdcc3015206b9270b0d5af9f1da2f9de91772d178a632c3261a1e7b3fb255608b3801962f9";
d = "3e647357cd5b754fad0fdb876eaf9b1abd7b60536f383c81ce5745ec80826431";
qx' = "702b2c94d039e590dd5c8f9736e753cf5824aacf33ee3de74fe1f5f7c858d5ed";
qy' = "0c28894e907af99fb0d18c9e98f19ac80dd77abfa4bebe45055c0857b82a0f4d";
k = "9beab7722f0bcb468e5f234e074170a60225255de494108459abdf603c6e8b35";
r' = "c4021fb7185a07096547af1fb06932e37cf8bd90cf593dea48d48614fa237e5e";
s' = "7fb45d09e2172bec8d3e330aa06c43fbb5f625525485234e7714b7f6e92ba8f1";
};
{ msg' = "1e38d750d936d8522e9db1873fb4996bef97f8da3c6674a1223d29263f1234a90b751785316444e9ba698bc8ab6cd010638d182c9adad4e334b2bd7529f0ae8e9a52ad60f59804b2d780ed52bdd33b0bf5400147c28b4304e5e3434505ae7ce30d4b239e7e6f0ecf058badd5b388eddbad64d24d2430dd04b4ddee98f972988f";
d = "76c17c2efc99891f3697ba4d71850e5816a1b65562cc39a13da4b6da9051b0fd";
qx' = "d12512e934c367e4c4384dbd010e93416840288a0ba00b299b4e7c0d91578b57";
qy' = "ebf8835661d9b578f18d14ae4acf9c357c0dc8b7112fc32824a685ed72754e23";
k = "77cffa6f9a73904306f9fcd3f6bbb37f52d71e39931bb4aec28f9b076e436ccf";
r' = "4d5a9d95b0f09ce8704b0f457b39059ee606092310df65d3f8ae7a2a424cf232";
s' = "7d3c014ca470a73cef1d1da86f2a541148ad542fbccaf9149d1b0b030441a7eb";
};
{ msg' = "abcf0e0f046b2e0672d1cc6c0a114905627cbbdefdf9752f0c31660aa95f2d0ede72d17919a9e9b1add3213164e0c9b5ae3c76f1a2f79d3eeb444e6741521019d8bd5ca391b28c1063347f07afcfbb705be4b52261c19ebaf1d6f054a74d86fb5d091fa7f229450996b76f0ada5f977b09b58488eebfb5f5e9539a8fd89662ab";
d = "67b9dea6a575b5103999efffce29cca688c781782a41129fdecbce76608174de";
qx' = "b4238b029fc0b7d9a5286d8c29b6f3d5a569e9108d44d889cd795c4a385905be";
qy' = "8cb3fff8f6cca7187c6a9ad0a2b1d9f40ae01b32a7e8f8c4ca75d71a1fffb309";
k = "d02617f26ede3584f0afcfc89554cdfb2ae188c192092fdde3436335fafe43f1";
r' = "26fd9147d0c86440689ff2d75569795650140506970791c90ace0924b44f1586";
s' = "00a34b00c20a8099df4b0a757cbef8fea1cb3ea7ced5fbf7e987f70b25ee6d4f";
};
{ msg' = "dc3d4884c741a4a687593c79fb4e35c5c13c781dca16db561d7e393577f7b62ca41a6e259fc1fb8d0c4e1e062517a0fdf95558b7799f20c211796167953e6372c11829beec64869d67bf3ee1f1455dd87acfbdbcc597056e7fb347a17688ad32fda7ccc3572da7677d7255c261738f07763cd45973c728c6e9adbeecadc3d961";
d = "ecf644ea9b6c3a04fdfe2de4fdcb55fdcdfcf738c0b3176575fa91515194b566";
qx' = "c3bdc7c795ec94620a2cfff614c13a3390a5e86c892e53a24d3ed22228bc85bf";
qy' = "70480fc5cf4aacd73e24618b61b5c56c1ced8c4f1b869580ea538e68c7a61ca3";
k = "53291d51f68d9a12d1dcdc58892b2f786cc15f631f16997d2a49bace513557d4";
r' = "a860c8b286edf973ce4ce4cf6e70dc9bbf3818c36c023a845677a9963705df8b";
s' = "5630f986b1c45e36e127dd7932221c4272a8cc6e255e89f0f0ca4ec3a9f76494";
};
{ msg' = "719bf1911ae5b5e08f1d97b92a5089c0ab9d6f1c175ac7199086aeeaa416a17e6d6f8486c711d386f284f096296689a54d330c8efb0f5fa1c5ba128d3234a3da856c2a94667ef7103616a64c913135f4e1dc50e38daa60610f732ad1bedfcc396f87169392520314a6b6b9af6793dbabad4599525228cc7c9c32c4d8e097ddf6";
d = "4961485cbc978f8456ec5ac7cfc9f7d9298f99415ecae69c8491b258c029bfee";
qx' = "8d40bf2299e05d758d421972e81cfb0cce68b949240dc30f315836acc70bef03";
qy' = "5674e6f77f8b46f46cca937d83b128dffbe9bd7e0d3d08aa2cbbfdfb16f72c9a";
k = "373a825b5a74b7b9e02f8d4d876b577b4c3984168d704ba9f95b19c05ed590af";
r' = "ef6fb386ad044b63feb7445fa16b10319018e9cea9ef42bca83bdad01992234a";
s' = "ac1f42f652eb1786e57be01d847c81f7efa072ba566d4583af4f1551a3f76c65";
};
{ msg' = "7cf19f4c851e97c5bca11a39f0074c3b7bd3274e7dd75d0447b7b84995dfc9f716bf08c25347f56fcc5e5149cb3f9cfb39d408ace5a5c47e75f7a827fa0bb9921bb5b23a6053dbe1fa2bba341ac874d9b1333fc4dc224854949f5c8d8a5fedd02fb26fdfcd3be351aec0fcbef18972956c6ec0effaf057eb4420b6d28e0c008c";
d = "587907e7f215cf0d2cb2c9e6963d45b6e535ed426c828a6ea2fb637cca4c5cbd";
qx' = "660da45c413cc9c9526202c16b402af602d30daaa7c342f1e722f15199407f31";
qy' = "e6f8cbb06913cc718f2d69ba2fb3137f04a41c27c676d1a80fbf30ea3ca46439";
k = "6b8eb7c0d8af9456b95dd70561a0e902863e6dfa1c28d0fd4a0509f1c2a647b2";
r' = "08fabf9b57de81875bfa7a4118e3e44cfb38ec6a9b2014940207ba3b1c583038";
s' = "a58d199b1deba7350616230d867b2747a3459421811c291836abee715b8f67b4";
};
{ msg' = "b892ffabb809e98a99b0a79895445fc734fa1b6159f9cddb6d21e510708bdab6076633ac30aaef43db566c0d21f4381db46711fe3812c5ce0fb4a40e3d5d8ab24e4e82d3560c6dc7c37794ee17d4a144065ef99c8d1c88bc22ad8c4c27d85ad518fa5747ae35276fc104829d3f5c72fc2a9ea55a1c3a87007cd133263f79e405";
d = "24b1e5676d1a9d6b645a984141a157c124531feeb92d915110aef474b1e27666";
qx' = "b4909a5bdf25f7659f4ef35e4b811429fb2c59126e3dad09100b46aea6ebe7a6";
qy' = "760ae015fa6af5c9749c4030fdb5de6e58c6b5b1944829105cf7edf7d3a22cfb";
k = "88794923d8943b5dbcc7a7a76503880ff7da632b0883aaa60a9fcc71bf880fd6";
r' = "6ec9a340b77fae3c7827fa96d997e92722ff2a928217b6dd3c628f3d49ae4ce6";
s' = "637b54bbcfb7e7d8a41ea317fcfca8ad74eb3bb6b778bc7ef9dec009281976f7";
};
{ msg' = "8144e37014c95e13231cbd6fa64772771f93b44e37f7b02f592099cc146343edd4f4ec9fa1bc68d7f2e9ee78fc370443aa2803ff4ca52ee49a2f4daf2c8181ea7b8475b3a0f608fc3279d09e2d057fbe3f2ffbe5133796124781299c6da60cfe7ecea3abc30706ded2cdf18f9d788e59f2c31662df3abe01a9b12304fb8d5c8c";
d = "bce49c7b03dcdc72393b0a67cf5aa5df870f5aaa6137ada1edc7862e0981ec67";
qx' = "c786d9421d67b72b922cf3def2a25eeb5e73f34543eb50b152e738a98afb0ca5";
qy' = "6796271e79e2496f9e74b126b1123a3d067de56b5605d6f51c8f6e1d5bb93aba";
k = "89e690d78a5e0d2b8ce9f7fcbf34e2605fd9584760fa7729043397612dd21f94";
r' = "07e5054c384839584624e8d730454dc27e673c4a90cbf129d88b91250341854d";
s' = "f7e665b88614d0c5cbb3007cafe713763d81831525971f1747d92e4d1ca263a7";
};
{ msg' = "a3683d120807f0a030feed679785326698c3702f1983eaba1b70ddfa7f0b3188060b845e2b67ed57ee68087746710450f7427cb34655d719c0acbc09ac696adb4b22aba1b9322b7111076e67053a55f62b501a4bca0ad9d50a868f51aeeb4ef27823236f5267e8da83e143047422ce140d66e05e44dc84fb3a4506b2a5d7caa8";
d = "73188a923bc0b289e81c3db48d826917910f1b957700f8925425c1fb27cabab9";
qx' = "86662c014ab666ee770723be8da38c5cd299efc6480fc6f8c3603438fa8397b9";
qy' = "f26b3307a650c3863faaa5f642f3ba1384c3d3a02edd3d48c657c269609cc3fc";
k = "ec90584ab3b383b590626f36ed4f5110e49888aec7ae7a9c5ea62dd2dc378666";
r' = "13e9ad59112fde3af4163eb5c2400b5e9a602576d5869ac1c569075f08c90ff6";
s' = "708ac65ff2b0baaccc6dd954e2a93df46016bd04457636de06798fcc17f02be5";
};
{ msg' = "b1df8051b213fc5f636537e37e212eb20b2423e6467a9c7081336a870e6373fc835899d59e546c0ac668cc81ce4921e88f42e6da2a109a03b4f4e819a17c955b8d099ec6b282fb495258dca13ec779c459da909475519a3477223c06b99afbd77f9922e7cbef844b93f3ce5f50db816b2e0d8b1575d2e17a6b8db9111d6da578";
d = "f637d55763fe819541588e0c603f288a693cc66823c6bb7b8e003bd38580ebce";
qx' = "74a4620c578601475fc169a9b84be613b4a16cb6acab8fd98848a6ec9fbd133d";
qy' = "42b9e35d347c107e63bd55f525f915bcf1e3d2b81d002d3c39acf10fc30645a1";
k = "4d578f5099636234d9c1d566f1215d5d887ae5d47022be17dbf32a11a03f053b";
r' = "113a933ebc4d94ce1cef781e4829df0c493b0685d39fb2048ce01b21c398dbba";
s' = "3005bd4ec63dbd04ce9ff0c6246ad65d27fcf62edb2b7e461589f9f0e7446ffd";
};
{ msg' = "0b918ede985b5c491797d0a81446b2933be312f419b212e3aae9ba5914c00af431747a9d287a7c7761e9bcbc8a12aaf9d4a76d13dad59fc742f8f218ef66eb67035220a07acc1a357c5b562ecb6b895cf725c4230412fefac72097f2c2b829ed58742d7c327cad0f1058df1bddd4ae9c6d2aba25480424308684cecd6517cdd8";
d = "2e357d51517ff93b821f895932fddded8347f32596b812308e6f1baf7dd8a47f";
qx' = "7e4078a1d50c669fb2996dd9bacb0c3ac7ede4f58fa0fa1222e78dbf5d1f4186";
qy' = "0014e46e90cc171fbb83ea34c6b78202ea8137a7d926f0169147ed5ae3d6596f";
k = "be522b0940b9a40d84bf790fe6abdc252877e671f2efa63a33a65a512fc2aa5c";
r' = "a26b9ad775ac37ff4c7f042cdc4872c5e4e5e800485f488ddfaaed379f468090";
s' = "f88eae2019bebbba62b453b8ee3472ca5c67c267964cffe0cf2d2933c1723dff";
};
{ msg' = "0fab26fde1a4467ca930dbe513ccc3452b70313cccde2994eead2fde85c8da1db84d7d06a024c9e88629d5344224a4eae01b21a2665d5f7f36d5524bf5367d7f8b6a71ea05d413d4afde33777f0a3be49c9e6aa29ea447746a9e77ce27232a550b31dd4e7c9bc8913485f2dc83a56298051c92461fd46b14cc895c300a4fb874";
d = "77d60cacbbac86ab89009403c97289b5900466856887d3e6112af427f7f0f50b";
qx' = "a62032dfdb87e25ed0c70cad20d927c7effeb2638e6c88ddd670f74df16090e5";
qy' = "44c5ee2cf740ded468f5d2efe13daa7c5234645a37c073af35330d03a4fed976";
k = "06c1e692b045f425a21347ecf72833d0242906c7c1094f805566cdcb1256e394";
r' = "eb173b51fb0aec318950d097e7fda5c34e529519631c3e2c9b4550b903da417d";
s' = "ca2c13574bf1b7d56e9dc18315036a31b8bceddf3e2c2902dcb40f0cc9e31b45";
};
{ msg' = "7843f157ef8566722a7d69da67de7599ee65cb3975508f70c612b3289190e364141781e0b832f2d9627122742f4b5871ceeafcd09ba5ec90cae6bcc01ae32b50f13f63918dfb5177df9797c6273b92d103c3f7a3fc2050d2b196cc872c57b77f9bdb1782d4195445fcc6236dd8bd14c8bcbc8223a6739f6a17c9a861e8c821a6";
d = "486854e77962117f49e09378de6c9e3b3522fa752b10b2c810bf48db584d7388";
qx' = "760b5624bd64d19c866e54ccd74ad7f98851afdbc3ddeae3ec2c52a135be9cfa";
qy' = "feca15ce9350877102eee0f5af18b2fed89dc86b7df0bf7bc2963c1638e36fe8";
k = "e4f77c6442eca239b01b0254e11a4182782d96f48ab521cc3d1d68df12b5a41a";
r' = "bdff14e4600309c2c77f79a25963a955b5b500a7b2d34cb172cd6acd52905c7b";
s' = "b0479cdb3df79923ec36a104a129534c5d59f622be7d613aa04530ad2507d3a2";
};
] | false | true | Spec.ECDSA.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val siggen_vectors_sha2_512:list vec_SigGen | [] | Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_512 | {
"file_name": "specs/tests/p256/Spec.ECDSA.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.ECDSA.Test.Vectors.vec_SigGen | {
"end_col": 1,
"end_line": 728,
"start_col": 49,
"start_line": 607
} |
FStar.Tactics.Effect.Tac | val sum_accessor_ext (ty: term) : Tac unit | [
{
"abbrev": false,
"full_module": "LowParse.TacLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Sum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sum_accessor_ext (ty: term) : Tac unit =
let thm = mk_app (`clens_eq_intro') [(ty, Q_Implicit)] in
apply thm;
iseq [
(fun _ ->
norm [delta; zeta; iota; primops];
let x = intro () in
destruct (binder_to_term x);
to_all_goals (fun _ ->
let eqn = intros_until_eq_hyp () in
rewrite eqn;
norm [delta; zeta; iota; primops];
trivial ()
)
);
(fun _ ->
norm [delta; zeta; iota; primops];
let x = intro () in
destruct (binder_to_term x);
to_all_goals (fun _ ->
let eqn = intros_until_eq_hyp () in
rewrite eqn;
norm [delta; zeta; iota; primops];
let u = intro () in
smt ()
)
)
] | val sum_accessor_ext (ty: term) : Tac unit
let sum_accessor_ext (ty: term) : Tac unit = | true | null | false | let thm = mk_app (`clens_eq_intro') [(ty, Q_Implicit)] in
apply thm;
iseq [
(fun _ ->
norm [delta; zeta; iota; primops];
let x = intro () in
destruct (binder_to_term x);
to_all_goals (fun _ ->
let eqn = intros_until_eq_hyp () in
rewrite eqn;
norm [delta; zeta; iota; primops];
trivial ()));
(fun _ ->
norm [delta; zeta; iota; primops];
let x = intro () in
destruct (binder_to_term x);
to_all_goals (fun _ ->
let eqn = intros_until_eq_hyp () in
rewrite eqn;
norm [delta; zeta; iota; primops];
let u = intro () in
smt ()))
] | {
"checked_file": "LowParse.Low.Tac.Sum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Low.Sum.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Tac.Sum.fst"
} | [] | [
"FStar.Reflection.Types.term",
"FStar.Tactics.V1.Derived.iseq",
"Prims.Cons",
"Prims.unit",
"LowParse.TacLib.to_all_goals",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Tactics.V1.Builtins.norm",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.zeta",
"FStar.Pervasives.iota",
"FStar.Pervasives.primops",
"Prims.Nil",
"FStar.Tactics.V1.Builtins.rewrite",
"FStar.Reflection.Types.binder",
"LowParse.TacLib.intros_until_eq_hyp",
"FStar.Tactics.V1.Derived.destruct",
"FStar.Tactics.V1.Derived.binder_to_term",
"FStar.Tactics.V1.Builtins.intro",
"FStar.Tactics.V1.Derived.smt",
"FStar.Tactics.V1.Derived.apply",
"FStar.Reflection.V1.Derived.mk_app",
"FStar.Reflection.V1.Data.argv",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V1.Data.aqualv",
"FStar.Reflection.V1.Data.Q_Implicit"
] | [] | module LowParse.Low.Tac.Sum
include LowParse.Low.Sum
open LowParse.TacLib
(* Tactic for accessor extensionality *) | false | false | LowParse.Low.Tac.Sum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sum_accessor_ext (ty: term) : Tac unit | [] | LowParse.Low.Tac.Sum.sum_accessor_ext | {
"file_name": "src/lowparse/LowParse.Low.Tac.Sum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | ty: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 7,
"end_line": 36,
"start_col": 44,
"start_line": 9
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l} | let hist (#a: Type u#a) (q: preorder a) = | false | null | false | l: list a {qhistory q l} | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Prims.list",
"Steel.Preorder.qhistory"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hist : q: FStar.Preorder.preorder a -> Type | [] | Steel.Preorder.hist | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> Type | {
"end_col": 63,
"end_line": 92,
"start_col": 41,
"start_line": 92
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let property (a:Type)
= a -> prop | let property (a: Type) = | false | null | false | a -> prop | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"Prims.prop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0 | false | true | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val property : a: Type -> Type | [] | Steel.Preorder.property | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | a: Type -> Type | {
"end_col": 13,
"end_line": 265,
"start_col": 4,
"start_line": 265
} |
|
Prims.Tot | val hval (#a #p: _) (h: history a p {Current? h}) : Ghost.erased a | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h | val hval (#a #p: _) (h: history a p {Current? h}) : Ghost.erased a
let hval #a #p (h: history a p {Current? h}) : Ghost.erased a = | false | null | false | hval_tot h | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"FStar.Ghost.hide",
"Steel.Preorder.hval_tot",
"FStar.Ghost.erased"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hval (#a #p: _) (h: history a p {Current? h}) : Ghost.erased a | [] | Steel.Preorder.hval | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h: Steel.Preorder.history a p {Current? h} -> FStar.Ghost.erased a | {
"end_col": 12,
"end_line": 290,
"start_col": 2,
"start_line": 290
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h} | let vhist (#a: Type u#a) (q: preorder a) = | false | null | false | h: hist q {Cons? h} | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.b2t",
"Prims.uu___is_Cons"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= () | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vhist : q: FStar.Preorder.preorder a -> Type | [] | Steel.Preorder.vhist | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> Type | {
"end_col": 59,
"end_line": 215,
"start_col": 42,
"start_line": 215
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z | let fact_valid_compat (#a: Type) (#pcm: pcm a) (fact: stable_property pcm) (v: a) = | false | null | false | forall z. compatible pcm v z ==> fact z | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Preorder.stable_property",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.PCM.compatible",
"Prims.logical"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fact_valid_compat : fact: Steel.Preorder.stable_property pcm -> v: a -> Prims.logical | [] | Steel.Preorder.fact_valid_compat | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fact: Steel.Preorder.stable_property pcm -> v: a -> Prims.logical | {
"end_col": 43,
"end_line": 275,
"start_col": 4,
"start_line": 275
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
} | let stable_property (#a: Type) (pcm: pcm a) = | false | null | false | fact: property a {FStar.Preorder.stable fact (preorder_of_pcm pcm)} | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Preorder.property",
"FStar.Preorder.stable",
"Steel.Preorder.preorder_of_pcm"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stable_property : pcm: FStar.PCM.pcm a -> Type | [] | Steel.Preorder.stable_property | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | pcm: FStar.PCM.pcm a -> Type | {
"end_col": 5,
"end_line": 270,
"start_col": 4,
"start_line": 268
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v) | let induces_preorder (#a: Type u#a) (p: pcm a) (q: preorder a) = | false | null | false | forall (x: a) (y: a) (f: frame_preserving_upd p x y) (v: a).
p.refine v ==> compatible p x v ==> q v (f v) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.PCM.pcm",
"FStar.Preorder.preorder",
"Prims.l_Forall",
"FStar.PCM.frame_preserving_upd",
"Prims.l_imp",
"FStar.PCM.__proj__Mkpcm__item__refine",
"FStar.PCM.compatible",
"Prims.logical"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val induces_preorder : p: FStar.PCM.pcm a -> q: FStar.Preorder.preorder a -> Prims.logical | [] | Steel.Preorder.induces_preorder | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: FStar.PCM.pcm a -> q: FStar.Preorder.preorder a -> Prims.logical | {
"end_col": 49,
"end_line": 35,
"start_col": 2,
"start_line": 34
} |
|
Prims.Tot | val p_composable (#a: Type u#a) (q: preorder a) : symrel (hist q) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x | val p_composable (#a: Type u#a) (q: preorder a) : symrel (hist q)
let p_composable (#a: Type u#a) (q: preorder a) : symrel (hist q) = | false | null | false | fun x y -> extends x y \/ extends y x | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.l_or",
"Steel.Preorder.extends",
"Prims.prop",
"FStar.PCM.symrel"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p_composable (#a: Type u#a) (q: preorder a) : symrel (hist q) | [] | Steel.Preorder.p_composable | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> FStar.PCM.symrel (Steel.Preorder.hist q) | {
"end_col": 41,
"end_line": 125,
"start_col": 4,
"start_line": 125
} |
Prims.Tot | val extends (#a: Type u#a) (#q: preorder a) : preorder (hist q) | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends' | val extends (#a: Type u#a) (#q: preorder a) : preorder (hist q)
let extends (#a: Type u#a) (#q: preorder a) : preorder (hist q) = | false | null | false | extends' | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.extends'",
"Steel.Preorder.hist"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends (#a: Type u#a) (#q: preorder a) : preorder (hist q) | [] | Steel.Preorder.extends | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Preorder.preorder (Steel.Preorder.hist q) | {
"end_col": 73,
"end_line": 108,
"start_col": 65,
"start_line": 108
} |
Prims.Tot | val preorder_of_pcm (#a: Type u#a) (p: pcm a) : preorder a | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y | val preorder_of_pcm (#a: Type u#a) (p: pcm a) : preorder a
let preorder_of_pcm (#a: Type u#a) (p: pcm a) : preorder a = | false | null | false | fun x y -> forall (q: preorder a). induces_preorder p q ==> q x y | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Prims.l_Forall",
"FStar.Preorder.preorder",
"Prims.l_imp",
"Steel.Preorder.induces_preorder",
"Prims.logical"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val preorder_of_pcm (#a: Type u#a) (p: pcm a) : preorder a | [] | Steel.Preorder.preorder_of_pcm | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: FStar.PCM.pcm a -> FStar.Preorder.preorder a | {
"end_col": 66,
"end_line": 43,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val extend_history (#a: Type u#a) (#q: preorder a) (h0: vhist q) (v: a{q (curval h0) v})
: h1: vhist q {h1 `extends` h0} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0 | val extend_history (#a: Type u#a) (#q: preorder a) (h0: vhist q) (v: a{q (curval h0) v})
: h1: vhist q {h1 `extends` h0}
let extend_history (#a: Type u#a) (#q: preorder a) (h0: vhist q) (v: a{q (curval h0) v})
: h1: vhist q {h1 `extends` h0} = | false | null | false | v :: h0 | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.vhist",
"Steel.Preorder.curval",
"Prims.Cons",
"Steel.Preorder.extends"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v}) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extend_history (#a: Type u#a) (#q: preorder a) (h0: vhist q) (v: a{q (curval h0) v})
: h1: vhist q {h1 `extends` h0} | [] | Steel.Preorder.extend_history | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h0: Steel.Preorder.vhist q -> v: a{q (Steel.Preorder.curval h0) v}
-> h1: Steel.Preorder.vhist q {Steel.Preorder.extends h1 h0} | {
"end_col": 11,
"end_line": 262,
"start_col": 4,
"start_line": 262
} |
FStar.Pervasives.Lemma | val extends_length_eq (#a: Type u#a) (#q: preorder a) (h0 h1: hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1 | val extends_length_eq (#a: Type u#a) (#q: preorder a) (h0 h1: hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
let rec extends_length_eq (#a: Type u#a) (#q: preorder a) (h0 h1: hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)] = | false | null | true | match h0 with
| [] -> ()
| hd :: tl -> extends_length_eq tl h1 | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.list",
"Steel.Preorder.extends_length_eq",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Steel.Preorder.extends",
"Prims.l_or",
"Prims.eq2",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1)) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends_length_eq (#a: Type u#a) (#q: preorder a) (h0 h1: hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)] | [
"recursion"
] | Steel.Preorder.extends_length_eq | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h0: Steel.Preorder.hist q -> h1: Steel.Preorder.hist q
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.extends h0 h1 ==>
h0 == h1 \/ FStar.List.Tot.Base.length h0 > FStar.List.Tot.Base.length h1)
[SMTPat (Steel.Preorder.extends h0 h1)] | {
"end_col": 39,
"end_line": 118,
"start_col": 4,
"start_line": 116
} |
Prims.Tot | val p_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y}) : hist q | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y | val p_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y}) : hist q
let p_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y}) : hist q = | false | null | false | if L.length x >= L.length y
then x
else
if L.length x = L.length y
then
(assert (x == y);
x)
else y | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Steel.Preorder.p_composable",
"Prims.op_GreaterThanOrEqual",
"FStar.List.Tot.Base.length",
"Prims.bool",
"Prims.op_Equality",
"Prims.nat",
"Prims.unit",
"Prims._assert",
"Prims.eq2"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y}) : hist q | [] | Steel.Preorder.p_op | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
q: FStar.Preorder.preorder a ->
x: Steel.Preorder.hist q ->
y: Steel.Preorder.hist q {Steel.Preorder.p_composable q x y}
-> Steel.Preorder.hist q | {
"end_col": 8,
"end_line": 133,
"start_col": 2,
"start_line": 129
} |
Prims.Tot | val p (#a: Type u#a) (q: preorder a) : pcm' (hist q) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
} | val p (#a: Type u#a) (q: preorder a) : pcm' (hist q)
let p (#a: Type u#a) (q: preorder a) : pcm' (hist q) = | false | null | false | { composable = p_composable q; op = p_op q; one = [] } | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"FStar.PCM.Mkpcm'",
"Steel.Preorder.hist",
"Steel.Preorder.p_composable",
"Steel.Preorder.p_op",
"Prims.Nil",
"FStar.PCM.pcm'"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p (#a: Type u#a) (q: preorder a) : pcm' (hist q) | [] | Steel.Preorder.p | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> FStar.PCM.pcm' (Steel.Preorder.hist q) | {
"end_col": 10,
"end_line": 156,
"start_col": 2,
"start_line": 154
} |
Prims.Tot | val unit_history (#a #p: _) : history a p | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unit_history #a #p : history a p = Witnessed [] | val unit_history (#a #p: _) : history a p
let unit_history #a #p : history a p = | false | null | false | Witnessed [] | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.Witnessed",
"Prims.Nil",
"Steel.Preorder.history"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unit_history (#a #p: _) : history a p | [] | Steel.Preorder.unit_history | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Steel.Preorder.history a p | {
"end_col": 51,
"end_line": 320,
"start_col": 39,
"start_line": 320
} |
Prims.Tot | val flip (#a: Type u#a) (p: preorder a) : preorder a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x | val flip (#a: Type u#a) (p: preorder a) : preorder a
let flip (#a: Type u#a) (p: preorder a) : preorder a = | false | null | false | fun x y -> p y x | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= () | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flip (#a: Type u#a) (p: preorder a) : preorder a | [] | Steel.Preorder.flip | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: FStar.Preorder.preorder a -> FStar.Preorder.preorder a | {
"end_col": 70,
"end_line": 237,
"start_col": 54,
"start_line": 237
} |
FStar.Pervasives.Lemma | val stable_compatiblity (#a: Type u#a) (fact: (a -> prop)) (p: pcm a) (v v0 v1: a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\ p.refine v0 /\ fact v0 /\ p.refine v1 /\
frame_preserving p v v1 /\ compatible p v v0) (ensures fact v1) | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0 | val stable_compatiblity (#a: Type u#a) (fact: (a -> prop)) (p: pcm a) (v v0 v1: a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\ p.refine v0 /\ fact v0 /\ p.refine v1 /\
frame_preserving p v v1 /\ compatible p v v0) (ensures fact v1)
let stable_compatiblity (#a: Type u#a) (fact: (a -> prop)) (p: pcm a) (v v0 v1: a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\ p.refine v0 /\ fact v0 /\ p.refine v1 /\
frame_preserving p v v1 /\ compatible p v v0) (ensures fact v1) = | false | null | true | let f:frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0 | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"Prims.prop",
"FStar.PCM.pcm",
"Steel.Preorder.frame_preserving_upd_is_preorder_preserving",
"FStar.PCM.frame_preserving_upd",
"FStar.PCM.frame_preserving_val_to_fp_upd",
"FStar.Ghost.hide",
"Prims.unit",
"Prims.l_and",
"FStar.Preorder.stable",
"Steel.Preorder.preorder_of_pcm",
"FStar.PCM.__proj__Mkpcm__item__refine",
"FStar.PCM.frame_preserving",
"FStar.PCM.compatible",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stable_compatiblity (#a: Type u#a) (fact: (a -> prop)) (p: pcm a) (v v0 v1: a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\ p.refine v0 /\ fact v0 /\ p.refine v1 /\
frame_preserving p v v1 /\ compatible p v v0) (ensures fact v1) | [] | Steel.Preorder.stable_compatiblity | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fact: (_: a -> Prims.prop) -> p: FStar.PCM.pcm a -> v: a -> v0: a -> v1: a
-> FStar.Pervasives.Lemma
(requires
FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm p) /\ Mkpcm?.refine p v0 /\
fact v0 /\ Mkpcm?.refine p v1 /\ FStar.PCM.frame_preserving p v v1 /\
FStar.PCM.compatible p v v0) (ensures fact v1) | {
"end_col": 59,
"end_line": 74,
"start_col": 3,
"start_line": 73
} |
Prims.Tot | val history_val (#a #p: _) (h: history a p) (v: Ghost.erased a) (f: perm) : prop | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let history_val #a #p (h:history a p) (v:Ghost.erased a) (f:perm)
: prop
= Current? h /\ hval h == v /\ hperm h == f /\ f.v <=. one | val history_val (#a #p: _) (h: history a p) (v: Ghost.erased a) (f: perm) : prop
let history_val #a #p (h: history a p) (v: Ghost.erased a) (f: perm) : prop = | false | null | false | Current? h /\ hval h == v /\ hperm h == f /\ f.v <=. one | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"FStar.Ghost.erased",
"Steel.FractionalPermission.perm",
"Prims.l_and",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"Prims.eq2",
"Steel.Preorder.hval",
"Steel.Preorder.hperm",
"FStar.Real.op_Less_Equals_Dot",
"Steel.FractionalPermission.__proj__MkPerm__item__v",
"FStar.Real.one",
"Prims.prop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
}
let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0
#push-options "--z3rlimit_factor 8 --ifuel 1 --fuel 0 --warn_error -271"
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p)
(pcm_history_preorder #a #p))
= let aux (x y:history a p)
(f:frame_preserving_upd (pcm_history #a #p) x y)
(v:history a p)
: Lemma
(requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()]
= let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame = FStar.IndefiniteDescription.indefinite_description_ghost
(history a p) (fun frame -> composable pcm x frame /\ op pcm frame x == v) in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
()
#pop-options
let extend_history' #a #p (h0:history a p{Current? h0})
(v:a{p (hval h0) v})
: history a p
= let Current h f = h0 in
Current (v :: h) f
let extend_history'_is_frame_preserving #a #p
(h0:history a p{Current? h0 /\ hperm h0 == full_perm})
(v:a{p (hval h0) v})
: Lemma (frame_preserving pcm_history h0 (extend_history' h0 v))
= ()
let history_val #a #p (h:history a p) (v:Ghost.erased a) (f:perm) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val history_val (#a #p: _) (h: history a p) (v: Ghost.erased a) (f: perm) : prop | [] | Steel.Preorder.history_val | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h: Steel.Preorder.history a p -> v: FStar.Ghost.erased a -> f: Steel.FractionalPermission.perm
-> Prims.prop | {
"end_col": 60,
"end_line": 426,
"start_col": 4,
"start_line": 426
} |
FStar.Pervasives.Lemma | val extends_trans (#a: _) (#q: preorder a) (x y z: hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y); SMTPat (y `extends'` z)] | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z | val extends_trans (#a: _) (#q: preorder a) (x y z: hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y); SMTPat (y `extends'` z)]
let rec extends_trans #a (#q: preorder a) (x: hist q) (y: hist q) (z: hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y); SMTPat (y `extends'` z)] = | false | null | true | match x with
| [] -> ()
| _ :: tl -> extends_trans tl y z | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.list",
"Steel.Preorder.extends_trans",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.l_and",
"Steel.Preorder.extends'",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.logical",
"Prims.Nil"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y); | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends_trans (#a: _) (#q: preorder a) (x y z: hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y); SMTPat (y `extends'` z)] | [
"recursion"
] | Steel.Preorder.extends_trans | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | x: Steel.Preorder.hist q -> y: Steel.Preorder.hist q -> z: Steel.Preorder.hist q
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.extends' x y /\ Steel.Preorder.extends' y z ==> Steel.Preorder.extends' x z)
[SMTPat (Steel.Preorder.extends' x y); SMTPat (Steel.Preorder.extends' y z)] | {
"end_col": 35,
"end_line": 105,
"start_col": 4,
"start_line": 103
} |
FStar.Pervasives.Lemma | val comm_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma (p_op q x y == p_op q y x) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x | val comm_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
let comm_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma (p_op q x y == p_op q y x) = | false | null | true | extends_length_eq x y;
extends_length_eq y x | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Steel.Preorder.p_composable",
"Steel.Preorder.extends_length_eq",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.Preorder.p_op",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val comm_op (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma (p_op q x y == p_op q y x) | [] | Steel.Preorder.comm_op | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
q: FStar.Preorder.preorder a ->
x: Steel.Preorder.hist q ->
y: Steel.Preorder.hist q {Steel.Preorder.p_composable q x y}
-> FStar.Pervasives.Lemma (ensures Steel.Preorder.p_op q x y == Steel.Preorder.p_op q y x) | {
"end_col": 25,
"end_line": 169,
"start_col": 4,
"start_line": 168
} |
Prims.Tot | val hval_tot (#a #p: _) (h: history a p {Current? h}) : a | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h | val hval_tot (#a #p: _) (h: history a p {Current? h}) : a
let hval_tot #a #p (h: history a p {Current? h}) : a = | false | null | false | match h with | Current h _ -> curval h | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.curval"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hval_tot (#a #p: _) (h: history a p {Current? h}) : a | [] | Steel.Preorder.hval_tot | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h: Steel.Preorder.history a p {Current? h} -> a | {
"end_col": 27,
"end_line": 287,
"start_col": 2,
"start_line": 286
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v | let curval (#a: Type u#a) (#q: preorder a) (v: vhist q) = | false | null | false | Cons?.hd v | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.vhist",
"Prims.__proj__Cons__item__hd"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h} | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val curval : v: Steel.Preorder.vhist q -> a | [] | Steel.Preorder.curval | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | v: Steel.Preorder.vhist q -> a | {
"end_col": 66,
"end_line": 218,
"start_col": 56,
"start_line": 218
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl) | let rec qhistory #a (q: preorder a) (l: list a) = | false | null | false | match l with
| [] | [_] -> True
| x :: y :: tl -> y `q` x /\ qhistory q (y :: tl) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Prims.list",
"Prims.l_True",
"Prims.l_and",
"Steel.Preorder.qhistory",
"Prims.Cons",
"Prims.logical"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qhistory : q: FStar.Preorder.preorder a -> l: Prims.list a -> Prims.logical | [
"recursion"
] | Steel.Preorder.qhistory | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> l: Prims.list a -> Prims.logical | {
"end_col": 45,
"end_line": 89,
"start_col": 2,
"start_line": 86
} |
|
FStar.Pervasives.Lemma | val extends_disjunction (#a: Type u#a) (#q: preorder a) (x y z: hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x); SMTPat (z `extends` y)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl | val extends_disjunction (#a: Type u#a) (#q: preorder a) (x y z: hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x); SMTPat (z `extends` y)]
let rec extends_disjunction (#a: Type u#a) (#q: preorder a) (x y z: hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x); SMTPat (z `extends` y)] = | false | null | true | match z with
| [] -> ()
| _ :: tl -> extends_disjunction x y tl | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.list",
"Steel.Preorder.extends_disjunction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.l_and",
"Steel.Preorder.extends",
"Prims.l_or",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x); | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends_disjunction (#a: Type u#a) (#q: preorder a) (x y z: hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x); SMTPat (z `extends` y)] | [
"recursion"
] | Steel.Preorder.extends_disjunction | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | x: Steel.Preorder.hist q -> y: Steel.Preorder.hist q -> z: Steel.Preorder.hist q
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.extends z x /\ Steel.Preorder.extends z y ==>
Steel.Preorder.extends x y \/ Steel.Preorder.extends y x)
[SMTPat (Steel.Preorder.extends z x); SMTPat (Steel.Preorder.extends z y)] | {
"end_col": 41,
"end_line": 178,
"start_col": 4,
"start_line": 176
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1) | let rec extends' (#a: Type u#a) (#q: preorder a) (h0 h1: hist q) = | false | null | false | h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.l_or",
"Prims.eq2",
"Prims.l_and",
"Prims.b2t",
"Prims.uu___is_Cons",
"Steel.Preorder.extends'",
"Prims.__proj__Cons__item__tl",
"Prims.logical"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends' : h0: Steel.Preorder.hist q -> h1: Steel.Preorder.hist q -> Prims.logical | [
"recursion"
] | Steel.Preorder.extends' | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h0: Steel.Preorder.hist q -> h1: Steel.Preorder.hist q -> Prims.logical | {
"end_col": 53,
"end_line": 96,
"start_col": 2,
"start_line": 96
} |
|
FStar.Pervasives.Lemma | val extends_related_head (#a: Type u#a) (#q: preorder a) (x y: hist q)
: Lemma (ensures x `extends` y /\ Cons? x /\ Cons? y ==> (Cons?.hd y) `q` (Cons?.hd x))
[SMTPat (x `extends` y)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y | val extends_related_head (#a: Type u#a) (#q: preorder a) (x y: hist q)
: Lemma (ensures x `extends` y /\ Cons? x /\ Cons? y ==> (Cons?.hd y) `q` (Cons?.hd x))
[SMTPat (x `extends` y)]
let rec extends_related_head (#a: Type u#a) (#q: preorder a) (x y: hist q)
: Lemma (ensures x `extends` y /\ Cons? x /\ Cons? y ==> (Cons?.hd y) `q` (Cons?.hd x))
[SMTPat (x `extends` y)] = | false | null | true | match x with
| [] -> ()
| _ :: tl -> extends_related_head tl y | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.list",
"Steel.Preorder.extends_related_head",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.l_and",
"Steel.Preorder.extends",
"Prims.b2t",
"Prims.uu___is_Cons",
"Prims.__proj__Cons__item__hd",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extends_related_head (#a: Type u#a) (#q: preorder a) (x y: hist q)
: Lemma (ensures x `extends` y /\ Cons? x /\ Cons? y ==> (Cons?.hd y) `q` (Cons?.hd x))
[SMTPat (x `extends` y)] | [
"recursion"
] | Steel.Preorder.extends_related_head | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | x: Steel.Preorder.hist q -> y: Steel.Preorder.hist q
-> FStar.Pervasives.Lemma
(ensures Steel.Preorder.extends x y /\ Cons? x /\ Cons? y ==> q (Cons?.hd y) (Cons?.hd x))
[SMTPat (Steel.Preorder.extends x y)] | {
"end_col": 40,
"end_line": 190,
"start_col": 4,
"start_line": 188
} |
Prims.Tot | val history_compose (#a #p: _) (h0: history a p) (h1: history a p {history_composable h0 h1})
: history a p | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1) | val history_compose (#a #p: _) (h0: history a p) (h1: history a p {history_composable h0 h1})
: history a p
let history_compose #a #p (h0: history a p) (h1: history a p {history_composable h0 h1})
: history a p = | false | null | false | match h0, h1 with
| Witnessed h0, Witnessed h1 -> Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1 | Witnessed h1, Current h0 f -> Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 -> Current h0 (sum_perm f0 f1) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Steel.Preorder.history_composable",
"FStar.Pervasives.Native.Mktuple2",
"Steel.Preorder.hist",
"Steel.Preorder.Witnessed",
"Steel.Preorder.p_op",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.Current",
"Steel.FractionalPermission.sum_perm"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1}) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val history_compose (#a #p: _) (h0: history a p) (h1: history a p {history_composable h0 h1})
: history a p | [] | Steel.Preorder.history_compose | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
h0: Steel.Preorder.history a p ->
h1: Steel.Preorder.history a p {Steel.Preorder.history_composable h0 h1}
-> Steel.Preorder.history a p | {
"end_col": 33,
"end_line": 318,
"start_col": 4,
"start_line": 311
} |
Prims.Tot | val extend_history' (#a #p: _) (h0: history a p {Current? h0}) (v: a{p (hval h0) v}) : history a p | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let extend_history' #a #p (h0:history a p{Current? h0})
(v:a{p (hval h0) v})
: history a p
= let Current h f = h0 in
Current (v :: h) f | val extend_history' (#a #p: _) (h0: history a p {Current? h0}) (v: a{p (hval h0) v}) : history a p
let extend_history' #a #p (h0: history a p {Current? h0}) (v: a{p (hval h0) v}) : history a p = | false | null | false | let Current h f = h0 in
Current (v :: h) f | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"FStar.Ghost.reveal",
"Steel.Preorder.hval",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.Current",
"Prims.Cons"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
}
let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0
#push-options "--z3rlimit_factor 8 --ifuel 1 --fuel 0 --warn_error -271"
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p)
(pcm_history_preorder #a #p))
= let aux (x y:history a p)
(f:frame_preserving_upd (pcm_history #a #p) x y)
(v:history a p)
: Lemma
(requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()]
= let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame = FStar.IndefiniteDescription.indefinite_description_ghost
(history a p) (fun frame -> composable pcm x frame /\ op pcm frame x == v) in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
()
#pop-options
let extend_history' #a #p (h0:history a p{Current? h0})
(v:a{p (hval h0) v}) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val extend_history' (#a #p: _) (h0: history a p {Current? h0}) (v: a{p (hval h0) v}) : history a p | [] | Steel.Preorder.extend_history' | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
h0: Steel.Preorder.history a p {Current? h0} ->
v: a{p (FStar.Ghost.reveal (Steel.Preorder.hval h0)) v}
-> Steel.Preorder.history a p | {
"end_col": 21,
"end_line": 416,
"start_col": 2,
"start_line": 415
} |
Prims.Tot | val history_composable (#a #p: _) : symrel (history a p) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one | val history_composable (#a #p: _) : symrel (history a p)
let history_composable #a #p : symrel (history a p) = | false | null | false | fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 -> p_composable p h0 h1
| Witnessed h0, Current h1 f | Current h1 f, Witnessed h0 -> extends #a #p h1 h0
| Current h0 f0, Current h1 f1 -> h0 == h1 /\ (sum_perm f0 f1).v <=. one | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"FStar.Pervasives.Native.Mktuple2",
"Steel.Preorder.hist",
"Steel.Preorder.p_composable",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.extends",
"Prims.l_and",
"Prims.eq2",
"Prims.b2t",
"FStar.Real.op_Less_Equals_Dot",
"Steel.FractionalPermission.__proj__MkPerm__item__v",
"Steel.FractionalPermission.sum_perm",
"FStar.Real.one",
"Prims.prop",
"FStar.PCM.symrel"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val history_composable (#a #p: _) : symrel (history a p) | [] | Steel.Preorder.history_composable | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.PCM.symrel (Steel.Preorder.history a p) | {
"end_col": 32,
"end_line": 307,
"start_col": 4,
"start_line": 298
} |
FStar.Pervasives.Lemma | val p_op_extends (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma
(ensures
((p_op q x y) `extends` x /\ (p_op q x y) `extends` y /\
(p_op q x y == x \/ p_op q x y == y))) [SMTPat (p_op q x y)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x | val p_op_extends (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma
(ensures
((p_op q x y) `extends` x /\ (p_op q x y) `extends` y /\
(p_op q x y == x \/ p_op q x y == y))) [SMTPat (p_op q x y)]
let p_op_extends (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma
(ensures
((p_op q x y) `extends` x /\ (p_op q x y) `extends` y /\
(p_op q x y == x \/ p_op q x y == y))) [SMTPat (p_op q x y)] = | false | null | true | extends_length_eq x y;
extends_length_eq y x | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Steel.Preorder.p_composable",
"Steel.Preorder.extends_length_eq",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Preorder.extends",
"Steel.Preorder.p_op",
"Prims.l_or",
"Prims.eq2",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y))) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p_op_extends (#a: Type u#a) (q: preorder a) (x: hist q) (y: hist q {p_composable q x y})
: Lemma
(ensures
((p_op q x y) `extends` x /\ (p_op q x y) `extends` y /\
(p_op q x y == x \/ p_op q x y == y))) [SMTPat (p_op q x y)] | [] | Steel.Preorder.p_op_extends | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
q: FStar.Preorder.preorder a ->
x: Steel.Preorder.hist q ->
y: Steel.Preorder.hist q {Steel.Preorder.p_composable q x y}
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.extends (Steel.Preorder.p_op q x y) x /\
Steel.Preorder.extends (Steel.Preorder.p_op q x y) y /\
(Steel.Preorder.p_op q x y == x \/ Steel.Preorder.p_op q x y == y))
[SMTPat (Steel.Preorder.p_op q x y)] | {
"end_col": 25,
"end_line": 142,
"start_col": 4,
"start_line": 141
} |
Prims.Tot | val hperm (#a #p: _) (h: history a p {Current? h}) : perm | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f | val hperm (#a #p: _) (h: history a p {Current? h}) : perm
let hperm #a #p (h: history a p {Current? h}) : perm = | false | null | false | match h with | Current _ f -> f | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hperm (#a #p: _) (h: history a p {Current? h}) : perm | [] | Steel.Preorder.hperm | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h: Steel.Preorder.history a p {Current? h} -> Steel.FractionalPermission.perm | {
"end_col": 20,
"end_line": 294,
"start_col": 2,
"start_line": 293
} |
FStar.Pervasives.Lemma | val p_op_nil (#a: Type u#a) (q: preorder a) (x: hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x)) [SMTPat (p_composable q x [])] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl | val p_op_nil (#a: Type u#a) (q: preorder a) (x: hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x)) [SMTPat (p_composable q x [])]
let rec p_op_nil (#a: Type u#a) (q: preorder a) (x: hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x)) [SMTPat (p_composable q x [])] = | false | null | true | match x with
| [] -> ()
| _ :: tl -> p_op_nil q tl | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"Prims.list",
"Steel.Preorder.p_op_nil",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Preorder.p_composable",
"Prims.Nil",
"Prims.eq2",
"Steel.Preorder.p_op",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x)) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p_op_nil (#a: Type u#a) (q: preorder a) (x: hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x)) [SMTPat (p_composable q x [])] | [
"recursion"
] | Steel.Preorder.p_op_nil | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a -> x: Steel.Preorder.hist q
-> FStar.Pervasives.Lemma
(ensures Steel.Preorder.p_composable q x [] /\ Steel.Preorder.p_op q x [] == x)
[SMTPat (Steel.Preorder.p_composable q x [])] | {
"end_col": 28,
"end_line": 150,
"start_col": 4,
"start_line": 148
} |
FStar.Pervasives.Lemma | val lem_is_unit (#a #p: _) (x: history a p)
: Lemma (history_composable x unit_history /\ history_compose x unit_history == x) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h []) | val lem_is_unit (#a #p: _) (x: history a p)
: Lemma (history_composable x unit_history /\ history_compose x unit_history == x)
let lem_is_unit #a #p (x: history a p)
: Lemma (history_composable x unit_history /\ history_compose x unit_history == x) = | false | null | true | match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h: hist p). p_composable p h []);
assert (forall (h: hist p). p_op p h [] == h);
assert (forall (h: vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h []) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Steel.Preorder.hist",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Prims._assert",
"Steel.Preorder.extends",
"Prims.Nil",
"Prims.unit",
"Prims.l_not",
"Prims.eq2",
"Prims.list",
"Prims.l_Forall",
"Steel.Preorder.p_op",
"Steel.Preorder.p_composable",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.Preorder.history_composable",
"Steel.Preorder.unit_history",
"Steel.Preorder.history_compose",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\ | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lem_is_unit (#a #p: _) (x: history a p)
: Lemma (history_composable x unit_history /\ history_compose x unit_history == x) | [] | Steel.Preorder.lem_is_unit | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | x: Steel.Preorder.history a p
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.history_composable x Steel.Preorder.unit_history /\
Steel.Preorder.history_compose x Steel.Preorder.unit_history == x) | {
"end_col": 33,
"end_line": 332,
"start_col": 4,
"start_line": 325
} |
FStar.Pervasives.Lemma | val lift_fact_is_stable (#a #p: _) (f: property a {FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p) (lift_fact f) (preorder_of_pcm pcm_history)) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lift_fact_is_stable #a #p (f:property a{FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p)
(lift_fact f)
(preorder_of_pcm pcm_history))
= assert (FStar.Preorder.stable #(history a p) (lift_fact f) pcm_history_preorder);
pcm_history_induces_preorder #a #p;
stability #(history a p) (lift_fact f) pcm_history_preorder pcm_history | val lift_fact_is_stable (#a #p: _) (f: property a {FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p) (lift_fact f) (preorder_of_pcm pcm_history))
let lift_fact_is_stable #a #p (f: property a {FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p) (lift_fact f) (preorder_of_pcm pcm_history)) = | false | null | true | assert (FStar.Preorder.stable #(history a p) (lift_fact f) pcm_history_preorder);
pcm_history_induces_preorder #a #p;
stability #(history a p) (lift_fact f) pcm_history_preorder pcm_history | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.relation",
"FStar.Preorder.preorder_rel",
"Steel.Preorder.property",
"FStar.Preorder.stable",
"Steel.Preorder.stability",
"Steel.Preorder.history",
"Steel.Preorder.lift_fact",
"Steel.Preorder.pcm_history_preorder",
"Steel.Preorder.pcm_history",
"Prims.unit",
"Steel.Preorder.pcm_history_induces_preorder",
"Prims._assert",
"Prims.l_True",
"Prims.squash",
"Steel.Preorder.preorder_of_pcm",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
}
let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0
#push-options "--z3rlimit_factor 8 --ifuel 1 --fuel 0 --warn_error -271"
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p)
(pcm_history_preorder #a #p))
= let aux (x y:history a p)
(f:frame_preserving_upd (pcm_history #a #p) x y)
(v:history a p)
: Lemma
(requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()]
= let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame = FStar.IndefiniteDescription.indefinite_description_ghost
(history a p) (fun frame -> composable pcm x frame /\ op pcm frame x == v) in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
()
#pop-options
let extend_history' #a #p (h0:history a p{Current? h0})
(v:a{p (hval h0) v})
: history a p
= let Current h f = h0 in
Current (v :: h) f
let extend_history'_is_frame_preserving #a #p
(h0:history a p{Current? h0 /\ hperm h0 == full_perm})
(v:a{p (hval h0) v})
: Lemma (frame_preserving pcm_history h0 (extend_history' h0 v))
= ()
let history_val #a #p (h:history a p) (v:Ghost.erased a) (f:perm)
: prop
= Current? h /\ hval h == v /\ hperm h == f /\ f.v <=. one
let split_current #a #p (h:history a p { Current? h /\ (Current?.f h).v <=. one })
: half:history a p {
Current? h /\
composable pcm_history half half /\
op pcm_history half half == h /\
Current?.h half == Current?.h h /\
history_val half (hval h) (Current?.f half)
}
= let Current v p = h in
assert_spinoff (sum_perm (half_perm p) (half_perm p) == p);
Current v (half_perm p)
let lift_fact #a #p (f:property a)
: property (history a p)
= fun history ->
match history with
| Witnessed h -> Cons? h /\ f (Cons?.hd h)
| Current h _ -> f (hval history)
let lift_fact_is_stable #a #p (f:property a{FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p)
(lift_fact f) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lift_fact_is_stable (#a #p: _) (f: property a {FStar.Preorder.stable f p})
: Lemma (FStar.Preorder.stable #(history a p) (lift_fact f) (preorder_of_pcm pcm_history)) | [] | Steel.Preorder.lift_fact_is_stable | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: Steel.Preorder.property a {FStar.Preorder.stable f p}
-> FStar.Pervasives.Lemma
(ensures
FStar.Preorder.stable (Steel.Preorder.lift_fact f)
(Steel.Preorder.preorder_of_pcm Steel.Preorder.pcm_history)) | {
"end_col": 75,
"end_line": 453,
"start_col": 4,
"start_line": 451
} |
Prims.Tot | val pcm_history_preorder (#a #p: _) : preorder (history a p) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0 | val pcm_history_preorder (#a #p: _) : preorder (history a p)
let pcm_history_preorder #a #p : preorder (history a p) = | false | null | false | fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ -> vh1 `extends` vh0 | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"FStar.Pervasives.Native.Mktuple2",
"Steel.Preorder.hist",
"Steel.Preorder.extends",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
} | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pcm_history_preorder (#a #p: _) : preorder (history a p) | [] | Steel.Preorder.pcm_history_preorder | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Preorder.preorder (Steel.Preorder.history a p) | {
"end_col": 23,
"end_line": 374,
"start_col": 2,
"start_line": 368
} |
FStar.Pervasives.Lemma | val pcm_of_preorder_induces_extends (#a: Type u#a) (q: preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
() | val pcm_of_preorder_induces_extends (#a: Type u#a) (q: preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
let pcm_of_preorder_induces_extends (#a: Type u#a) (q: preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends)) = | false | null | true | let fp_full (x y: hist q) (f: frame_preserving_upd (pcm_of_preorder q) x y) (v: hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v) (ensures extends (f v) v) [SMTPat ()] =
assert (composable (pcm_of_preorder q) x v)
in
() | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.hist",
"FStar.PCM.frame_preserving_upd",
"Steel.Preorder.pcm_of_preorder",
"Prims.unit",
"FStar.PCM.compatible",
"Prims.squash",
"Steel.Preorder.extends",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Prims._assert",
"FStar.PCM.composable",
"Prims.l_True",
"Steel.Preorder.induces_preorder",
"Steel.Preorder.flip"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pcm_of_preorder_induces_extends (#a: Type u#a) (q: preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends)) | [] | Steel.Preorder.pcm_of_preorder_induces_extends | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Preorder.preorder a
-> FStar.Pervasives.Lemma
(ensures
Steel.Preorder.induces_preorder (Steel.Preorder.pcm_of_preorder q)
(Steel.Preorder.flip Steel.Preorder.extends)) | {
"end_col": 6,
"end_line": 257,
"start_col": 3,
"start_line": 252
} |
Prims.Tot | val split_current (#a #p: _) (h: history a p {Current? h /\ (Current?.f h).v <=. one})
: half:
history a p
{ Current? h /\ composable pcm_history half half /\ op pcm_history half half == h /\
Current?.h half == Current?.h h /\ history_val half (hval h) (Current?.f half) } | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let split_current #a #p (h:history a p { Current? h /\ (Current?.f h).v <=. one })
: half:history a p {
Current? h /\
composable pcm_history half half /\
op pcm_history half half == h /\
Current?.h half == Current?.h h /\
history_val half (hval h) (Current?.f half)
}
= let Current v p = h in
assert_spinoff (sum_perm (half_perm p) (half_perm p) == p);
Current v (half_perm p) | val split_current (#a #p: _) (h: history a p {Current? h /\ (Current?.f h).v <=. one})
: half:
history a p
{ Current? h /\ composable pcm_history half half /\ op pcm_history half half == h /\
Current?.h half == Current?.h h /\ history_val half (hval h) (Current?.f half) }
let split_current #a #p (h: history a p {Current? h /\ (Current?.f h).v <=. one})
: half:
history a p
{ Current? h /\ composable pcm_history half half /\ op pcm_history half half == h /\
Current?.h half == Current?.h h /\ history_val half (hval h) (Current?.f half) } = | false | null | false | let Current v p = h in
assert_spinoff (sum_perm (half_perm p) (half_perm p) == p);
Current v (half_perm p) | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"Prims.l_and",
"Prims.b2t",
"Steel.Preorder.uu___is_Current",
"FStar.Real.op_Less_Equals_Dot",
"Steel.FractionalPermission.__proj__MkPerm__item__v",
"Steel.Preorder.__proj__Current__item__f",
"FStar.Real.one",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.Current",
"Steel.FractionalPermission.half_perm",
"Prims.unit",
"FStar.Pervasives.assert_spinoff",
"Prims.eq2",
"Steel.FractionalPermission.sum_perm",
"FStar.PCM.composable",
"Steel.Preorder.pcm_history",
"FStar.PCM.op",
"Steel.Preorder.__proj__Current__item__h",
"Steel.Preorder.history_val",
"Steel.Preorder.hval"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
}
let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0
#push-options "--z3rlimit_factor 8 --ifuel 1 --fuel 0 --warn_error -271"
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p)
(pcm_history_preorder #a #p))
= let aux (x y:history a p)
(f:frame_preserving_upd (pcm_history #a #p) x y)
(v:history a p)
: Lemma
(requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()]
= let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame = FStar.IndefiniteDescription.indefinite_description_ghost
(history a p) (fun frame -> composable pcm x frame /\ op pcm frame x == v) in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
()
#pop-options
let extend_history' #a #p (h0:history a p{Current? h0})
(v:a{p (hval h0) v})
: history a p
= let Current h f = h0 in
Current (v :: h) f
let extend_history'_is_frame_preserving #a #p
(h0:history a p{Current? h0 /\ hperm h0 == full_perm})
(v:a{p (hval h0) v})
: Lemma (frame_preserving pcm_history h0 (extend_history' h0 v))
= ()
let history_val #a #p (h:history a p) (v:Ghost.erased a) (f:perm)
: prop
= Current? h /\ hval h == v /\ hperm h == f /\ f.v <=. one
let split_current #a #p (h:history a p { Current? h /\ (Current?.f h).v <=. one })
: half:history a p {
Current? h /\
composable pcm_history half half /\
op pcm_history half half == h /\
Current?.h half == Current?.h h /\
history_val half (hval h) (Current?.f half) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val split_current (#a #p: _) (h: history a p {Current? h /\ (Current?.f h).v <=. one})
: half:
history a p
{ Current? h /\ composable pcm_history half half /\ op pcm_history half half == h /\
Current?.h half == Current?.h h /\ history_val half (hval h) (Current?.f half) } | [] | Steel.Preorder.split_current | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | h: Steel.Preorder.history a p {Current? h /\ MkPerm?.v (Current?.f h) <=. FStar.Real.one}
-> half:
Steel.Preorder.history a p
{ Current? h /\ FStar.PCM.composable Steel.Preorder.pcm_history half half /\
FStar.PCM.op Steel.Preorder.pcm_history half half == h /\ Current?.h half == Current?.h h /\
Steel.Preorder.history_val half (Steel.Preorder.hval h) (Current?.f half) } | {
"end_col": 27,
"end_line": 438,
"start_col": 3,
"start_line": 436
} |
Prims.Tot | val pcm_history (#a #p: _) : pcm (history a p) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
} | val pcm_history (#a #p: _) : pcm (history a p)
let pcm_history #a #p : pcm (history a p) = | false | null | false | {
p = { composable = history_composable; op = history_compose; one = unit_history };
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True)
} | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"FStar.PCM.Mkpcm",
"Steel.Preorder.history",
"FStar.PCM.Mkpcm'",
"Steel.Preorder.history_composable",
"Steel.Preorder.history_compose",
"Steel.Preorder.unit_history",
"FStar.PCM.__proj__Mkpcm'__item__composable",
"Prims.unit",
"Steel.Preorder.assoc_l",
"Steel.Preorder.assoc_r",
"Steel.Preorder.lem_is_unit",
"Prims.l_True",
"Prims.prop",
"FStar.PCM.pcm"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pcm_history (#a #p: _) : pcm (history a p) | [] | Steel.Preorder.pcm_history | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.PCM.pcm (Steel.Preorder.history a p) | {
"end_col": 27,
"end_line": 364,
"start_col": 2,
"start_line": 355
} |
FStar.Pervasives.Lemma | val pcm_history_induces_preorder (#a #p: _)
: Lemma (induces_preorder (pcm_history #a #p) (pcm_history_preorder #a #p)) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p)
(pcm_history_preorder #a #p))
= let aux (x y:history a p)
(f:frame_preserving_upd (pcm_history #a #p) x y)
(v:history a p)
: Lemma
(requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()]
= let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ ->
assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame = FStar.IndefiniteDescription.indefinite_description_ghost
(history a p) (fun frame -> composable pcm x frame /\ op pcm frame x == v) in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
() | val pcm_history_induces_preorder (#a #p: _)
: Lemma (induces_preorder (pcm_history #a #p) (pcm_history_preorder #a #p))
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p) (pcm_history_preorder #a #p)) = | false | null | true | let aux (x y: history a p) (f: frame_preserving_upd (pcm_history #a #p) x y) (v: history a p)
: Lemma (requires compatible (pcm_history #a #p) x v)
(ensures (pcm_history_preorder #a #p) v (f v))
[SMTPat ()] =
let pcm = pcm_history #a #p in
let v1 = f v in
match x, v, v1 with
| Witnessed _, Witnessed _, Witnessed _ -> assert (composable pcm x v)
| Current _ _, Witnessed _, Witnessed _ -> ()
| Witnessed _, Current _ _, Witnessed _ -> ()
| Witnessed _, Witnessed _, Current _ _ -> assert (composable pcm x v)
| Current _ _, Witnessed _, Current _ _ -> ()
| Witnessed _, Current _ _, Current _ _ -> ()
| Current hx _, Current hv _, Witnessed _
| Current hx _, Current hv _, Current _ _ ->
let frame =
FStar.IndefiniteDescription.indefinite_description_ghost (history a p)
(fun frame -> composable pcm x frame /\ op pcm frame x == v)
in
match frame with
| Current hf _ -> ()
| Witnessed hf ->
assert (extends hx hf);
assert (hx == hv);
assert (composable pcm x (Witnessed hv))
in
() | {
"checked_file": "Steel.Preorder.fst.checked",
"dependencies": [
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Preorder.fst"
} | [
"lemma"
] | [
"FStar.Preorder.preorder",
"Steel.Preorder.history",
"FStar.PCM.frame_preserving_upd",
"Steel.Preorder.pcm_history",
"Prims.unit",
"FStar.PCM.compatible",
"Prims.squash",
"Steel.Preorder.pcm_history_preorder",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"FStar.Pervasives.Native.Mktuple3",
"Steel.Preorder.hist",
"Prims._assert",
"FStar.PCM.composable",
"Steel.Preorder.vhist",
"Steel.FractionalPermission.perm",
"Steel.Preorder.Witnessed",
"Prims.eq2",
"Steel.Preorder.extends",
"Prims.l_and",
"FStar.PCM.op",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.prop",
"FStar.PCM.__proj__Mkpcm__item__refine",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.PCM.pcm",
"Prims.l_True",
"Steel.Preorder.induces_preorder"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Preorder
open FStar.PCM
open FStar.Preorder
/// This module explores the connection between PCM and preorders. More specifically, we show here
/// that any PCM induces a preorder relation, characterized by frame-preservation for any updates.
///
/// Furthermore, we also consider the reverse relationship where we derive a PCM for any preorder,
/// by taking as elements of the PCM the trace of all the states of the element.
(**** PCM to preoder *)
(**
PCM [p] induces the preorder [q] if for any frame preserving update of [x] to [y],
the argument and result of the frame preserving update are related by q
*)
let induces_preorder (#a:Type u#a) (p:pcm a) (q:preorder a) =
forall (x y:a) (f:frame_preserving_upd p x y) (v:a).
p.refine v ==> compatible p x v ==> q v (f v)
(**
We can define a canonical preorder from any PCM by taking the quantified conjunction over all the
preorders [q] induced by this PCM.
*)
let preorder_of_pcm (#a:Type u#a) (p:pcm a) : preorder a =
fun x y -> forall (q:preorder a). induces_preorder p q ==> q x y
let frame_preserving_upd_is_preorder_preserving (#a:Type u#a) (p:pcm a)
(x y:a) (f:frame_preserving_upd p x y)
(v_old:a{p.refine v_old /\ compatible p x v_old})
: Lemma ((preorder_of_pcm p) v_old (f v_old))
= ()
(**
This canonical preorder enjoys the nice property that it preserves fact stability of any
induced preorder
*)
let stability (#a: Type u#a) (fact:a -> prop) (q:preorder a) (p:pcm a)
: Lemma
(requires stable fact q /\
induces_preorder p q)
(ensures stable fact (preorder_of_pcm p))
= ()
let stable_compatiblity (#a:Type u#a) (fact: a -> prop) (p:pcm a) (v v0 v1:a)
: Lemma
(requires
stable fact (preorder_of_pcm p) /\
p.refine v0 /\
fact v0 /\
p.refine v1 /\
frame_preserving p v v1 /\
compatible p v v0)
(ensures
fact v1)
= let f : frame_preserving_upd p v v1 = frame_preserving_val_to_fp_upd p v v1 in
frame_preserving_upd_is_preorder_preserving p v v1 f v0
(**** Preorder to PCM *)
(***** Building the preorder *)
(**
This predicate tells that the list [l] can represent a trace of elements whose evolution is
compatible with the preorder [q]
*)
let rec qhistory #a (q:preorder a) (l:list a) =
match l with
| []
| [_] -> True
| x::y::tl -> y `q` x /\ qhistory q (y::tl)
(** The history of a preorder is the type of all the traces compatible with that preorder *)
let hist (#a: Type u#a) (q:preorder a) = l:list a{qhistory q l}
(** Two compatible traces can extend each other *)
let rec extends' (#a: Type u#a) (#q:preorder a) (h0 h1:hist q) =
h0 == h1 \/ (Cons? h0 /\ extends' (Cons?.tl h0) h1)
(** This extension relation is transitive *)
let rec extends_trans #a (#q:preorder a) (x y z:hist q)
: Lemma (x `extends'` y /\ y `extends'` z ==> x `extends'` z)
[SMTPat (x `extends'` y);
SMTPat (y `extends'` z)]
= match x with
| [] -> ()
| _::tl -> extends_trans tl y z
(** And it is also reflexive, so extensibility on traces is a preorder on traces *)
let extends (#a: Type u#a) (#q:preorder a) : preorder (hist q) = extends'
module L = FStar.List.Tot
(** If [h0] extends by [h1], then the length of [h0] is superior *)
let rec extends_length_eq (#a: Type u#a) (#q:preorder a) (h0 h1:hist q)
: Lemma (ensures (extends h0 h1 ==> h0 == h1 \/ L.length h0 > L.length h1))
[SMTPat (extends h0 h1)]
= match h0 with
| [] -> ()
| hd::tl -> extends_length_eq tl h1
(**
We build our relation of composability for traces by reflexing the extension to ensure
symmetry
*)
let p_composable (#a: Type u#a) (q:preorder a) : symrel (hist q) =
fun x y -> extends x y \/ extends y x
(** The operation for the PCM is to return the full trace of two extensible traces *)
let p_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y}) : hist q =
if L.length x >= L.length y
then x
else if L.length x = L.length y
then (assert (x == y); x)
else y
(** The operation actually implements extension *)
let p_op_extends (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (ensures (p_op q x y `extends` x /\
p_op q x y `extends` y /\
(p_op q x y == x \/ p_op q x y == y)))
[SMTPat (p_op q x y)]
= extends_length_eq x y;
extends_length_eq y x
(** And the empty trace is the unit element *)
let rec p_op_nil (#a: Type u#a) (q:preorder a) (x:hist q)
: Lemma (ensures (p_composable q x [] /\ p_op q x [] == x))
[SMTPat (p_composable q x [])]
= match x with
| [] -> ()
| _::tl -> p_op_nil q tl
(** We can finally define our PCM with these operations *)
let p (#a: Type u#a) (q:preorder a) : pcm' (hist q) = {
composable = p_composable q;
op = p_op q;
one = []
}
(** Composability is commutative *)
let comm (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires p_composable q x y)
(ensures p_composable q y x)
= ()
(** As well as the compose operation *)
let comm_op (#a: Type u#a) (q:preorder a) (x:hist q) (y:hist q{p_composable q x y})
: Lemma (p_op q x y == p_op q y x)
= extends_length_eq x y;
extends_length_eq y x
(** If [z] extends [x] and [y], then [x] and [y] are extending one or another *)
let rec extends_disjunction (#a: Type u#a) (#q:preorder a) (x y z:hist q)
: Lemma (z `extends` x /\ z `extends` y ==> x `extends` y \/ y `extends` x)
[SMTPat (z `extends` x);
SMTPat (z `extends` y)]
= match z with
| [] -> ()
| _::tl -> extends_disjunction x y tl
(** If [x] extends [y], then the two heads of the traces are still related by the preorder *)
let rec extends_related_head (#a: Type u#a) (#q:preorder a) (x y:hist q)
: Lemma
(ensures
x `extends` y /\
Cons? x /\
Cons? y ==> Cons?.hd y `q` Cons?.hd x)
[SMTPat (x `extends` y)]
= match x with
| [] -> ()
| _::tl -> extends_related_head tl y
(** Finally, we can have our fully-fledged PCM from the preorder *)
let pcm_of_preorder (#a: Type u#a) (q:preorder a) : pcm (hist q) = {
p = p q;
comm = comm_op q;
assoc = (fun _ _ _ -> ());
assoc_r = (fun _ _ _ -> ());
is_unit = (fun _ -> ());
refine = (fun _ -> True)
}
(***** Using the preorder *)
(**
We check that the preorder derived from the PCM derived from the preorder
satisfies the same properties as the original preorder. Here, we get back history
extension from frame-preserving updates.
*)
let frame_preserving_q_aux (#a : Type u#a) (q:preorder a) (x y:hist q) (z:hist q)
: Lemma (requires (frame_preserving (pcm_of_preorder q) x y /\ compatible (pcm_of_preorder q) x z))
(ensures (y `extends` z))
= ()
(** A non-empty history *)
let vhist (#a: Type u#a) (q:preorder a) = h:hist q{Cons? h}
(** Get the current value from an history *)
let curval (#a: Type u#a) (#q:preorder a) (v:vhist q) = Cons?.hd v
(**
Given a frame-preserving update from [x] to [y]
for any value of resource [z] (compatible with [x])
the new value [y] advances the history [z] in a preorder respecting manner
*)
let frame_preserving_q (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> curval z `q` curval y))
= ()
(** Still given a frame-preserving update from [x] to [y], this update extends the history *)
let frame_preserving_extends (#a: Type u#a) (q:preorder a) (x y:vhist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> y `extends` z))
= ()
(** Helper function that flips a preoder *)
let flip (#a: Type u#a) (p:preorder a) : preorder a = fun x y -> p y x
(**
What is the preorder induced from the PCM induced by preorder [q]? It turns out that
it is the flipped of [q], reversed extension.
*)
let frame_preserving_extends2 (#a: Type u#a) (q:preorder a) (x y:hist q)
: Lemma (requires frame_preserving (pcm_of_preorder q) x y)
(ensures (forall (z:hist q). compatible (pcm_of_preorder q) x z ==> z `flip extends` y))
[SMTPat (frame_preserving (pcm_of_preorder q) x y)]
= ()
#push-options "--warn_error -271"
let pcm_of_preorder_induces_extends (#a: Type u#a) (q:preorder a)
: Lemma (induces_preorder (pcm_of_preorder q) (flip extends))
= let fp_full (x y:hist q) (f:frame_preserving_upd (pcm_of_preorder q) x y) (v:hist q)
: Lemma (requires compatible (pcm_of_preorder q) x v)
(ensures extends (f v) v)
[SMTPat ()]
= assert (composable (pcm_of_preorder q) x v) in
()
#pop-options
let extend_history (#a:Type u#a) (#q:preorder a) (h0:vhist q) (v:a{q (curval h0) v})
: h1:vhist q{h1 `extends` h0}
= v :: h0
let property (a:Type)
= a -> prop
let stable_property (#a:Type) (pcm:pcm a)
= fact:property a {
FStar.Preorder.stable fact (preorder_of_pcm pcm)
}
let fact_valid_compat (#a:Type) (#pcm:pcm a)
(fact:stable_property pcm)
(v:a)
= forall z. compatible pcm v z ==> fact z
open Steel.FractionalPermission
open FStar.Real
noeq
type history (a:Type) (p:preorder a) =
| Witnessed : hist p -> history a p
| Current : h:vhist p -> f:perm -> history a p
let hval_tot #a #p (h:history a p{Current? h}) : a =
match h with
| Current h _ -> curval h
let hval #a #p (h:history a p{Current? h}) : Ghost.erased a =
hval_tot h
let hperm #a #p (h:history a p{Current? h}) : perm =
match h with
| Current _ f -> f
let history_composable #a #p
: symrel (history a p)
= fun h0 h1 ->
match h0, h1 with
| Witnessed h0, Witnessed h1 ->
p_composable p h0 h1
| Witnessed h0, Current h1 f
| Current h1 f, Witnessed h0 ->
extends #a #p h1 h0
| Current h0 f0, Current h1 f1 ->
h0 == h1 /\
(sum_perm f0 f1).v <=. one
let history_compose #a #p (h0:history a p) (h1:history a p{history_composable h0 h1})
: history a p
= match h0, h1 with
| Witnessed h0, Witnessed h1 ->
Witnessed (p_op p h0 h1)
| Current h0 f, Witnessed h1
| Witnessed h1, Current h0 f ->
Current (p_op p h1 h0) f
| Current h0 f0, Current _ f1 ->
Current h0 (sum_perm f0 f1)
let unit_history #a #p : history a p = Witnessed []
let lem_is_unit #a #p (x:history a p)
: Lemma (history_composable x unit_history /\
history_compose x unit_history == x)
= match x with
| Witnessed h -> ()
| Current h _ ->
assert (forall (h:hist p). p_composable p h []);
assert (forall (h:hist p). p_op p h [] == h);
assert (forall (h:vhist p). extends #a #p h []);
assert (h =!= []);
assert (extends #a #p h [])
#push-options "--z3rlimit_factor 2"
let assoc_l #a #p (x y:history a p)
(z:history a p{history_composable y z /\
history_composable x (history_compose y z)})
: Lemma (history_composable x y /\
history_composable (history_compose x y) z /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
let assoc_r #a #p (x y:history a p)
(z:history a p{history_composable x y /\
history_composable (history_compose x y) z})
: Lemma (history_composable y z /\
history_composable x (history_compose y z) /\
history_compose (history_compose x y) z ==
history_compose x (history_compose y z))
= ()
#pop-options
let pcm_history #a #p : pcm (history a p) = {
p = {
composable = history_composable;
op = history_compose;
one = unit_history
};
comm = (fun _ _ -> ());
assoc = assoc_l;
assoc_r = assoc_r;
is_unit = lem_is_unit;
refine = (fun _ -> True);
}
let pcm_history_preorder #a #p : preorder (history a p) =
fun h0 h1 ->
match h0, h1 with
| Witnessed vh0, Witnessed vh1
| Current vh0 _, Witnessed vh1
| Witnessed vh0, Current vh1 _
| Current vh0 _, Current vh1 _ ->
vh1 `extends` vh0
#push-options "--z3rlimit_factor 8 --ifuel 1 --fuel 0 --warn_error -271"
let pcm_history_induces_preorder #a #p
: Lemma (induces_preorder (pcm_history #a #p) | false | false | Steel.Preorder.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pcm_history_induces_preorder (#a #p: _)
: Lemma (induces_preorder (pcm_history #a #p) (pcm_history_preorder #a #p)) | [] | Steel.Preorder.pcm_history_induces_preorder | {
"file_name": "lib/steel/Steel.Preorder.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | FStar.Pervasives.Lemma
(ensures
Steel.Preorder.induces_preorder Steel.Preorder.pcm_history Steel.Preorder.pcm_history_preorder) | {
"end_col": 6,
"end_line": 409,
"start_col": 3,
"start_line": 380
} |
Prims.Pure | val zip3 (#a1 #a2 #a3:Type) (l1:list a1) (l2:list a2) (l3:list a3)
: Pure (list (a1 * a2 * a3))
(requires (let n = length l1 in n == length l2 /\ n == length l3))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "FStar.List.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let zip3 #a1 #a2 #a3 l1 l2 l3 = map3 (fun x y z -> x,y,z) l1 l2 l3 | val zip3 (#a1 #a2 #a3:Type) (l1:list a1) (l2:list a2) (l3:list a3)
: Pure (list (a1 * a2 * a3))
(requires (let n = length l1 in n == length l2 /\ n == length l3))
(ensures (fun _ -> True))
let zip3 #a1 #a2 #a3 l1 l2 l3 = | false | null | false | map3 (fun x y z -> x, y, z) l1 l2 l3 | {
"checked_file": "FStar.List.Pure.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.List.Pure.Base.fst"
} | [] | [
"Prims.list",
"FStar.List.Pure.Base.map3",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.Mktuple3"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.List.Pure.Base
open FStar.List.Tot.Base
(** Functions on list with a pure specification *)
(** [map2] takes a pair of list of the same length [x1; ...; xn] [y1; ... ; yn]
and return the list [f x1 y1; ... ; f xn yn] *)
val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1)
let rec map2 #a1 #a2 #b f l1 l2 =
match l1, l2 with
| [], [] -> []
| x1::xs1, x2::xs2 -> f x1 x2 :: map2 f xs1 xs2
(** [map3] takes three lists of the same length [x1; ...; xn]
[y1; ... ; yn] [z1; ... ; zn] and return the list
[f x1 y1 z1; ... ; f xn yn zn] *)
val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1)
let rec map3 #a1 #a2 #a3 #b f l1 l2 l3 =
match l1, l2, l3 with
| [], [], [] -> []
| x1::xs1, x2::xs2, x3::xs3 -> f x1 x2 x3 :: map3 f xs1 xs2 xs3
(** [zip] takes a pair of list of the same length and returns
the list of index-wise pairs *)
val zip (#a1 #a2:Type) (l1:list a1) (l2:list a2)
: Pure (list (a1 * a2))
(requires (let n = length l1 in n == length l2))
(ensures (fun _ -> True))
let zip #a1 #a2 l1 l2 = map2 (fun x y -> x, y) l1 l2
(** [zip3] takes a 3-tuple of list of the same length and returns
the list of index-wise 3-tuples *)
val zip3 (#a1 #a2 #a3:Type) (l1:list a1) (l2:list a2) (l3:list a3)
: Pure (list (a1 * a2 * a3))
(requires (let n = length l1 in n == length l2 /\ n == length l3)) | false | false | FStar.List.Pure.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val zip3 (#a1 #a2 #a3:Type) (l1:list a1) (l2:list a2) (l3:list a3)
: Pure (list (a1 * a2 * a3))
(requires (let n = length l1 in n == length l2 /\ n == length l3))
(ensures (fun _ -> True)) | [] | FStar.List.Pure.Base.zip3 | {
"file_name": "ulib/FStar.List.Pure.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l1: Prims.list a1 -> l2: Prims.list a2 -> l3: Prims.list a3
-> Prims.Pure (Prims.list ((a1 * a2) * a3)) | {
"end_col": 66,
"end_line": 70,
"start_col": 32,
"start_line": 70
} |
Prims.Pure | val zip (#a1 #a2:Type) (l1:list a1) (l2:list a2)
: Pure (list (a1 * a2))
(requires (let n = length l1 in n == length l2))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "FStar.List.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let zip #a1 #a2 l1 l2 = map2 (fun x y -> x, y) l1 l2 | val zip (#a1 #a2:Type) (l1:list a1) (l2:list a2)
: Pure (list (a1 * a2))
(requires (let n = length l1 in n == length l2))
(ensures (fun _ -> True))
let zip #a1 #a2 l1 l2 = | false | null | false | map2 (fun x y -> x, y) l1 l2 | {
"checked_file": "FStar.List.Pure.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.List.Pure.Base.fst"
} | [] | [
"Prims.list",
"FStar.List.Pure.Base.map2",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.List.Pure.Base
open FStar.List.Tot.Base
(** Functions on list with a pure specification *)
(** [map2] takes a pair of list of the same length [x1; ...; xn] [y1; ... ; yn]
and return the list [f x1 y1; ... ; f xn yn] *)
val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1)
let rec map2 #a1 #a2 #b f l1 l2 =
match l1, l2 with
| [], [] -> []
| x1::xs1, x2::xs2 -> f x1 x2 :: map2 f xs1 xs2
(** [map3] takes three lists of the same length [x1; ...; xn]
[y1; ... ; yn] [z1; ... ; zn] and return the list
[f x1 y1 z1; ... ; f xn yn zn] *)
val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1)
let rec map3 #a1 #a2 #a3 #b f l1 l2 l3 =
match l1, l2, l3 with
| [], [], [] -> []
| x1::xs1, x2::xs2, x3::xs3 -> f x1 x2 x3 :: map3 f xs1 xs2 xs3
(** [zip] takes a pair of list of the same length and returns
the list of index-wise pairs *)
val zip (#a1 #a2:Type) (l1:list a1) (l2:list a2)
: Pure (list (a1 * a2))
(requires (let n = length l1 in n == length l2)) | false | false | FStar.List.Pure.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val zip (#a1 #a2:Type) (l1:list a1) (l2:list a2)
: Pure (list (a1 * a2))
(requires (let n = length l1 in n == length l2))
(ensures (fun _ -> True)) | [] | FStar.List.Pure.Base.zip | {
"file_name": "ulib/FStar.List.Pure.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l1: Prims.list a1 -> l2: Prims.list a2 -> Prims.Pure (Prims.list (a1 * a2)) | {
"end_col": 52,
"end_line": 62,
"start_col": 24,
"start_line": 62
} |
Prims.Pure | val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1) | [
{
"abbrev": false,
"full_module": "FStar.List.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec map2 #a1 #a2 #b f l1 l2 =
match l1, l2 with
| [], [] -> []
| x1::xs1, x2::xs2 -> f x1 x2 :: map2 f xs1 xs2 | val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1)
let rec map2 #a1 #a2 #b f l1 l2 = | false | null | false | match l1, l2 with
| [], [] -> []
| x1 :: xs1, x2 :: xs2 -> f x1 x2 :: map2 f xs1 xs2 | {
"checked_file": "FStar.List.Pure.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.List.Pure.Base.fst"
} | [
""
] | [
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"Prims.Cons",
"FStar.List.Pure.Base.map2"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.List.Pure.Base
open FStar.List.Tot.Base
(** Functions on list with a pure specification *)
(** [map2] takes a pair of list of the same length [x1; ...; xn] [y1; ... ; yn]
and return the list [f x1 y1; ... ; f xn yn] *)
val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1) | false | false | FStar.List.Pure.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1) | [
"recursion"
] | FStar.List.Pure.Base.map2 | {
"file_name": "ulib/FStar.List.Pure.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a1 -> _: a2 -> b) -> l1: Prims.list a1 -> l2: Prims.list a2 -> Prims.Pure (Prims.list b) | {
"end_col": 49,
"end_line": 35,
"start_col": 2,
"start_line": 33
} |
Prims.Pure | val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1) | [
{
"abbrev": false,
"full_module": "FStar.List.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec map3 #a1 #a2 #a3 #b f l1 l2 l3 =
match l1, l2, l3 with
| [], [], [] -> []
| x1::xs1, x2::xs2, x3::xs3 -> f x1 x2 x3 :: map3 f xs1 xs2 xs3 | val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1)
let rec map3 #a1 #a2 #a3 #b f l1 l2 l3 = | false | null | false | match l1, l2, l3 with
| [], [], [] -> []
| x1 :: xs1, x2 :: xs2, x3 :: xs3 -> f x1 x2 x3 :: map3 f xs1 xs2 xs3 | {
"checked_file": "FStar.List.Pure.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.List.Pure.Base.fst"
} | [
""
] | [
"Prims.list",
"FStar.Pervasives.Native.Mktuple3",
"Prims.Nil",
"Prims.Cons",
"FStar.List.Pure.Base.map3"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.List.Pure.Base
open FStar.List.Tot.Base
(** Functions on list with a pure specification *)
(** [map2] takes a pair of list of the same length [x1; ...; xn] [y1; ... ; yn]
and return the list [f x1 y1; ... ; f xn yn] *)
val map2 (#a1 #a2 #b: Type)
(f: a1 -> a2 -> b)
(l1:list a1)
(l2:list a2)
: Pure (list b)
(requires (length l1 == length l2))
(ensures (fun _ -> True))
(decreases l1)
let rec map2 #a1 #a2 #b f l1 l2 =
match l1, l2 with
| [], [] -> []
| x1::xs1, x2::xs2 -> f x1 x2 :: map2 f xs1 xs2
(** [map3] takes three lists of the same length [x1; ...; xn]
[y1; ... ; yn] [z1; ... ; zn] and return the list
[f x1 y1 z1; ... ; f xn yn zn] *)
val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1) | false | false | FStar.List.Pure.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map3 (#a1 #a2 #a3 #b: Type)
(f: a1 -> a2 -> a3 -> b)
(l1:list a1)
(l2:list a2)
(l3:list a3)
: Pure (list b)
(requires (let n = length l1 in
(n == length l2 /\
n == length l3)))
(ensures (fun _ -> True))
(decreases l1) | [
"recursion"
] | FStar.List.Pure.Base.map3 | {
"file_name": "ulib/FStar.List.Pure.Base.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a1 -> _: a2 -> _: a3 -> b) -> l1: Prims.list a1 -> l2: Prims.list a2 -> l3: Prims.list a3
-> Prims.Pure (Prims.list b) | {
"end_col": 65,
"end_line": 54,
"start_col": 2,
"start_line": 52
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_32 = Vale.Def.Words_s.pow2_32 | let pow2_32 = | false | null | false | Vale.Def.Words_s.pow2_32 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.pow2_32"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = () | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_32 : Prims.int | [] | Vale.PPC64LE.Machine_s.pow2_32 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.int | {
"end_col": 45,
"end_line": 7,
"start_col": 21,
"start_line": 7
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat16 = Vale.Def.Words_s.nat16 | let nat16 = | false | null | false | Vale.Def.Words_s.nat16 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.nat16"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64 | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat16 : Type0 | [] | Vale.PPC64LE.Machine_s.nat16 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 41,
"end_line": 11,
"start_col": 19,
"start_line": 11
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_64 = Vale.Def.Words_s.pow2_64 | let pow2_64 = | false | null | false | Vale.Def.Words_s.pow2_64 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.pow2_64"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8 | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_64 : Prims.int | [] | Vale.PPC64LE.Machine_s.pow2_64 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.int | {
"end_col": 45,
"end_line": 8,
"start_col": 21,
"start_line": 8
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_8 = Vale.Def.Words_s.pow2_8 | let pow2_8 = | false | null | false | Vale.Def.Words_s.pow2_8 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.pow2_8"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_8 : Prims.int | [] | Vale.PPC64LE.Machine_s.pow2_8 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.int | {
"end_col": 43,
"end_line": 6,
"start_col": 20,
"start_line": 6
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat8 = Vale.Def.Words_s.nat8 | let nat8 = | false | null | false | Vale.Def.Words_s.nat8 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.nat8"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64 | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat8 : Type0 | [] | Vale.PPC64LE.Machine_s.nat8 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 39,
"end_line": 10,
"start_col": 18,
"start_line": 10
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32) | let vecs_t = | false | null | false | FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32) | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.restricted_t",
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.Machine_s.quad32"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15} | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vecs_t : Type0 | [] | Vale.PPC64LE.Machine_s.vecs_t | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 78,
"end_line": 41,
"start_col": 13,
"start_line": 41
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_cr0 (r:nat64) =
{ lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 } | let get_cr0 (r: nat64) = | false | null | false | { lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 } | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.nat64",
"Vale.PPC64LE.Machine_s.Mkcr0_t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Vale.PPC64LE.Machine_s.cr0_t"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32)
[@va_qattr] unfold let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f
[@va_qattr] unfold let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f
// Condition Register (CR) Field 0 is interpreted as individual 4-bits that can be set as the implicit
// results of certain fixed-point instructions.
// Fixed-point compare instructions in which CR field operand is default or 0 and fixed-point arithmetic
// instructions that have "." suffix in the instruction mnemonic (Rc=1) alter the CR Field 0 (CR0) fields.
// The fourth bit of CR0 reflects the Summary Overflow (SO) field of Fixed-Point Exception Register (XER).
type cr0_t = {
lt:bool; // negative result
gt:bool; // positive result
eq:bool; // zero result
}
// Fixed-Point Exception Register (XER) stores the status of overflow and carry occurrences of
// instructions that can overflow with OE=1 and carry. Compare instructions don't alter XER.
type xer_t = {
ov:bool; // Overflow
ca:bool; // Carry
}
noeq
type machine_stack =
| Machine_stack:
initial_r1:nat64{initial_r1 >= 65536} -> // Initial rsp pointer when entering the function
stack_mem:Map.t int nat8 -> // Stack contents
machine_stack
noeq type state = {
ok: bool;
regs: regs_t;
vecs: vecs_t;
cr0: cr0_t;
xer: xer_t;
ms_heap: heap_impl;
ms_stack: machine_stack;
ms_stackTaint: memTaint_t;
} | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_cr0 : r: Vale.PPC64LE.Machine_s.nat64 -> Vale.PPC64LE.Machine_s.cr0_t | [] | Vale.PPC64LE.Machine_s.get_cr0 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Vale.PPC64LE.Machine_s.nat64 -> Vale.PPC64LE.Machine_s.cr0_t | {
"end_col": 73,
"end_line": 82,
"start_col": 4,
"start_line": 82
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat64 = Vale.Def.Words_s.nat64 | let nat64 = | false | null | false | Vale.Def.Words_s.nat64 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.nat64"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} = | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat64 : Type0 | [] | Vale.PPC64LE.Machine_s.nat64 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 41,
"end_line": 17,
"start_col": 19,
"start_line": 17
} |
|
Prims.Tot | val valid_first_cmp_opr (o: cmp_opr) : bool | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_first_cmp_opr (o:cmp_opr) : bool =
CReg? o | val valid_first_cmp_opr (o: cmp_opr) : bool
let valid_first_cmp_opr (o: cmp_opr) : bool = | false | null | false | CReg? o | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.cmp_opr",
"Vale.PPC64LE.Machine_s.uu___is_CReg",
"Prims.bool"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32)
[@va_qattr] unfold let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f
[@va_qattr] unfold let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f
// Condition Register (CR) Field 0 is interpreted as individual 4-bits that can be set as the implicit
// results of certain fixed-point instructions.
// Fixed-point compare instructions in which CR field operand is default or 0 and fixed-point arithmetic
// instructions that have "." suffix in the instruction mnemonic (Rc=1) alter the CR Field 0 (CR0) fields.
// The fourth bit of CR0 reflects the Summary Overflow (SO) field of Fixed-Point Exception Register (XER).
type cr0_t = {
lt:bool; // negative result
gt:bool; // positive result
eq:bool; // zero result
}
// Fixed-Point Exception Register (XER) stores the status of overflow and carry occurrences of
// instructions that can overflow with OE=1 and carry. Compare instructions don't alter XER.
type xer_t = {
ov:bool; // Overflow
ca:bool; // Carry
}
noeq
type machine_stack =
| Machine_stack:
initial_r1:nat64{initial_r1 >= 65536} -> // Initial rsp pointer when entering the function
stack_mem:Map.t int nat8 -> // Stack contents
machine_stack
noeq type state = {
ok: bool;
regs: regs_t;
vecs: vecs_t;
cr0: cr0_t;
xer: xer_t;
ms_heap: heap_impl;
ms_stack: machine_stack;
ms_stackTaint: memTaint_t;
}
let get_cr0 (r:nat64) =
{ lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 }
type maddr = {
address: reg;
offset: int
}
type tmaddr:eqtype = maddr & taint
// Memory offset bound of 32-bit, 16-bit, and 8-bit load/store instructions
let valid_maddr_offset (n:int) : bool =
n >= -32768 && n <= 32767
// Memory offset bound of 64-bit load/store instructions
let valid_maddr_offset64 (n:int) : bool =
n >= -32768 && n <= 32764 && n % 4 = 0
// Memory offset bound of 128-bit load/store instructions
let valid_maddr_offset128 (n:int) : bool =
n >= -32768 && n <= 32752 && n % 16 = 0
type cmp_opr =
| CReg: r:reg -> cmp_opr
| CImm: n:imm16 -> cmp_opr | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_first_cmp_opr (o: cmp_opr) : bool | [] | Vale.PPC64LE.Machine_s.valid_first_cmp_opr | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | o: Vale.PPC64LE.Machine_s.cmp_opr -> Prims.bool | {
"end_col": 9,
"end_line": 108,
"start_col": 2,
"start_line": 108
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let quad32 = Vale.Def.Types_s.quad32 | let quad32 = | false | null | false | Vale.Def.Types_s.quad32 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} = | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val quad32 : Prims.eqtype | [] | Vale.PPC64LE.Machine_s.quad32 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.eqtype | {
"end_col": 43,
"end_line": 20,
"start_col": 20,
"start_line": 20
} |
|
Prims.Tot | val valid_maddr_offset64 (n: int) : bool | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_maddr_offset64 (n:int) : bool =
n >= -32768 && n <= 32764 && n % 4 = 0 | val valid_maddr_offset64 (n: int) : bool
let valid_maddr_offset64 (n: int) : bool = | false | null | false | n >= - 32768 && n <= 32764 && n % 4 = 0 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Prims.op_AmpAmp",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Minus",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.op_Modulus",
"Prims.bool"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32)
[@va_qattr] unfold let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f
[@va_qattr] unfold let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f
// Condition Register (CR) Field 0 is interpreted as individual 4-bits that can be set as the implicit
// results of certain fixed-point instructions.
// Fixed-point compare instructions in which CR field operand is default or 0 and fixed-point arithmetic
// instructions that have "." suffix in the instruction mnemonic (Rc=1) alter the CR Field 0 (CR0) fields.
// The fourth bit of CR0 reflects the Summary Overflow (SO) field of Fixed-Point Exception Register (XER).
type cr0_t = {
lt:bool; // negative result
gt:bool; // positive result
eq:bool; // zero result
}
// Fixed-Point Exception Register (XER) stores the status of overflow and carry occurrences of
// instructions that can overflow with OE=1 and carry. Compare instructions don't alter XER.
type xer_t = {
ov:bool; // Overflow
ca:bool; // Carry
}
noeq
type machine_stack =
| Machine_stack:
initial_r1:nat64{initial_r1 >= 65536} -> // Initial rsp pointer when entering the function
stack_mem:Map.t int nat8 -> // Stack contents
machine_stack
noeq type state = {
ok: bool;
regs: regs_t;
vecs: vecs_t;
cr0: cr0_t;
xer: xer_t;
ms_heap: heap_impl;
ms_stack: machine_stack;
ms_stackTaint: memTaint_t;
}
let get_cr0 (r:nat64) =
{ lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 }
type maddr = {
address: reg;
offset: int
}
type tmaddr:eqtype = maddr & taint
// Memory offset bound of 32-bit, 16-bit, and 8-bit load/store instructions
let valid_maddr_offset (n:int) : bool =
n >= -32768 && n <= 32767
// Memory offset bound of 64-bit load/store instructions | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_maddr_offset64 (n: int) : bool | [] | Vale.PPC64LE.Machine_s.valid_maddr_offset64 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.int -> Prims.bool | {
"end_col": 40,
"end_line": 97,
"start_col": 2,
"start_line": 97
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat32 = Vale.Def.Words_s.nat32 | let nat32 = | false | null | false | Vale.Def.Words_s.nat32 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.Def.Words_s.nat32"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8 | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat32 : Type0 | [] | Vale.PPC64LE.Machine_s.nat32 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 41,
"end_line": 12,
"start_col": 19,
"start_line": 12
} |
|
Prims.Tot | val vecs_make (f: (vec -> quad32)) : vecs_t | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f | val vecs_make (f: (vec -> quad32)) : vecs_t
let vecs_make (f: (vec -> quad32)) : vecs_t = | false | null | false | FStar.FunctionalExtensionality.on_dom vec f | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.Machine_s.quad32",
"FStar.FunctionalExtensionality.on_dom",
"Vale.PPC64LE.Machine_s.vecs_t"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32) | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vecs_make (f: (vec -> quad32)) : vecs_t | [] | Vale.PPC64LE.Machine_s.vecs_make | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (_: Vale.PPC64LE.Machine_s.vec -> Vale.PPC64LE.Machine_s.quad32) -> Vale.PPC64LE.Machine_s.vecs_t | {
"end_col": 105,
"end_line": 43,
"start_col": 62,
"start_line": 43
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64) | let regs_t = | false | null | false | FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64) | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.restricted_t",
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Machine_s.nat64"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15} | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val regs_t : Type0 | [] | Vale.PPC64LE.Machine_s.regs_t | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 77,
"end_line": 40,
"start_col": 13,
"start_line": 40
} |
|
Prims.Tot | val valid_maddr_offset (n: int) : bool | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_maddr_offset (n:int) : bool =
n >= -32768 && n <= 32767 | val valid_maddr_offset (n: int) : bool
let valid_maddr_offset (n: int) : bool = | false | null | false | n >= - 32768 && n <= 32767 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Prims.op_AmpAmp",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Minus",
"Prims.op_LessThanOrEqual",
"Prims.bool"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32)
[@va_qattr] unfold let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f
[@va_qattr] unfold let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f
// Condition Register (CR) Field 0 is interpreted as individual 4-bits that can be set as the implicit
// results of certain fixed-point instructions.
// Fixed-point compare instructions in which CR field operand is default or 0 and fixed-point arithmetic
// instructions that have "." suffix in the instruction mnemonic (Rc=1) alter the CR Field 0 (CR0) fields.
// The fourth bit of CR0 reflects the Summary Overflow (SO) field of Fixed-Point Exception Register (XER).
type cr0_t = {
lt:bool; // negative result
gt:bool; // positive result
eq:bool; // zero result
}
// Fixed-Point Exception Register (XER) stores the status of overflow and carry occurrences of
// instructions that can overflow with OE=1 and carry. Compare instructions don't alter XER.
type xer_t = {
ov:bool; // Overflow
ca:bool; // Carry
}
noeq
type machine_stack =
| Machine_stack:
initial_r1:nat64{initial_r1 >= 65536} -> // Initial rsp pointer when entering the function
stack_mem:Map.t int nat8 -> // Stack contents
machine_stack
noeq type state = {
ok: bool;
regs: regs_t;
vecs: vecs_t;
cr0: cr0_t;
xer: xer_t;
ms_heap: heap_impl;
ms_stack: machine_stack;
ms_stackTaint: memTaint_t;
}
let get_cr0 (r:nat64) =
{ lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 }
type maddr = {
address: reg;
offset: int
}
type tmaddr:eqtype = maddr & taint
// Memory offset bound of 32-bit, 16-bit, and 8-bit load/store instructions | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_maddr_offset (n: int) : bool | [] | Vale.PPC64LE.Machine_s.valid_maddr_offset | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.int -> Prims.bool | {
"end_col": 27,
"end_line": 93,
"start_col": 2,
"start_line": 93
} |
Prims.Tot | val regs_make (f: (reg -> nat64)) : regs_t | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f | val regs_make (f: (reg -> nat64)) : regs_t
let regs_make (f: (reg -> nat64)) : regs_t = | false | null | false | FStar.FunctionalExtensionality.on_dom reg f | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Machine_s.nat64",
"FStar.FunctionalExtensionality.on_dom",
"Vale.PPC64LE.Machine_s.regs_t"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64) | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val regs_make (f: (reg -> nat64)) : regs_t | [] | Vale.PPC64LE.Machine_s.regs_make | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (_: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.Machine_s.nat64) -> Vale.PPC64LE.Machine_s.regs_t | {
"end_col": 104,
"end_line": 42,
"start_col": 61,
"start_line": 42
} |
Prims.Tot | val valid_maddr_offset128 (n: int) : bool | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_maddr_offset128 (n:int) : bool =
n >= -32768 && n <= 32752 && n % 16 = 0 | val valid_maddr_offset128 (n: int) : bool
let valid_maddr_offset128 (n: int) : bool = | false | null | false | n >= - 32768 && n <= 32752 && n % 16 = 0 | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Prims.op_AmpAmp",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Minus",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.op_Modulus",
"Prims.bool"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64
let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i
unfold let quad32 = Vale.Def.Types_s.quad32
type reg = i:int{0 <= i /\ i < 32}
type vec = i:int{0 <= i /\ i < 32}
// Immediate operand of logical compare, and, or, and xor instructions
type imm16 = i:int{0 <= i && i <= 65535}
// Immediate operand of compare, add (with signed immediate) instructions
type simm16 = i:int{-32768 <= i && i <= 32767}
// Immediate operand of sub (with negative signed immediate) instruction
type nsimm16 = i:int{-32767 <= i && i <= 32768}
// Immediate operand of rotate, shift, and clear for 64-bit instructions
type bits64 = i:int{0 <= i && i < 64}
// Immediate operand of rotate, shift, and clear for 32-bit instructions
type bits32 = i:int{0 <= i && i < 32}
// Immediate operand of vector shift left double by octet
type quad32bytes = i:int{0 <= i && i < 16}
// Immediate operand of vector splat
type sim = i:int{-16 <= i && i < 15}
let regs_t = FStar.FunctionalExtensionality.restricted_t reg (fun _ -> nat64)
let vecs_t = FStar.FunctionalExtensionality.restricted_t vec (fun _ -> quad32)
[@va_qattr] unfold let regs_make (f:reg -> nat64) : regs_t = FStar.FunctionalExtensionality.on_dom reg f
[@va_qattr] unfold let vecs_make (f:vec -> quad32) : vecs_t = FStar.FunctionalExtensionality.on_dom vec f
// Condition Register (CR) Field 0 is interpreted as individual 4-bits that can be set as the implicit
// results of certain fixed-point instructions.
// Fixed-point compare instructions in which CR field operand is default or 0 and fixed-point arithmetic
// instructions that have "." suffix in the instruction mnemonic (Rc=1) alter the CR Field 0 (CR0) fields.
// The fourth bit of CR0 reflects the Summary Overflow (SO) field of Fixed-Point Exception Register (XER).
type cr0_t = {
lt:bool; // negative result
gt:bool; // positive result
eq:bool; // zero result
}
// Fixed-Point Exception Register (XER) stores the status of overflow and carry occurrences of
// instructions that can overflow with OE=1 and carry. Compare instructions don't alter XER.
type xer_t = {
ov:bool; // Overflow
ca:bool; // Carry
}
noeq
type machine_stack =
| Machine_stack:
initial_r1:nat64{initial_r1 >= 65536} -> // Initial rsp pointer when entering the function
stack_mem:Map.t int nat8 -> // Stack contents
machine_stack
noeq type state = {
ok: bool;
regs: regs_t;
vecs: vecs_t;
cr0: cr0_t;
xer: xer_t;
ms_heap: heap_impl;
ms_stack: machine_stack;
ms_stackTaint: memTaint_t;
}
let get_cr0 (r:nat64) =
{ lt = r >= 0x8000000000000000; gt = r < 0x8000000000000000; eq = r = 0 }
type maddr = {
address: reg;
offset: int
}
type tmaddr:eqtype = maddr & taint
// Memory offset bound of 32-bit, 16-bit, and 8-bit load/store instructions
let valid_maddr_offset (n:int) : bool =
n >= -32768 && n <= 32767
// Memory offset bound of 64-bit load/store instructions
let valid_maddr_offset64 (n:int) : bool =
n >= -32768 && n <= 32764 && n % 4 = 0
// Memory offset bound of 128-bit load/store instructions | false | true | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_maddr_offset128 (n: int) : bool | [] | Vale.PPC64LE.Machine_s.valid_maddr_offset128 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.int -> Prims.bool | {
"end_col": 41,
"end_line": 101,
"start_col": 2,
"start_line": 101
} |
Prims.Tot | val int_to_nat32 (i: int) : n: nat32{0 <= i && i < pow2_32 ==> i == n} | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i | val int_to_nat32 (i: int) : n: nat32{0 <= i && i < pow2_32 ==> i == n}
let int_to_nat32 (i: int) : n: nat32{0 <= i && i < pow2_32 ==> i == n} = | false | null | false | Vale.Def.Words_s.int_to_natN pow2_32 i | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Vale.Def.Words_s.int_to_natN",
"Vale.PPC64LE.Machine_s.pow2_32",
"Vale.PPC64LE.Machine_s.nat32",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i | false | false | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_to_nat32 (i: int) : n: nat32{0 <= i && i < pow2_32 ==> i == n} | [] | Vale.PPC64LE.Machine_s.int_to_nat32 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | i: Prims.int
-> n: Vale.PPC64LE.Machine_s.nat32{0 <= i && i < Vale.PPC64LE.Machine_s.pow2_32 ==> i == n} | {
"end_col": 40,
"end_line": 16,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | val int_to_nat8 (i: int) : n: nat8{0 <= i && i < pow2_8 ==> i == n} | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i | val int_to_nat8 (i: int) : n: nat8{0 <= i && i < pow2_8 ==> i == n}
let int_to_nat8 (i: int) : n: nat8{0 <= i && i < pow2_8 ==> i == n} = | false | null | false | Vale.Def.Words_s.int_to_natN pow2_8 i | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Vale.Def.Words_s.int_to_natN",
"Vale.PPC64LE.Machine_s.pow2_8",
"Vale.PPC64LE.Machine_s.nat8",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32 | false | false | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_to_nat8 (i: int) : n: nat8{0 <= i && i < pow2_8 ==> i == n} | [] | Vale.PPC64LE.Machine_s.int_to_nat8 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | i: Prims.int
-> n: Vale.PPC64LE.Machine_s.nat8{0 <= i && i < Vale.PPC64LE.Machine_s.pow2_8 ==> i == n} | {
"end_col": 39,
"end_line": 14,
"start_col": 2,
"start_line": 14
} |
Prims.Tot | val int_to_nat64 (i: int) : n: nat64{0 <= i && i < pow2_64 ==> i == n} | [
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_to_nat64 (i:int) : n:nat64{0 <= i && i < pow2_64 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_64 i | val int_to_nat64 (i: int) : n: nat64{0 <= i && i < pow2_64 ==> i == n}
let int_to_nat64 (i: int) : n: nat64{0 <= i && i < pow2_64 ==> i == n} = | false | null | false | Vale.Def.Words_s.int_to_natN pow2_64 i | {
"checked_file": "Vale.PPC64LE.Machine_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Machine_s.fst"
} | [
"total"
] | [
"Prims.int",
"Vale.Def.Words_s.int_to_natN",
"Vale.PPC64LE.Machine_s.pow2_64",
"Vale.PPC64LE.Machine_s.nat64",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2"
] | [] | module Vale.PPC64LE.Machine_s
open Vale.Arch.Heap
include Vale.Arch.HeapTypes_s
irreducible let va_qattr = ()
unfold let pow2_8 = Vale.Def.Words_s.pow2_8
unfold let pow2_32 = Vale.Def.Words_s.pow2_32
unfold let pow2_64 = Vale.Def.Words_s.pow2_64
unfold let nat8 = Vale.Def.Words_s.nat8
unfold let nat16 = Vale.Def.Words_s.nat16
unfold let nat32 = Vale.Def.Words_s.nat32
let int_to_nat8 (i:int) : n:nat8{0 <= i && i < pow2_8 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_8 i
let int_to_nat32 (i:int) : n:nat32{0 <= i && i < pow2_32 ==> i == n} =
Vale.Def.Words_s.int_to_natN pow2_32 i
unfold let nat64 = Vale.Def.Words_s.nat64 | false | false | Vale.PPC64LE.Machine_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_to_nat64 (i: int) : n: nat64{0 <= i && i < pow2_64 ==> i == n} | [] | Vale.PPC64LE.Machine_s.int_to_nat64 | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Machine_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | i: Prims.int
-> n: Vale.PPC64LE.Machine_s.nat64{0 <= i && i < Vale.PPC64LE.Machine_s.pow2_64 ==> i == n} | {
"end_col": 40,
"end_line": 19,
"start_col": 2,
"start_line": 19
} |
Prims.Tot | val op384_512:ops | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
} | val op384_512:ops
let op384_512:ops = | false | null | false | {
c0 = 28ul;
c1 = 34ul;
c2 = 39ul;
c3 = 14ul;
c4 = 18ul;
c5 = 41ul;
e0 = 1ul;
e1 = 8ul;
e2 = 7ul;
e3 = 19ul;
e4 = 61ul;
e5 = 6ul
} | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.Mkops",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op384_512:ops | [] | Hacl.Spec.SHA2.op384_512 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Spec.SHA2.ops | {
"end_col": 33,
"end_line": 73,
"start_col": 2,
"start_line": 70
} |
Prims.Tot | val op224_256:ops | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
} | val op224_256:ops
let op224_256:ops = | false | null | false | {
c0 = 2ul;
c1 = 13ul;
c2 = 22ul;
c3 = 6ul;
c4 = 11ul;
c5 = 25ul;
e0 = 7ul;
e1 = 18ul;
e2 = 3ul;
e3 = 17ul;
e4 = 19ul;
e5 = 10ul
} | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.Mkops",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op224_256:ops | [] | Hacl.Spec.SHA2.op224_256 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Spec.SHA2.ops | {
"end_col": 33,
"end_line": 65,
"start_col": 2,
"start_line": 62
} |
Prims.Tot | val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _Ch a x y z = (x &. y) ^. (~.x &. z) | val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = | false | null | false | (x &. y) ^. (~.x &. z) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Amp_Dot",
"Hacl.Spec.SHA2.op_Tilde_Dot"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._Ch | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
x: Spec.Hash.Definitions.word a ->
y: Spec.Hash.Definitions.word a ->
z: Spec.Hash.Definitions.word a
-> Spec.Hash.Definitions.word a | {
"end_col": 41,
"end_line": 123,
"start_col": 19,
"start_line": 123
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a} | let len_lt_max_a_t (a: sha2_alg) = | false | null | false | len: nat{len `less_than_max_input_length` a} | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Spec.Hash.Definitions.less_than_max_input_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0" | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val len_lt_max_a_t : a: Spec.Hash.Definitions.sha2_alg -> Type0 | [] | Hacl.Spec.SHA2.len_lt_max_a_t | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Type0 | {
"end_col": 77,
"end_line": 13,
"start_col": 34,
"start_line": 13
} |
|
Prims.Tot | val init (a: sha2_alg) : words_state a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let init (a:sha2_alg) : words_state a = h0 a | val init (a: sha2_alg) : words_state a
let init (a: sha2_alg) : words_state a = | false | null | false | h0 a | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.h0",
"Spec.Hash.Definitions.words_state"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val init (a: sha2_alg) : words_state a | [] | Hacl.Spec.SHA2.init | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Spec.Hash.Definitions.words_state a | {
"end_col": 44,
"end_line": 228,
"start_col": 40,
"start_line": 228
} |
Prims.Tot | val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z)) | val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = | false | null | false | (x &. y) ^. ((x &. z) ^. (y &. z)) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Amp_Dot"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._Maj | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
x: Spec.Hash.Definitions.word a ->
y: Spec.Hash.Definitions.word a ->
z: Spec.Hash.Definitions.word a
-> Spec.Hash.Definitions.word a | {
"end_col": 53,
"end_line": 127,
"start_col": 19,
"start_line": 127
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.