effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val ws_next (a: sha2_alg) (ws: k_w a) : k_w a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws | val ws_next (a: sha2_alg) (ws: k_w a) : k_w a
let ws_next (a: sha2_alg) (ws: k_w a) : k_w a = | false | null | false | Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.k_w",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.SHA2.ws_next_inner"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ws_next (a: sha2_alg) (ws: k_w a) : k_w a | [] | Hacl.Spec.SHA2.ws_next | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> ws: Hacl.Spec.SHA2.k_w a -> Hacl.Spec.SHA2.k_w a | {
"end_col": 53,
"end_line": 193,
"start_col": 2,
"start_line": 193
} |
Prims.Tot | val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st') | val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) = | false | null | false | let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st') | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.SHA2.num_rounds16",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.SHA2.k_w",
"Spec.Hash.Definitions.words_state",
"FStar.Pervasives.Native.Mktuple2",
"Prims.op_Subtraction",
"Hacl.Spec.SHA2.ws_next",
"Prims.bool",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.SHA2.shuffle_inner"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a | [] | Hacl.Spec.SHA2.shuffle_inner_loop | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
i: Prims.nat{i < Hacl.Spec.SHA2.num_rounds16 a} ->
ws_st: (Hacl.Spec.SHA2.k_w a * Spec.Hash.Definitions.words_state a)
-> Hacl.Spec.SHA2.k_w a * Spec.Hash.Definitions.words_state a | {
"end_col": 12,
"end_line": 219,
"start_col": 37,
"start_line": 216
} |
Prims.Tot | val mk_len_t (a: sha2_alg) (len: len_lt_max_a_t a) : len_t a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len) | val mk_len_t (a: sha2_alg) (len: len_lt_max_a_t a) : len_t a
let mk_len_t (a: sha2_alg) (len: len_lt_max_a_t a) : len_t a = | false | null | false | match a with
| SHA2_224
| SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61;
uint #U64 #PUB len)
| SHA2_384
| SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125;
uint #U128 #PUB len) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Lib.IntTypes.uint",
"Lib.IntTypes.U64",
"Lib.IntTypes.PUB",
"Prims.unit",
"FStar.Math.Lemmas.pow2_lt_compat",
"Lib.IntTypes.U128",
"Spec.Hash.Definitions.len_t"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a} | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_len_t (a: sha2_alg) (len: len_lt_max_a_t a) : len_t a | [] | Hacl.Spec.SHA2.mk_len_t | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> len: Hacl.Spec.SHA2.len_lt_max_a_t a
-> Spec.Hash.Definitions.len_t a | {
"end_col": 61,
"end_line": 20,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | val shuffle (a: sha2_alg) (ws: k_w a) (hash: words_state a) : Tot (words_state a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st | val shuffle (a: sha2_alg) (ws: k_w a) (hash: words_state a) : Tot (words_state a)
let shuffle (a: sha2_alg) (ws: k_w a) (hash: words_state a) : Tot (words_state a) = | false | null | false | let ws, st = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.k_w",
"Spec.Hash.Definitions.words_state",
"FStar.Pervasives.Native.tuple2",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.SHA2.num_rounds16",
"Hacl.Spec.SHA2.shuffle_inner_loop",
"FStar.Pervasives.Native.Mktuple2"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shuffle (a: sha2_alg) (ws: k_w a) (hash: words_state a) : Tot (words_state a) | [] | Hacl.Spec.SHA2.shuffle | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
ws: Hacl.Spec.SHA2.k_w a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 4,
"end_line": 225,
"start_col": 80,
"start_line": 223
} |
Prims.Tot | val word_n: sha2_alg -> Tot nat | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64 | val word_n: sha2_alg -> Tot nat
let word_n: sha2_alg -> Tot nat = | false | null | false | function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val word_n: sha2_alg -> Tot nat | [] | Hacl.Spec.SHA2.word_n | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.sha2_alg -> Prims.nat | {
"end_col": 29,
"end_line": 34,
"start_col": 34,
"start_line": 32
} |
Prims.Tot | val to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n | val to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a
let to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Hacl.Spec.SHA2.word_n",
"Lib.IntTypes.u32",
"Lib.IntTypes.u64",
"Spec.Hash.Definitions.word"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val to_word (a: sha2_alg) (n: nat{n < pow2 (word_n a)}) : word a | [] | Hacl.Spec.SHA2.to_word | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> n: Prims.nat{n < Prims.pow2 (Hacl.Spec.SHA2.word_n a)}
-> Spec.Hash.Definitions.word a | {
"end_col": 32,
"end_line": 40,
"start_col": 2,
"start_line": 38
} |
Prims.Tot | val op0 (a: sha2_alg) : Tot ops | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512 | val op0 (a: sha2_alg) : Tot ops
let op0: a: sha2_alg -> Tot ops = | false | null | false | function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.op224_256",
"Hacl.Spec.SHA2.op384_512",
"Hacl.Spec.SHA2.ops"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
} | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op0 (a: sha2_alg) : Tot ops | [] | Hacl.Spec.SHA2.op0 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Hacl.Spec.SHA2.ops | {
"end_col": 25,
"end_line": 81,
"start_col": 33,
"start_line": 77
} |
Prims.Tot | val num_rounds16 (a: sha2_alg) : n: pos{16 * n == size_k_w a} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5 | val num_rounds16 (a: sha2_alg) : n: pos{16 * n == size_k_w a}
let num_rounds16 (a: sha2_alg) : n: pos{16 * n == size_k_w a} = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.pos",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Hacl.Spec.SHA2.size_k_w"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val num_rounds16 (a: sha2_alg) : n: pos{16 * n == size_k_w a} | [] | Hacl.Spec.SHA2.num_rounds16 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> n: Prims.pos{16 * n == Hacl.Spec.SHA2.size_k_w a} | {
"end_col": 28,
"end_line": 46,
"start_col": 2,
"start_line": 44
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let k_w (a: sha2_alg) = lseq (word a) (block_word_length a) | let k_w (a: sha2_alg) = | false | null | false | lseq (word a) (block_word_length a) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.word",
"Spec.Hash.Definitions.block_word_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5 | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val k_w : a: Spec.Hash.Definitions.sha2_alg -> Type0 | [] | Hacl.Spec.SHA2.k_w | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Type0 | {
"end_col": 61,
"end_line": 48,
"start_col": 26,
"start_line": 48
} |
|
Prims.Tot | val op_Tilde_Dot: #a: sha2_alg -> word a -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC | val op_Tilde_Dot: #a: sha2_alg -> word a -> word a
let op_Tilde_Dot (#a: sha2_alg) : word a -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Tilde_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Tilde_Dot: #a: sha2_alg -> word a -> word a | [] | Hacl.Spec.SHA2.op_Tilde_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 43,
"end_line": 106,
"start_col": 2,
"start_line": 104
} |
Prims.Tot | val op_Hat_Dot: #a: sha2_alg -> word a -> word a -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC | val op_Hat_Dot: #a: sha2_alg -> word a -> word a -> word a
let op_Hat_Dot (#a: sha2_alg) : word a -> word a -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Hat_Dot: #a: sha2_alg -> word a -> word a -> word a | [] | Hacl.Spec.SHA2.op_Hat_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> _: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 43,
"end_line": 93,
"start_col": 2,
"start_line": 91
} |
Prims.Tot | val padded_blocks (a: sha2_alg) (len: nat{len <= block_length a}) : n: nat{n <= 2} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2 | val padded_blocks (a: sha2_alg) (len: nat{len <= block_length a}) : n: nat{n <= 2}
let padded_blocks (a: sha2_alg) (len: nat{len <= block_length a}) : n: nat{n <= 2} = | false | null | false | if (len + len_length a + 1 <= block_length a) then 1 else 2 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Hash.Definitions.block_length",
"Prims.op_Addition",
"Spec.Hash.Definitions.len_length",
"Prims.bool"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val padded_blocks (a: sha2_alg) (len: nat{len <= block_length a}) : n: nat{n <= 2} | [] | Hacl.Spec.SHA2.padded_blocks | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> len: Prims.nat{len <= Spec.Hash.Definitions.block_length a}
-> n: Prims.nat{n <= 2} | {
"end_col": 61,
"end_line": 237,
"start_col": 2,
"start_line": 237
} |
Prims.Tot | val size_k_w: sha2_alg -> Tot nat | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | val size_k_w: sha2_alg -> Tot nat
let size_k_w: sha2_alg -> Tot nat = | false | null | false | function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *) | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_k_w: sha2_alg -> Tot nat | [] | Hacl.Spec.SHA2.size_k_w | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.sha2_alg -> Prims.nat | {
"end_col": 29,
"end_line": 29,
"start_col": 36,
"start_line": 27
} |
Prims.Tot | val op_Amp_Dot: #a: sha2_alg -> word a -> word a -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC | val op_Amp_Dot: #a: sha2_alg -> word a -> word a -> word a
let op_Amp_Dot (#a: sha2_alg) : word a -> word a -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Amp_Dot: #a: sha2_alg -> word a -> word a -> word a | [] | Hacl.Spec.SHA2.op_Amp_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> _: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 43,
"end_line": 100,
"start_col": 2,
"start_line": 98
} |
Prims.Tot | val op_Plus_Dot: #a: sha2_alg -> word a -> word a -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC | val op_Plus_Dot: #a: sha2_alg -> word a -> word a -> word a
let op_Plus_Dot (#a: sha2_alg) : word a -> word a -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Plus_Dot: #a: sha2_alg -> word a -> word a -> word a | [] | Hacl.Spec.SHA2.op_Plus_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> _: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 43,
"end_line": 87,
"start_col": 2,
"start_line": 85
} |
Prims.Tot | val ws_next_inner (a: sha2_alg) (i: nat{i < 16}) (ws: k_w a) : k_w a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | val ws_next_inner (a: sha2_alg) (i: nat{i < 16}) (ws: k_w a) : k_w a
let ws_next_inner (a: sha2_alg) (i: nat{i < 16}) (ws: k_w a) : k_w a = | false | null | false | let t16 = ws.[ i ] in
let t15 = ws.[ (i + 1) % 16 ] in
let t7 = ws.[ (i + 9) % 16 ] in
let t2 = ws.[ (i + 14) % 16 ] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.SHA2.k_w",
"FStar.Seq.Base.upd",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Plus_Dot",
"Hacl.Spec.SHA2._sigma0",
"Hacl.Spec.SHA2._sigma1",
"Hacl.Spec.SHA2.op_String_Access",
"Prims.op_Modulus",
"Prims.op_Addition"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ws_next_inner (a: sha2_alg) (i: nat{i < 16}) (ws: k_w a) : k_w a | [] | Hacl.Spec.SHA2.ws_next_inner | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> i: Prims.nat{i < 16} -> ws: Hacl.Spec.SHA2.k_w a
-> Hacl.Spec.SHA2.k_w a | {
"end_col": 38,
"end_line": 190,
"start_col": 67,
"start_line": 183
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let block_t (a: sha2_alg) = lseq uint8 (block_length a) | let block_t (a: sha2_alg) = | false | null | false | lseq uint8 (block_length a) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.block_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5 | false | true | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val block_t : a: Spec.Hash.Definitions.sha2_alg -> Type0 | [] | Hacl.Spec.SHA2.block_t | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Type0 | {
"end_col": 55,
"end_line": 49,
"start_col": 28,
"start_line": 49
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha224 (len:len_lt_max_a_t SHA2_224) (b:seq uint8{length b = len}) =
hash #SHA2_224 len b | let sha224 (len: len_lt_max_a_t SHA2_224) (b: seq uint8 {length b = len}) = | false | null | false | hash #SHA2_224 len b | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Spec.Hash.Definitions.SHA2_224",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Hacl.Spec.SHA2.hash",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st
let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st
let hash (#a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) =
let len' : len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha224 : len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_224 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_224) | [] | Hacl.Spec.SHA2.sha224 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_224 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_224) | {
"end_col": 22,
"end_line": 301,
"start_col": 2,
"start_line": 301
} |
|
Prims.Tot | val op_Greater_Greater_Dot: #a: sha2_alg -> word a -> shiftval (word_t a) -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC | val op_Greater_Greater_Dot: #a: sha2_alg -> word a -> shiftval (word_t a) -> word a
let op_Greater_Greater_Dot (#a: sha2_alg) : word a -> shiftval (word_t a) -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word",
"Lib.IntTypes.shiftval",
"Spec.Hash.Definitions.word_t"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Greater_Dot: #a: sha2_alg -> word a -> shiftval (word_t a) -> word a | [] | Hacl.Spec.SHA2.op_Greater_Greater_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> _: Lib.IntTypes.shiftval (Spec.Hash.Definitions.word_t a)
-> Spec.Hash.Definitions.word a | {
"end_col": 44,
"end_line": 118,
"start_col": 2,
"start_line": 116
} |
Prims.Tot | val update (a: sha2_alg) (block: block_t a) (hash: words_state a) : Tot (words_state a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash | val update (a: sha2_alg) (block: block_t a) (hash: words_state a) : Tot (words_state a)
let update (a: sha2_alg) (block: block_t a) (hash: words_state a) : Tot (words_state a) = | false | null | false | let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.block_t",
"Spec.Hash.Definitions.words_state",
"Lib.Sequence.map2",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Plus_Dot",
"Hacl.Spec.SHA2.shuffle",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Hash.Definitions.word_t",
"Lib.IntTypes.SEC",
"Spec.Hash.Definitions.block_word_length",
"Lib.ByteSequence.uints_from_bytes_be"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update (a: sha2_alg) (block: block_t a) (hash: words_state a) : Tot (words_state a) | [] | Hacl.Spec.SHA2.update | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
block: Hacl.Spec.SHA2.block_t a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 37,
"end_line": 233,
"start_col": 85,
"start_line": 230
} |
Prims.Tot | val op_Greater_Greater_Greater_Dot: #a: sha2_alg -> word a -> rotval (word_t a) -> word a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC | val op_Greater_Greater_Greater_Dot: #a: sha2_alg -> word a -> rotval (word_t a) -> word a
let op_Greater_Greater_Greater_Dot (#a: sha2_alg) : word a -> rotval (word_t a) -> word a = | false | null | false | match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.IntTypes.op_Greater_Greater_Greater_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U64",
"Spec.Hash.Definitions.word",
"Lib.IntTypes.rotval",
"Spec.Hash.Definitions.word_t"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Greater_Greater_Dot: #a: sha2_alg -> word a -> rotval (word_t a) -> word a | [] | Hacl.Spec.SHA2.op_Greater_Greater_Greater_Dot | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.word a -> _: Lib.IntTypes.rotval (Spec.Hash.Definitions.word_t a)
-> Spec.Hash.Definitions.word a | {
"end_col": 45,
"end_line": 112,
"start_col": 2,
"start_line": 110
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha384 (len:len_lt_max_a_t SHA2_384) (b:seq uint8{length b = len}) =
hash #SHA2_384 len b | let sha384 (len: len_lt_max_a_t SHA2_384) (b: seq uint8 {length b = len}) = | false | null | false | hash #SHA2_384 len b | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Spec.Hash.Definitions.SHA2_384",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Hacl.Spec.SHA2.hash",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st
let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st
let hash (#a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) =
let len' : len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st
let sha224 (len:len_lt_max_a_t SHA2_224) (b:seq uint8{length b = len}) =
hash #SHA2_224 len b
let sha256 (len:len_lt_max_a_t SHA2_256) (b:seq uint8{length b = len}) =
hash #SHA2_256 len b | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha384 : len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_384 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_384) | [] | Hacl.Spec.SHA2.sha384 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_384 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_384) | {
"end_col": 22,
"end_line": 307,
"start_col": 2,
"start_line": 307
} |
|
Prims.Tot | val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash | val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash = | false | null | false | let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[ j ] in
shuffle_core_pre a k_t ws_t hash | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.k_w",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.SHA2.num_rounds16",
"Spec.Hash.Definitions.words_state",
"Hacl.Spec.SHA2.shuffle_core_pre",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_String_Access",
"FStar.Seq.Base.index",
"Hacl.Spec.SHA2.k0",
"Prims.op_Addition",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a | [] | Hacl.Spec.SHA2.shuffle_inner | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
ws: Hacl.Spec.SHA2.k_w a ->
i: Prims.nat{i < Hacl.Spec.SHA2.num_rounds16 a} ->
j: Prims.nat{j < 16} ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 34,
"end_line": 207,
"start_col": 33,
"start_line": 204
} |
Prims.Tot | val h0 (a: sha2_alg) : Tot (words_state a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | val h0 (a: sha2_alg) : Tot (words_state a)
let h0: a: sha2_alg -> Tot (words_state a) = | false | null | false | function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.Constants.h224",
"Spec.SHA2.Constants.h256",
"Spec.SHA2.Constants.h384",
"Spec.SHA2.Constants.h512",
"Spec.Hash.Definitions.words_state"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val h0 (a: sha2_alg) : Tot (words_state a) | [] | Hacl.Spec.SHA2.h0 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> Spec.Hash.Definitions.words_state a | {
"end_col": 22,
"end_line": 149,
"start_col": 44,
"start_line": 145
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256 (len:len_lt_max_a_t SHA2_256) (b:seq uint8{length b = len}) =
hash #SHA2_256 len b | let sha256 (len: len_lt_max_a_t SHA2_256) (b: seq uint8 {length b = len}) = | false | null | false | hash #SHA2_256 len b | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Spec.Hash.Definitions.SHA2_256",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Hacl.Spec.SHA2.hash",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st
let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st
let hash (#a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) =
let len' : len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st
let sha224 (len:len_lt_max_a_t SHA2_224) (b:seq uint8{length b = len}) =
hash #SHA2_224 len b | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256 : len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_256 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_256) | [] | Hacl.Spec.SHA2.sha256 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_256 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_256) | {
"end_col": 22,
"end_line": 304,
"start_col": 2,
"start_line": 304
} |
|
Prims.Tot | val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2) | val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = | false | null | false | (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__e0",
"Hacl.Spec.SHA2.op0",
"Hacl.Spec.SHA2.__proj__Mkops__item__e1",
"Hacl.Spec.SHA2.op_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__e2"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._sigma0 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 82,
"end_line": 139,
"start_col": 18,
"start_line": 139
} |
Prims.Tot | val k0 (a: sha2_alg) : Tot (m: S.seq (word a) {S.length m = size_k_w a}) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512 | val k0 (a: sha2_alg) : Tot (m: S.seq (word a) {S.length m = size_k_w a})
let k0: a: sha2_alg -> Tot (m: S.seq (word a) {S.length m = size_k_w a}) = | false | null | false | function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512 | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.SHA2.Constants.k224_256",
"Spec.SHA2.Constants.k384_512",
"FStar.Seq.Base.seq",
"Spec.Hash.Definitions.word",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.Seq.Base.length",
"Hacl.Spec.SHA2.size_k_w"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512 | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val k0 (a: sha2_alg) : Tot (m: S.seq (word a) {S.length m = size_k_w a}) | [] | Hacl.Spec.SHA2.k0 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg
-> m:
FStar.Seq.Base.seq (Spec.Hash.Definitions.word a)
{FStar.Seq.Base.length m = Hacl.Spec.SHA2.size_k_w a} | {
"end_col": 26,
"end_line": 155,
"start_col": 73,
"start_line": 151
} |
Prims.Tot | val finish (a: sha2_alg) (st: words_state a) : Tot (lseq uint8 (hash_length a)) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq | val finish (a: sha2_alg) (st: words_state a) : Tot (lseq uint8 (hash_length a))
let finish (a: sha2_alg) (st: words_state a) : Tot (lseq uint8 (hash_length a)) = | false | null | false | let hseq = store_state a st in
emit a hseq | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.words_state",
"Hacl.Spec.SHA2.emit",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Spec.Hash.Definitions.word_length",
"Hacl.Spec.SHA2.store_state",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finish (a: sha2_alg) (st: words_state a) : Tot (lseq uint8 (hash_length a)) | [] | Hacl.Spec.SHA2.finish | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> st: Spec.Hash.Definitions.words_state a
-> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a) | {
"end_col": 13,
"end_line": 276,
"start_col": 79,
"start_line": 274
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hash (#a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) =
let len' : len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st | let hash (#a: sha2_alg) (len: len_lt_max_a_t a) (b: seq uint8 {length b = len}) = | false | null | false | let len':len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Hacl.Spec.SHA2.finish",
"Spec.Hash.Definitions.words_state",
"Hacl.Spec.SHA2.update_last",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"Prims.int",
"Prims.op_Modulus",
"Spec.Hash.Definitions.block_length",
"Hacl.Spec.SHA2.update_nblocks",
"Hacl.Spec.SHA2.init",
"Spec.Hash.Definitions.len_t",
"Hacl.Spec.SHA2.mk_len_t",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st
let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hash : len: Hacl.Spec.SHA2.len_lt_max_a_t a ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a) | [] | Hacl.Spec.SHA2.hash | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Spec.SHA2.len_lt_max_a_t a ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a) | {
"end_col": 13,
"end_line": 298,
"start_col": 77,
"start_line": 291
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha512 (len:len_lt_max_a_t SHA2_512) (b:seq uint8{length b = len}) =
hash #SHA2_512 len b | let sha512 (len: len_lt_max_a_t SHA2_512) (b: seq uint8 {length b = len}) = | false | null | false | hash #SHA2_512 len b | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Spec.Hash.Definitions.SHA2_512",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Hacl.Spec.SHA2.hash",
"Lib.Sequence.lseq",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st
let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st
let hash (#a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) =
let len' : len_t a = mk_len_t a len in
let st = init a in
let st = update_nblocks a len b st in
let rem = len % block_length a in
let mb = Seq.slice b (len - rem) len in
let st = update_last a len' rem mb st in
finish a st
let sha224 (len:len_lt_max_a_t SHA2_224) (b:seq uint8{length b = len}) =
hash #SHA2_224 len b
let sha256 (len:len_lt_max_a_t SHA2_256) (b:seq uint8{length b = len}) =
hash #SHA2_256 len b
let sha384 (len:len_lt_max_a_t SHA2_384) (b:seq uint8{length b = len}) =
hash #SHA2_384 len b | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha512 : len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_512 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_512) | [] | Hacl.Spec.SHA2.sha512 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Spec.SHA2.len_lt_max_a_t Spec.Hash.Definitions.SHA2_512 ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len}
-> Lib.Sequence.lseq Lib.IntTypes.uint8
(Spec.Hash.Definitions.hash_length Spec.Hash.Definitions.SHA2_512) | {
"end_col": 22,
"end_line": 310,
"start_col": 2,
"start_line": 310
} |
|
Prims.Tot | val shuffle_core_pre (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l | val shuffle_core_pre (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a)
let shuffle_core_pre (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) = | false | null | false | assert (7 <= S.length hash);
let a0 = hash.[ 0 ] in
let b0 = hash.[ 1 ] in
let c0 = hash.[ 2 ] in
let d0 = hash.[ 3 ] in
let e0 = hash.[ 4 ] in
let f0 = hash.[ 5 ] in
let g0 = hash.[ 6 ] in
let h0 = hash.[ 7 ] in
assert (S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Spec.Hash.Definitions.words_state",
"FStar.Seq.Properties.seq_of_list",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Hacl.Spec.SHA2.op_Plus_Dot",
"Prims.Nil",
"Hacl.Spec.SHA2._Sigma0",
"Hacl.Spec.SHA2._Maj",
"Hacl.Spec.SHA2._Sigma1",
"Hacl.Spec.SHA2._Ch",
"Prims._assert",
"Prims.nat",
"FStar.Seq.Base.length",
"Hacl.Spec.SHA2.k0",
"Hacl.Spec.SHA2.size_k_w",
"Hacl.Spec.SHA2.op_String_Access",
"Prims.op_LessThanOrEqual"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shuffle_core_pre (a: sha2_alg) (k_t ws_t: word a) (hash: words_state a) : Tot (words_state a) | [] | Hacl.Spec.SHA2.shuffle_core_pre | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
k_t: Spec.Hash.Definitions.word a ->
ws_t: Spec.Hash.Definitions.word a ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 17,
"end_line": 179,
"start_col": 7,
"start_line": 163
} |
Prims.Tot | val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5) | val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = | false | null | false | (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__c3",
"Hacl.Spec.SHA2.op0",
"Hacl.Spec.SHA2.__proj__Mkops__item__c4",
"Hacl.Spec.SHA2.__proj__Mkops__item__c5"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._Sigma1 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 83,
"end_line": 135,
"start_col": 18,
"start_line": 135
} |
Prims.Tot | val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = | false | null | false | (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__e3",
"Hacl.Spec.SHA2.op0",
"Hacl.Spec.SHA2.__proj__Mkops__item__e4",
"Hacl.Spec.SHA2.op_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__e5"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._sigma1 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 82,
"end_line": 143,
"start_col": 18,
"start_line": 143
} |
Prims.Tot | val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2) | val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = | false | null | false | (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.word",
"Hacl.Spec.SHA2.op_Hat_Dot",
"Hacl.Spec.SHA2.op_Greater_Greater_Greater_Dot",
"Hacl.Spec.SHA2.__proj__Mkops__item__c0",
"Hacl.Spec.SHA2.op0",
"Hacl.Spec.SHA2.__proj__Mkops__item__c1",
"Hacl.Spec.SHA2.__proj__Mkops__item__c2"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a) | [] | Hacl.Spec.SHA2._Sigma0 | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> x: Spec.Hash.Definitions.word a -> Spec.Hash.Definitions.word a | {
"end_col": 83,
"end_line": 131,
"start_col": 18,
"start_line": 131
} |
Prims.Tot | val update_nblocks
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(st: words_state a)
: words_state a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_nblocks (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) (st:words_state a) : words_state a =
let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st | val update_nblocks
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(st: words_state a)
: words_state a
let update_nblocks
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(st: words_state a)
: words_state a = | false | null | false | let blocks = len / block_length a in
Lib.LoopCombinators.repeati blocks (update_block a len b) st | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Spec.Hash.Definitions.words_state",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.SHA2.update_block",
"Prims.int",
"Prims.op_Division",
"Spec.Hash.Definitions.block_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_nblocks
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(st: words_state a)
: words_state a | [] | Hacl.Spec.SHA2.update_nblocks | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
len: Hacl.Spec.SHA2.len_lt_max_a_t a ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len} ->
st: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 62,
"end_line": 288,
"start_col": 121,
"start_line": 286
} |
Prims.Tot | val store_state (a: sha2_alg) (hashw: words_state a) : Tot (lseq uint8 (8 * word_length a)) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw | val store_state (a: sha2_alg) (hashw: words_state a) : Tot (lseq uint8 (8 * word_length a))
let store_state (a: sha2_alg) (hashw: words_state a) : Tot (lseq uint8 (8 * word_length a)) = | false | null | false | Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.words_state",
"Lib.ByteSequence.uints_to_bytes_be",
"Spec.Hash.Definitions.word_t",
"Lib.IntTypes.SEC",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"FStar.Mul.op_Star",
"Spec.Hash.Definitions.word_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store_state (a: sha2_alg) (hashw: words_state a) : Tot (lseq uint8 (8 * word_length a)) | [] | Hacl.Spec.SHA2.store_state | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Hash.Definitions.sha2_alg -> hashw: Spec.Hash.Definitions.words_state a
-> Lib.Sequence.lseq Lib.IntTypes.uint8 (8 * Spec.Hash.Definitions.word_length a) | {
"end_col": 62,
"end_line": 267,
"start_col": 2,
"start_line": 267
} |
Prims.Tot | val update_last
(a: sha2_alg)
(totlen: len_t a)
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
(hash: words_state a)
: Tot (words_state a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash | val update_last
(a: sha2_alg)
(totlen: len_t a)
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
(hash: words_state a)
: Tot (words_state a)
let update_last
(a: sha2_alg)
(totlen: len_t a)
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
(hash: words_state a)
: Tot (words_state a) = | false | null | false | let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let b0, b1 = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Spec.Hash.Definitions.len_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Hash.Definitions.block_length",
"Spec.Hash.Definitions.bytes",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.words_state",
"Hacl.Spec.SHA2.block_t",
"Prims.op_GreaterThan",
"Hacl.Spec.SHA2.update",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.SHA2.load_last",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.numbytes",
"Spec.Hash.Definitions.len_int_type",
"Lib.ByteSequence.uint_to_bytes_be",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Lib.IntTypes.shift_left",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.IntTypes.secret",
"FStar.UInt32.__uint_to_t",
"FStar.Mul.op_Star",
"Hacl.Spec.SHA2.padded_blocks"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_last
(a: sha2_alg)
(totlen: len_t a)
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
(hash: words_state a)
: Tot (words_state a) | [] | Hacl.Spec.SHA2.update_last | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
totlen: Spec.Hash.Definitions.len_t a ->
len: Prims.nat{len <= Spec.Hash.Definitions.block_length a} ->
b: Spec.Hash.Definitions.bytes{FStar.Seq.Base.length b = len} ->
hash: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 47,
"end_line": 263,
"start_col": 74,
"start_line": 256
} |
Prims.Tot | val update_block
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(i: nat{i < len / block_length a})
(st: words_state a)
: words_state a | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len})
(i:nat{i < len / block_length a}) (st:words_state a) : words_state a
=
let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st | val update_block
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(i: nat{i < len / block_length a})
(st: words_state a)
: words_state a
let update_block
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(i: nat{i < len / block_length a})
(st: words_state a)
: words_state a = | false | null | false | let mb = Seq.slice b (i * block_length a) (i * block_length a + block_length a) in
update a mb st | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.len_lt_max_a_t",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"Lib.Sequence.length",
"Prims.op_LessThan",
"Prims.op_Division",
"Spec.Hash.Definitions.block_length",
"Spec.Hash.Definitions.words_state",
"Hacl.Spec.SHA2.update",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.op_Addition"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw
let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a)
let finish (a:sha2_alg) (st:words_state a) : Tot (lseq uint8 (hash_length a)) =
let hseq = store_state a st in
emit a hseq
let update_block (a:sha2_alg) (len:len_lt_max_a_t a) (b:seq uint8{length b = len}) | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_block
(a: sha2_alg)
(len: len_lt_max_a_t a)
(b: seq uint8 {length b = len})
(i: nat{i < len / block_length a})
(st: words_state a)
: words_state a | [] | Hacl.Spec.SHA2.update_block | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
len: Hacl.Spec.SHA2.len_lt_max_a_t a ->
b: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length b = len} ->
i: Prims.nat{i < len / Spec.Hash.Definitions.block_length a} ->
st: Spec.Hash.Definitions.words_state a
-> Spec.Hash.Definitions.words_state a | {
"end_col": 16,
"end_line": 283,
"start_col": 2,
"start_line": 281
} |
Prims.Tot | val emit (a: sha2_alg) (h: lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let emit (a:sha2_alg) (h:lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) =
sub h 0 (hash_length a) | val emit (a: sha2_alg) (h: lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a))
let emit (a: sha2_alg) (h: lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) = | false | null | false | sub h 0 (hash_length a) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"FStar.Mul.op_Star",
"Spec.Hash.Definitions.word_length",
"Lib.Sequence.sub",
"Spec.Hash.Definitions.hash_length"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1)
let update_last (a:sha2_alg) (totlen:len_t a)
(len:nat{len <= block_length a})
(b:bytes{S.length b = len}) (hash:words_state a) : Tot (words_state a) =
let blocks = padded_blocks a len in
let fin = blocks * block_length a in
let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in
let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in
let (b0, b1) = load_last a totlen_seq fin len b in
let hash = update a b0 hash in
if blocks > 1 then update a b1 hash else hash
let store_state (a:sha2_alg) (hashw:words_state a) : Tot (lseq uint8 (8 * word_length a)) =
Lib.ByteSequence.uints_to_bytes_be #(word_t a) #SEC #8 hashw | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val emit (a: sha2_alg) (h: lseq uint8 (8 * word_length a)) : Tot (lseq uint8 (hash_length a)) | [] | Hacl.Spec.SHA2.emit | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
h: Lib.Sequence.lseq Lib.IntTypes.uint8 (8 * Spec.Hash.Definitions.word_length a)
-> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a) | {
"end_col": 25,
"end_line": 271,
"start_col": 2,
"start_line": 271
} |
Prims.Tot | val load_last
(a: sha2_alg)
(totlen_seq: lseq uint8 (len_length a))
(fin: nat{fin == block_length a \/ fin == 2 * block_length a})
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
: (block_t a & block_t a) | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.SHA2.Constants",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) :
(block_t a & block_t a)
=
let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[len] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1) | val load_last
(a: sha2_alg)
(totlen_seq: lseq uint8 (len_length a))
(fin: nat{fin == block_length a \/ fin == 2 * block_length a})
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
: (block_t a & block_t a)
let load_last
(a: sha2_alg)
(totlen_seq: lseq uint8 (len_length a))
(fin: nat{fin == block_length a \/ fin == 2 * block_length a})
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
: (block_t a & block_t a) = | false | null | false | let last = create (2 * block_length a) (u8 0) in
let last = update_sub last 0 len b in
let last = last.[ len ] <- u8 0x80 in
let last = update_sub last (fin - len_length a) (len_length a) totlen_seq in
let b0 = sub last 0 (block_length a) in
let b1 = sub last (block_length a) (block_length a) in
(b0, b1) | {
"checked_file": "Hacl.Spec.SHA2.fst.checked",
"dependencies": [
"Spec.SHA2.Constants.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.sha2_alg",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.len_length",
"Prims.nat",
"Prims.l_or",
"Prims.eq2",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_disEquality",
"Spec.Hash.Definitions.block_length",
"FStar.Mul.op_Star",
"Prims.op_LessThanOrEqual",
"Spec.Hash.Definitions.bytes",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Spec.SHA2.block_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Multiply",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Prims.op_Subtraction",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.upd",
"Lib.IntTypes.mk_int",
"Prims.pow2",
"Prims.l_imp",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.u8",
"FStar.Seq.Base.create",
"Lib.Sequence.create",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.SHA2
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module C = Spec.SHA2.Constants
module S = FStar.Seq
open Spec.Hash.Definitions
#set-options "--z3rlimit 20 --fuel 0 --ifuel 0"
let len_lt_max_a_t (a:sha2_alg) = len:nat{len `less_than_max_input_length` a}
let mk_len_t (a:sha2_alg) (len:len_lt_max_a_t a) : len_t a =
match a with
| SHA2_224 | SHA2_256 ->
(Math.Lemmas.pow2_lt_compat 64 61; uint #U64 #PUB len)
| SHA2_384 | SHA2_512 ->
(Math.Lemmas.pow2_lt_compat 128 125; uint #U128 #PUB len)
(* The core compression, padding and extraction functions for all SHA2
* algorithms. *)
(* Define the length of the constants. Also the number of scheduling rounds. *)
inline_for_extraction
let size_k_w: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 64
| SHA2_384 | SHA2_512 -> 80
inline_for_extraction
let word_n: sha2_alg -> Tot nat = function
| SHA2_224 | SHA2_256 -> 32
| SHA2_384 | SHA2_512 -> 64
inline_for_extraction
let to_word (a:sha2_alg) (n:nat{n < pow2 (word_n a)}) : word a =
match a with
| SHA2_224 | SHA2_256 -> u32 n
| SHA2_384 | SHA2_512 -> u64 n
inline_for_extraction
let num_rounds16 (a:sha2_alg) : n:pos{16 * n == size_k_w a} =
match a with
| SHA2_224 | SHA2_256 -> 4
| SHA2_384 | SHA2_512 -> 5
let k_w (a: sha2_alg) = lseq (word a) (block_word_length a)
let block_t (a: sha2_alg) = lseq uint8 (block_length a)
inline_for_extraction noextract
type ops = {
c0: size_t; c1: size_t; c2: size_t;
c3: size_t; c4: size_t; c5: size_t;
e0: size_t; e1: size_t; e2: size_t;
e3: size_t; e4: size_t; e5: size_t;
}
(* Definition of constants used in word functions *)
inline_for_extraction noextract
let op224_256: ops = {
c0 = 2ul; c1 = 13ul; c2 = 22ul;
c3 = 6ul; c4 = 11ul; c5 = 25ul;
e0 = 7ul; e1 = 18ul; e2 = 3ul;
e3 = 17ul; e4 = 19ul; e5 = 10ul
}
inline_for_extraction noextract
let op384_512: ops = {
c0 = 28ul; c1 = 34ul; c2 = 39ul;
c3 = 14ul; c4 = 18ul; c5 = 41ul;
e0 = 1ul ; e1 = 8ul; e2 = 7ul;
e3 = 19ul; e4 = 61ul; e5 = 6ul
}
inline_for_extraction
let op0: a:sha2_alg -> Tot ops = function
| SHA2_224 -> op224_256
| SHA2_256 -> op224_256
| SHA2_384 -> op384_512
| SHA2_512 -> op384_512
inline_for_extraction
let ( +. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( +. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( +. ) #U64 #SEC
inline_for_extraction
let ( ^. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ^. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ^. ) #U64 #SEC
inline_for_extraction
let ( &. ) (#a:sha2_alg): word a -> word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( &. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( &. ) #U64 #SEC
inline_for_extraction
let ( ~. ) (#a:sha2_alg): word a -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( ~. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( ~. ) #U64 #SEC
inline_for_extraction
let ( >>>. ) (#a:sha2_alg): word a -> rotval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>>. ) #U64 #SEC
inline_for_extraction
let ( >>. ) (#a:sha2_alg): word a -> shiftval (word_t a) -> word a =
match a with
| SHA2_224 | SHA2_256 -> ( >>. ) #U32 #SEC
| SHA2_384 | SHA2_512 -> ( >>. ) #U64 #SEC
(* Definition of the SHA2 word functions *)
inline_for_extraction
val _Ch: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Ch a x y z = (x &. y) ^. (~.x &. z)
inline_for_extraction
val _Maj: a:sha2_alg -> x:(word a) -> y:(word a) -> z:(word a) -> Tot (word a)
let _Maj a x y z = (x &. y) ^. ((x &. z) ^. (y &. z))
inline_for_extraction
val _Sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma0 a x = (x >>>. (op0 a).c0) ^. (x >>>. (op0 a).c1) ^. (x >>>. (op0 a).c2)
inline_for_extraction
val _Sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _Sigma1 a x = (x >>>. (op0 a).c3) ^. (x >>>. (op0 a).c4) ^. (x >>>. (op0 a).c5)
inline_for_extraction
val _sigma0: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma0 a x = (x >>>. (op0 a).e0) ^. (x >>>. (op0 a).e1) ^. (x >>. (op0 a).e2)
inline_for_extraction
val _sigma1: a:sha2_alg -> x:(word a) -> Tot (word a)
let _sigma1 a x = (x >>>. (op0 a).e3) ^. (x >>>. (op0 a).e4) ^. (x >>. (op0 a).e5)
let h0: a:sha2_alg -> Tot (words_state a) = function
| SHA2_224 -> C.h224
| SHA2_256 -> C.h256
| SHA2_384 -> C.h384
| SHA2_512 -> C.h512
let k0: a:sha2_alg -> Tot (m:S.seq (word a) {S.length m = size_k_w a}) = function
| SHA2_224 -> C.k224_256
| SHA2_256 -> C.k224_256
| SHA2_384 -> C.k384_512
| SHA2_512 -> C.k384_512
unfold
let (.[]) = S.index
(* Core shuffling function *)
let shuffle_core_pre (a:sha2_alg) (k_t: word a) (ws_t: word a) (hash:words_state a) : Tot (words_state a) =
(**) assert(7 <= S.length hash);
let a0 = hash.[0] in
let b0 = hash.[1] in
let c0 = hash.[2] in
let d0 = hash.[3] in
let e0 = hash.[4] in
let f0 = hash.[5] in
let g0 = hash.[6] in
let h0 = hash.[7] in
(**) assert(S.length (k0 a) = size_k_w a);
let t1 = h0 +. (_Sigma1 a e0) +. (_Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (_Sigma0 a a0) +. (_Maj a a0 b0 c0) in
let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in
assert_norm (List.Tot.length l = 8);
S.seq_of_list l
(* Scheduling function *)
let ws_next_inner (a:sha2_alg) (i:nat{i < 16}) (ws:k_w a) : k_w a =
let t16 = ws.[i] in
let t15 = ws.[(i+1) % 16] in
let t7 = ws.[(i+9) % 16] in
let t2 = ws.[(i+14) % 16] in
let s1 = _sigma1 a t2 in
let s0 = _sigma0 a t15 in
Seq.upd ws i (s1 +. t7 +. s0 +. t16)
let ws_next (a:sha2_alg) (ws:k_w a) : k_w a =
Lib.LoopCombinators.repeati 16 (ws_next_inner a) ws
val shuffle_inner:
a:sha2_alg
-> ws:k_w a
-> i:nat{i < num_rounds16 a}
-> j:nat{j < 16}
-> hash:words_state a ->
words_state a
let shuffle_inner a ws i j hash =
let k_t = Seq.index (k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_pre a k_t ws_t hash
val shuffle_inner_loop:
a:sha2_alg
-> i:nat{i < num_rounds16 a}
-> ws_st:tuple2 (k_w a) (words_state a) ->
k_w a & words_state a
let shuffle_inner_loop a i (ws, st) =
let st' = Lib.LoopCombinators.repeati 16 (shuffle_inner a ws i) st in
let ws' = if i < num_rounds16 a - 1 then ws_next a ws else ws in
(ws', st')
(* Full shuffling function *)
let shuffle (a:sha2_alg) (ws:k_w a) (hash:words_state a) : Tot (words_state a) =
let (ws, st) = Lib.LoopCombinators.repeati (num_rounds16 a) (shuffle_inner_loop a) (ws, hash) in
st
let init (a:sha2_alg) : words_state a = h0 a
let update (a:sha2_alg) (block:block_t a) (hash:words_state a): Tot (words_state a) =
let block_w = Lib.ByteSequence.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) block in
let hash_1 = shuffle a block_w hash in
map2 #_ #_ #_ #8 ( +. ) hash_1 hash
let padded_blocks (a:sha2_alg) (len:nat{len <= block_length a}) : n:nat{n <= 2} =
if (len + len_length a + 1 <= block_length a) then 1 else 2
let load_last (a:sha2_alg) (totlen_seq:lseq uint8 (len_length a))
(fin:nat{fin == block_length a \/ fin == 2 * block_length a})
(len:nat{len <= block_length a}) (b:bytes{S.length b = len}) : | false | false | Hacl.Spec.SHA2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load_last
(a: sha2_alg)
(totlen_seq: lseq uint8 (len_length a))
(fin: nat{fin == block_length a \/ fin == 2 * block_length a})
(len: nat{len <= block_length a})
(b: bytes{S.length b = len})
: (block_t a & block_t a) | [] | Hacl.Spec.SHA2.load_last | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.sha2_alg ->
totlen_seq: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.len_length a) ->
fin:
Prims.nat
{ fin == Spec.Hash.Definitions.block_length a \/
fin == 2 * Spec.Hash.Definitions.block_length a } ->
len: Prims.nat{len <= Spec.Hash.Definitions.block_length a} ->
b: Spec.Hash.Definitions.bytes{FStar.Seq.Base.length b = len}
-> Hacl.Spec.SHA2.block_t a * Hacl.Spec.SHA2.block_t a | {
"end_col": 10,
"end_line": 251,
"start_col": 2,
"start_line": 244
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p) | let print_maddr (m: maddr) (p: printer) = | false | null | false | p.maddr (string_of_int m.offset) (print_reg m.address p) | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.maddr",
"Vale.PPC64LE.Print_s.printer",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__maddr",
"Prims.string_of_int",
"Vale.PPC64LE.Machine_s.__proj__Mkmaddr__item__offset",
"Vale.PPC64LE.Print_s.print_reg",
"Vale.PPC64LE.Machine_s.__proj__Mkmaddr__item__address",
"Prims.string"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_maddr : m: Vale.PPC64LE.Machine_s.maddr -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | [] | Vale.PPC64LE.Print_s.print_maddr | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.PPC64LE.Machine_s.maddr -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | {
"end_col": 58,
"end_line": 30,
"start_col": 2,
"start_line": 30
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v | let print_vec (v: vec) (vsr: bool) (p: printer) = | false | null | false | if vsr then p.vsr_prefix () ^ "32+" ^ string_of_int v else p.vec_prefix () ^ string_of_int v | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.vec",
"Prims.bool",
"Vale.PPC64LE.Print_s.printer",
"Prims.op_Hat",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__vsr_prefix",
"Prims.string_of_int",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__vec_prefix",
"Prims.string"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_vec : v: Vale.PPC64LE.Machine_s.vec -> vsr: Prims.bool -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | [] | Vale.PPC64LE.Print_s.print_vec | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | v: Vale.PPC64LE.Machine_s.vec -> vsr: Prims.bool -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | {
"end_col": 39,
"end_line": 27,
"start_col": 2,
"start_line": 26
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r | let print_reg (r: reg) (p: printer) = | false | null | false | p.reg_prefix () ^ string_of_int r | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Print_s.printer",
"Prims.op_Hat",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__reg_prefix",
"Prims.string_of_int",
"Prims.string"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
} | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_reg : r: Vale.PPC64LE.Machine_s.reg -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | [] | Vale.PPC64LE.Print_s.print_reg | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Vale.PPC64LE.Machine_s.reg -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | {
"end_col": 34,
"end_line": 23,
"start_col": 2,
"start_line": 23
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register." | let print_first_cmp_opr (o: cmp_opr) (p: printer) = | false | null | false | match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register." | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.cmp_opr",
"Vale.PPC64LE.Print_s.printer",
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Print_s.print_reg",
"Prims.string"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o)) | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_first_cmp_opr : o: Vale.PPC64LE.Machine_s.cmp_opr -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | [] | Vale.PPC64LE.Print_s.print_first_cmp_opr | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | o: Vale.PPC64LE.Machine_s.cmp_opr -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | {
"end_col": 83,
"end_line": 47,
"start_col": 2,
"start_line": 45
} |
|
FStar.All.ML | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_footer (p:printer) =
print_string (p.footer()) | let print_footer (p: printer) = | true | null | false | print_string (p.footer ()) | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"ml"
] | [
"Vale.PPC64LE.Print_s.printer",
"FStar.IO.print_string",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__footer",
"Prims.unit"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register."
let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> ""
let print_cmp (c:ocmp) (counter:int) (p:printer) : string =
let print_cmp_ops (o1:cmp_opr) (o2:cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne "^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble "^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge "^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n"
let rec print_block (b:codes) (n:int) (p:printer) : string & int =
match b with
| Nil -> ("", n)
| head :: tail ->
let (head_str, n') = print_code head n p in
let (rest, n'') = print_block tail n' p in
(head_str ^ rest, n'')
and print_code (c:code) (n:int) (p:printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (cmp_not cond) n1 p in
let (true_str, n') = print_code true_code (n + 2) p in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = "L" ^ string_of_int n1 ^ ":\n" in
let (false_str, n') = print_code false_code n' p in
let label2 = "L" ^ string_of_int n2 ^ ":\n" in
(cmp ^ true_str ^ branch ^ label1 ^ false_str ^ label2, n')
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = p.align() ^ " 4\nL" ^ string_of_int n1 ^ ":\n" in
let (body_str, n') = print_code body (n + 2) p in
let label2 = p.align() ^ " 4\nL" ^ string_of_int n2 ^ ":\n" in
let cmp = print_cmp cond n1 p in
(branch ^ label1 ^ body_str ^ label2 ^ cmp, n')
let print_header (p:printer) =
print_string (p.header())
let print_proc (name:string) (code:code) (label:int) (p:printer) : FStar.All.ML int =
let proc = p.proc_name name in
let (code_str, final_label) = print_code code label p in
let ret = p.ret name in
print_string (proc ^ code_str ^ ret);
final_label | false | false | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_footer : p: Vale.PPC64LE.Print_s.printer -> FStar.All.ML Prims.unit | [] | Vale.PPC64LE.Print_s.print_footer | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Vale.PPC64LE.Print_s.printer -> FStar.All.ML Prims.unit | {
"end_col": 27,
"end_line": 232,
"start_col": 2,
"start_line": 232
} |
|
Prims.Tot | val gcc:printer | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcc : printer =
let reg_prefix unit = "" in
let vec_prefix unit = "" in
let vsr_prefix unit = "" in
let maddr (offset:string) (address:string) =
offset ^ "(" ^ address ^ ")"
in
let const (n:int) = string_of_int n in
let align() = ".align" in
let header() = ".text\n" in
let footer() = ".section .note.GNU-stack,\"\",%progbits\n" in
let proc_name (name:string) = ".global " ^ name ^ "\n" ^ name ^ ":\n" in
let branch_link (name:string) = " blr\n\n" in
{
reg_prefix = reg_prefix;
vec_prefix = vec_prefix;
vsr_prefix = vsr_prefix;
maddr = maddr;
const = const;
align = align;
header = header;
footer = footer;
proc_name = proc_name;
ret = branch_link;
} | val gcc:printer
let gcc:printer = | false | null | false | let reg_prefix unit = "" in
let vec_prefix unit = "" in
let vsr_prefix unit = "" in
let maddr (offset address: string) = offset ^ "(" ^ address ^ ")" in
let const (n: int) = string_of_int n in
let align () = ".align" in
let header () = ".text\n" in
let footer () = ".section .note.GNU-stack,\"\",%progbits\n" in
let proc_name (name: string) = ".global " ^ name ^ "\n" ^ name ^ ":\n" in
let branch_link (name: string) = " blr\n\n" in
{
reg_prefix = reg_prefix;
vec_prefix = vec_prefix;
vsr_prefix = vsr_prefix;
maddr = maddr;
const = const;
align = align;
header = header;
footer = footer;
proc_name = proc_name;
ret = branch_link
} | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Print_s.Mkprinter",
"Prims.string",
"Prims.op_Hat",
"Prims.unit",
"Prims.int",
"Prims.string_of_int"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register."
let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> ""
let print_cmp (c:ocmp) (counter:int) (p:printer) : string =
let print_cmp_ops (o1:cmp_opr) (o2:cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne "^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble "^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge "^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n"
let rec print_block (b:codes) (n:int) (p:printer) : string & int =
match b with
| Nil -> ("", n)
| head :: tail ->
let (head_str, n') = print_code head n p in
let (rest, n'') = print_block tail n' p in
(head_str ^ rest, n'')
and print_code (c:code) (n:int) (p:printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (cmp_not cond) n1 p in
let (true_str, n') = print_code true_code (n + 2) p in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = "L" ^ string_of_int n1 ^ ":\n" in
let (false_str, n') = print_code false_code n' p in
let label2 = "L" ^ string_of_int n2 ^ ":\n" in
(cmp ^ true_str ^ branch ^ label1 ^ false_str ^ label2, n')
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = p.align() ^ " 4\nL" ^ string_of_int n1 ^ ":\n" in
let (body_str, n') = print_code body (n + 2) p in
let label2 = p.align() ^ " 4\nL" ^ string_of_int n2 ^ ":\n" in
let cmp = print_cmp cond n1 p in
(branch ^ label1 ^ body_str ^ label2 ^ cmp, n')
let print_header (p:printer) =
print_string (p.header())
let print_proc (name:string) (code:code) (label:int) (p:printer) : FStar.All.ML int =
let proc = p.proc_name name in
let (code_str, final_label) = print_code code label p in
let ret = p.ret name in
print_string (proc ^ code_str ^ ret);
final_label
let print_footer (p:printer) =
print_string (p.footer()) | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcc:printer | [] | Vale.PPC64LE.Print_s.gcc | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.PPC64LE.Print_s.printer | {
"end_col": 3,
"end_line": 259,
"start_col": 19,
"start_line": 235
} |
FStar.All.ML | val print_proc (name: string) (code: code) (label: int) (p: printer) : FStar.All.ML int | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_proc (name:string) (code:code) (label:int) (p:printer) : FStar.All.ML int =
let proc = p.proc_name name in
let (code_str, final_label) = print_code code label p in
let ret = p.ret name in
print_string (proc ^ code_str ^ ret);
final_label | val print_proc (name: string) (code: code) (label: int) (p: printer) : FStar.All.ML int
let print_proc (name: string) (code: code) (label: int) (p: printer) : FStar.All.ML int = | true | null | false | let proc = p.proc_name name in
let code_str, final_label = print_code code label p in
let ret = p.ret name in
print_string (proc ^ code_str ^ ret);
final_label | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"ml"
] | [
"Prims.string",
"Vale.PPC64LE.Semantics_s.code",
"Prims.int",
"Vale.PPC64LE.Print_s.printer",
"Prims.unit",
"FStar.IO.print_string",
"Prims.op_Hat",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__ret",
"FStar.Pervasives.Native.tuple2",
"Vale.PPC64LE.Print_s.print_code",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__proc_name"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register."
let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> ""
let print_cmp (c:ocmp) (counter:int) (p:printer) : string =
let print_cmp_ops (o1:cmp_opr) (o2:cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne "^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble "^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge "^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n"
let rec print_block (b:codes) (n:int) (p:printer) : string & int =
match b with
| Nil -> ("", n)
| head :: tail ->
let (head_str, n') = print_code head n p in
let (rest, n'') = print_block tail n' p in
(head_str ^ rest, n'')
and print_code (c:code) (n:int) (p:printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (cmp_not cond) n1 p in
let (true_str, n') = print_code true_code (n + 2) p in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = "L" ^ string_of_int n1 ^ ":\n" in
let (false_str, n') = print_code false_code n' p in
let label2 = "L" ^ string_of_int n2 ^ ":\n" in
(cmp ^ true_str ^ branch ^ label1 ^ false_str ^ label2, n')
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = p.align() ^ " 4\nL" ^ string_of_int n1 ^ ":\n" in
let (body_str, n') = print_code body (n + 2) p in
let label2 = p.align() ^ " 4\nL" ^ string_of_int n2 ^ ":\n" in
let cmp = print_cmp cond n1 p in
(branch ^ label1 ^ body_str ^ label2 ^ cmp, n')
let print_header (p:printer) =
print_string (p.header()) | false | false | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_proc (name: string) (code: code) (label: int) (p: printer) : FStar.All.ML int | [] | Vale.PPC64LE.Print_s.print_proc | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
name: Prims.string ->
code: Vale.PPC64LE.Semantics_s.code ->
label: Prims.int ->
p: Vale.PPC64LE.Print_s.printer
-> FStar.All.ML Prims.int | {
"end_col": 13,
"end_line": 229,
"start_col": 85,
"start_line": 224
} |
FStar.All.ML | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_header (p:printer) =
print_string (p.header()) | let print_header (p: printer) = | true | null | false | print_string (p.header ()) | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"ml"
] | [
"Vale.PPC64LE.Print_s.printer",
"FStar.IO.print_string",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__header",
"Prims.unit"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register."
let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> ""
let print_cmp (c:ocmp) (counter:int) (p:printer) : string =
let print_cmp_ops (o1:cmp_opr) (o2:cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne "^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble "^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge "^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n"
let rec print_block (b:codes) (n:int) (p:printer) : string & int =
match b with
| Nil -> ("", n)
| head :: tail ->
let (head_str, n') = print_code head n p in
let (rest, n'') = print_block tail n' p in
(head_str ^ rest, n'')
and print_code (c:code) (n:int) (p:printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (cmp_not cond) n1 p in
let (true_str, n') = print_code true_code (n + 2) p in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = "L" ^ string_of_int n1 ^ ":\n" in
let (false_str, n') = print_code false_code n' p in
let label2 = "L" ^ string_of_int n2 ^ ":\n" in
(cmp ^ true_str ^ branch ^ label1 ^ false_str ^ label2, n')
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let branch = " b L" ^ string_of_int n2 ^ "\n" in
let label1 = p.align() ^ " 4\nL" ^ string_of_int n1 ^ ":\n" in
let (body_str, n') = print_code body (n + 2) p in
let label2 = p.align() ^ " 4\nL" ^ string_of_int n2 ^ ":\n" in
let cmp = print_cmp cond n1 p in
(branch ^ label1 ^ body_str ^ label2 ^ cmp, n') | false | false | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_header : p: Vale.PPC64LE.Print_s.printer -> FStar.All.ML Prims.unit | [] | Vale.PPC64LE.Print_s.print_header | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Vale.PPC64LE.Print_s.printer -> FStar.All.ML Prims.unit | {
"end_col": 27,
"end_line": 222,
"start_col": 2,
"start_line": 222
} |
|
Prims.Tot | val cmp_not (o: ocmp) : ocmp | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2 | val cmp_not (o: ocmp) : ocmp
let cmp_not (o: ocmp) : ocmp = | false | null | false | match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2 | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Semantics_s.ocmp",
"Vale.PPC64LE.Machine_s.cmp_opr",
"Vale.PPC64LE.Semantics_s.ONe",
"Vale.PPC64LE.Semantics_s.OEq",
"Vale.PPC64LE.Semantics_s.OGt",
"Vale.PPC64LE.Semantics_s.OLt",
"Vale.PPC64LE.Semantics_s.OGe",
"Vale.PPC64LE.Semantics_s.OLe"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p) | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cmp_not (o: ocmp) : ocmp | [] | Vale.PPC64LE.Print_s.cmp_not | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | o: Vale.PPC64LE.Semantics_s.ocmp -> Vale.PPC64LE.Semantics_s.ocmp | {
"end_col": 26,
"end_line": 39,
"start_col": 2,
"start_line": 33
} |
Prims.Tot | val print_cmp (c: ocmp) (counter: int) (p: printer) : string | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_cmp (c:ocmp) (counter:int) (p:printer) : string =
let print_cmp_ops (o1:cmp_opr) (o2:cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne "^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble "^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge "^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n" | val print_cmp (c: ocmp) (counter: int) (p: printer) : string
let print_cmp (c: ocmp) (counter: int) (p: printer) : string = | false | null | false | let print_cmp_ops (o1 o2: cmp_opr) : string =
match o2 with
| CReg r -> " cmpld " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (print_reg r p) ^ "\n"
| CImm n -> " cmpldi " ^ (print_first_cmp_opr o1 p) ^ ", " ^ (string_of_int n) ^ "\n"
in
match c with
| OEq o1 o2 -> print_cmp_ops o1 o2 ^ " beq " ^ "L" ^ string_of_int counter ^ "\n"
| ONe o1 o2 -> print_cmp_ops o1 o2 ^ " bne " ^ "L" ^ string_of_int counter ^ "\n"
| OLe o1 o2 -> print_cmp_ops o1 o2 ^ " ble " ^ "L" ^ string_of_int counter ^ "\n"
| OGe o1 o2 -> print_cmp_ops o1 o2 ^ " bge " ^ "L" ^ string_of_int counter ^ "\n"
| OLt o1 o2 -> print_cmp_ops o1 o2 ^ " blt " ^ "L" ^ string_of_int counter ^ "\n"
| OGt o1 o2 -> print_cmp_ops o1 o2 ^ " bgt " ^ "L" ^ string_of_int counter ^ "\n" | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Semantics_s.ocmp",
"Prims.int",
"Vale.PPC64LE.Print_s.printer",
"Vale.PPC64LE.Machine_s.cmp_opr",
"Prims.op_Hat",
"Prims.string_of_int",
"Prims.string",
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Print_s.print_first_cmp_opr",
"Vale.PPC64LE.Print_s.print_reg",
"Vale.PPC64LE.Machine_s.imm16"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register."
let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset }) | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_cmp (c: ocmp) (counter: int) (p: printer) : string | [] | Vale.PPC64LE.Print_s.print_cmp | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | c: Vale.PPC64LE.Semantics_s.ocmp -> counter: Prims.int -> p: Vale.PPC64LE.Print_s.printer
-> Prims.string | {
"end_col": 84,
"end_line": 188,
"start_col": 59,
"start_line": 176
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_ins (ins:ins) (p:printer) =
let print_pair (o1 o2:string) =
o1 ^ ", " ^ o2
in
let print_triple (o1 o2 o3:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3
in
let print_quadruple (o1 o2 o3 o4:string) =
o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4
in
let print_reg_pair (dst src:reg) =
print_pair (print_reg dst p) (print_reg src p)
in
let print_reg_mem (o1:reg) (o2:maddr) =
print_pair (print_reg o1 p) (print_maddr o2 p)
in
let print_reg_triple (dst src1 src2:reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst:reg) (src:int) =
print_pair (print_reg dst p) (p.const src)
in
let print_reg_pair_imm (dst src1:reg) (src2:int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst:reg) (src:vec) (vsr:bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst:vec) (src:reg) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst:vec) (src1 src2:reg) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src:vec) (vsr:bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2:vec) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3:vec) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (print_vec src3 vsr p)
in
let print_vec_imm (dst:vec) (src:int) (vsr:bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src:vec) (imm:int) (vsr:bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2:vec) (count:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p) (p.const count)
in
let print_vec_mem (o1:vec) (o2:maddr) (vsr:bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src:vec) (s0 s1:int) (vsr:bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset -> " stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> "" | let print_ins (ins: ins) (p: printer) = | false | null | false | let print_pair (o1 o2: string) = o1 ^ ", " ^ o2 in
let print_triple (o1 o2 o3: string) = o1 ^ ", " ^ o2 ^ ", " ^ o3 in
let print_quadruple (o1 o2 o3 o4: string) = o1 ^ ", " ^ o2 ^ ", " ^ o3 ^ ", " ^ o4 in
let print_reg_pair (dst src: reg) = print_pair (print_reg dst p) (print_reg src p) in
let print_reg_mem (o1: reg) (o2: maddr) = print_pair (print_reg o1 p) (print_maddr o2 p) in
let print_reg_triple (dst src1 src2: reg) =
print_triple (print_reg dst p) (print_reg src1 p) (print_reg src2 p)
in
let print_reg_imm (dst: reg) (src: int) = print_pair (print_reg dst p) (p.const src) in
let print_reg_pair_imm (dst src1: reg) (src2: int) =
print_triple (print_reg dst p) (print_reg src1 p) (p.const src2)
in
let print_reg_vec (dst: reg) (src: vec) (vsr: bool) =
print_pair (print_reg dst p) (print_vec src vsr p)
in
let print_vec_reg (dst: vec) (src: reg) (vsr: bool) =
print_pair (print_vec dst vsr p) (print_reg src p)
in
let print_vec_reg_pair (dst: vec) (src1 src2: reg) (vsr: bool) =
print_triple (print_vec dst vsr p) (print_reg src1 p) (print_reg src2 p)
in
let print_vec_pair (dst src: vec) (vsr: bool) =
print_pair (print_vec dst vsr p) (print_vec src vsr p)
in
let print_vec_triple (dst src1 src2: vec) (vsr: bool) =
print_triple (print_vec dst vsr p) (print_vec src1 vsr p) (print_vec src2 vsr p)
in
let print_vec_quadruple (dst src1 src2 src3: vec) (vsr: bool) =
print_quadruple (print_vec dst vsr p)
(print_vec src1 vsr p)
(print_vec src2 vsr p)
(print_vec src3 vsr p)
in
let print_vec_imm (dst: vec) (src: int) (vsr: bool) =
print_pair (print_vec dst vsr p) (p.const src)
in
let print_vec_pair_imm (dst src: vec) (imm: int) (vsr: bool) =
print_triple (print_vec dst vsr p) (print_vec src vsr p) (p.const imm)
in
let print_vec_triple_imm (dst src1 src2: vec) (count: int) (vsr: bool) =
print_quadruple (print_vec dst vsr p)
(print_vec src1 vsr p)
(print_vec src2 vsr p)
(p.const count)
in
let print_vec_mem (o1: vec) (o2: maddr) (vsr: bool) =
print_pair (print_vec o1 vsr p) (print_maddr o2 p)
in
let print_vec_pair_imm_pair (dst src: vec) (s0 s1: int) (vsr: bool) =
print_quadruple (print_vec dst vsr p) (print_vec src vsr p) (p.const s0) (p.const s1)
in
match ins with
| Move dst src -> " mr " ^ print_reg_pair dst src
| Load64 dst base offset -> " ld " ^ print_reg_mem dst ({ address = base; offset = offset })
| Store64 src base offset -> " std " ^ print_reg_mem src ({ address = base; offset = offset })
| LoadImm64 dst src -> " li " ^ print_reg_imm dst src
| LoadImmShl64 dst src -> " lis " ^ print_reg_imm dst src
| AddLa dst src1 src2 -> " la " ^ print_reg_mem dst ({ address = src1; offset = src2 })
| Add dst src1 src2 -> " add " ^ print_reg_triple dst src1 src2
| AddImm dst src1 src2 -> " addi " ^ print_reg_pair_imm dst src1 src2
| AddCarry dst src1 src2 -> " addc " ^ print_reg_triple dst src1 src2
| AddExtended dst src1 src2 -> " adde " ^ print_reg_triple dst src1 src2
| AddExtendedOV dst src1 src2 -> " addex " ^ print_reg_triple dst src1 src2
| Sub dst src1 src2 -> " sub " ^ print_reg_triple dst src1 src2
| SubImm dst src1 src2 -> " subi " ^ print_reg_pair_imm dst src1 src2
| MulLow64 dst src1 src2 -> " mulld " ^ print_reg_triple dst src1 src2
| MulHigh64U dst src1 src2 -> " mulhdu " ^ print_reg_triple dst src1 src2
| Xor dst src1 src2 -> " xor " ^ print_reg_triple dst src1 src2
| And dst src1 src2 -> " and " ^ print_reg_triple dst src1 src2
| Sr64Imm dst src1 src2 -> " srdi " ^ print_reg_pair_imm dst src1 src2
| Sl64Imm dst src1 src2 -> " sldi " ^ print_reg_pair_imm dst src1 src2
| Sr64 dst src1 src2 -> " srd " ^ print_reg_triple dst src1 src2
| Sl64 dst src1 src2 -> " sld " ^ print_reg_triple dst src1 src2
| Vmr dst src -> " vmr " ^ print_vec_pair dst src false
| Mfvsrd dst src -> " mfvsrd " ^ print_reg_vec dst src true
| Mfvsrld dst src -> " mfvsrld " ^ print_reg_vec dst src true
| Mtvsrdd dst src1 src2 -> " mtvsrdd " ^ print_vec_reg_pair dst src1 src2 true
| Mtvsrws dst src -> " mtvsrws " ^ print_vec_reg dst src true
| Vadduwm dst src1 src2 -> " vadduwm " ^ print_vec_triple dst src1 src2 false
| Vxor dst src1 src2 -> " vxor " ^ print_vec_triple dst src1 src2 false
| Vand dst src1 src2 -> " vand " ^ print_vec_triple dst src1 src2 false
| Vslw dst src1 src2 -> " vslw " ^ print_vec_triple dst src1 src2 false
| Vsrw dst src1 src2 -> " vsrw " ^ print_vec_triple dst src1 src2 false
| Vsl dst src1 src2 -> " vsl " ^ print_vec_triple dst src1 src2 false
| Vcmpequw dst src1 src2 -> " vcmpequw " ^ print_vec_triple dst src1 src2 false
| Vsldoi dst src1 src2 count -> " vsldoi " ^ print_vec_triple_imm dst src1 src2 count false
| Vmrghw dst src1 src2 -> " vmrghw " ^ print_vec_triple dst src1 src2 false
| Xxmrghd dst src1 src2 -> " xxmrghd " ^ print_vec_triple dst src1 src2 true
| Vsel dst src1 src2 sel -> " vsel " ^ print_vec_quadruple dst src1 src2 sel false
| Vspltw dst src uim -> " vspltw " ^ print_vec_pair_imm dst src uim false
| Vspltisw dst src -> " vspltisw " ^ print_vec_imm dst src false
| Vspltisb dst src -> " vspltisb " ^ print_vec_imm dst src false
| Load128 dst base offset -> " lvx " ^ print_vec_reg_pair dst offset base false
| Store128 src base offset -> " stvx " ^ print_vec_reg_pair src offset base false
| Load128Word4 dst base -> " lxvw4x " ^ print_vec_reg_pair dst 0 base true
| Load128Word4Index dst base offset -> " lxvw4x " ^ print_vec_reg_pair dst offset base true
| Store128Word4 src base -> " stxvw4x " ^ print_vec_reg_pair src 0 base true
| Store128Word4Index src base offset -> " stxvw4x " ^ print_vec_reg_pair src offset base true
| Load128Byte16 dst base -> " lxvb16x " ^ print_vec_reg_pair dst 0 base true
| Load128Byte16Index dst base offset -> " lxvb16x " ^ print_vec_reg_pair dst offset base true
| Store128Byte16 src base -> " stxvb16x " ^ print_vec_reg_pair src 0 base true
| Store128Byte16Index src base offset -> " stxvb16x " ^ print_vec_reg_pair src offset base true
| Vshasigmaw0 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 0 false
| Vshasigmaw1 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 0 15 false
| Vshasigmaw2 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 0 false
| Vshasigmaw3 dst src -> " vshasigmaw " ^ print_vec_pair_imm_pair dst src 1 15 false
| Vsbox dst src -> " vsbox " ^ print_vec_pair dst src false
| RotWord dst src1 src2 -> " vrlw " ^ print_vec_triple dst src1 src2 false
| Vcipher dst src1 src2 -> " vcipher " ^ print_vec_triple dst src1 src2 false
| Vcipherlast dst src1 src2 -> " vcipherlast " ^ print_vec_triple dst src1 src2 false
| Vncipher dst src1 src2 -> " vncipher " ^ print_vec_triple dst src1 src2 false
| Vncipherlast dst src1 src2 -> " vncipherlast " ^ print_vec_triple dst src1 src2 false
| Vpmsumd dst src1 src2 -> " vpmsumd " ^ print_vec_triple dst src1 src2 false
| Alloc n -> " subi " ^ print_reg_pair_imm 1 1 n
| Dealloc n -> " addi " ^ print_reg_pair_imm 1 1 n
| StoreStack128 src t offset ->
" stxv " ^ print_vec_mem src ({ address = 1; offset = offset }) true
| LoadStack128 dst t offset -> " lxv " ^ print_vec_mem dst ({ address = 1; offset = offset }) true
| StoreStack64 src t offset -> " std " ^ print_reg_mem src ({ address = 1; offset = offset })
| LoadStack64 dst t offset -> " ld " ^ print_reg_mem dst ({ address = 1; offset = offset })
| Ghost _ -> "" | {
"checked_file": "Vale.PPC64LE.Print_s.fst.checked",
"dependencies": [
"Vale.PPC64LE.Semantics_s.fst.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.Print_s.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Semantics_s.ins",
"Vale.PPC64LE.Print_s.printer",
"Vale.PPC64LE.Machine_s.reg",
"Prims.op_Hat",
"Prims.int",
"Vale.PPC64LE.Machine_s.Mkmaddr",
"Vale.PPC64LE.Machine_s.simm16",
"Vale.PPC64LE.Machine_s.nsimm16",
"Vale.PPC64LE.Machine_s.bits64",
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.Machine_s.quad32bytes",
"Vale.Def.Words_s.nat2",
"Vale.PPC64LE.Machine_s.sim",
"Vale.Def.Types_s.nat64",
"Vale.Arch.HeapTypes_s.taint",
"Prims.unit",
"Prims.string",
"Prims.bool",
"Vale.PPC64LE.Print_s.print_vec",
"Vale.PPC64LE.Print_s.__proj__Mkprinter__item__const",
"Vale.PPC64LE.Machine_s.maddr",
"Vale.PPC64LE.Print_s.print_maddr",
"Vale.PPC64LE.Print_s.print_reg"
] | [] | module Vale.PPC64LE.Print_s
// Trusted code for producing assembly code
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Semantics_s
open FStar.IO
noeq type printer = {
reg_prefix : unit -> string;
vec_prefix : unit -> string;
vsr_prefix : unit -> string;
maddr : string -> string -> string;
const : int -> string;
align : unit -> string;
header : unit -> string;
footer : unit -> string;
proc_name : string -> string;
ret : string -> string;
}
let print_reg (r:reg) (p:printer) =
p.reg_prefix() ^ string_of_int r
let print_vec (v:vec) (vsr:bool) (p:printer) =
if vsr then p.vsr_prefix() ^ "32+" ^ string_of_int v
else p.vec_prefix() ^ string_of_int v
let print_maddr (m:maddr) (p:printer) =
p.maddr (string_of_int m.offset) (print_reg m.address p)
let cmp_not(o:ocmp) : ocmp =
match o with
| OEq o1 o2 -> ONe o1 o2
| ONe o1 o2 -> OEq o1 o2
| OLe o1 o2 -> OGt o1 o2
| OGe o1 o2 -> OLt o1 o2
| OLt o1 o2 -> OGe o1 o2
| OGt o1 o2 -> OLe o1 o2
// Sanity check
let _ = assert (forall o . o == cmp_not (cmp_not o))
let print_first_cmp_opr (o:cmp_opr) (p:printer) =
match o with
| CReg r -> print_reg r p
| _ -> "!!! INVALID first compare operand !!! Expected general purpose register." | false | true | Vale.PPC64LE.Print_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_ins : ins: Vale.PPC64LE.Semantics_s.ins -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | [] | Vale.PPC64LE.Print_s.print_ins | {
"file_name": "vale/specs/hardware/Vale.PPC64LE.Print_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | ins: Vale.PPC64LE.Semantics_s.ins -> p: Vale.PPC64LE.Print_s.printer -> Prims.string | {
"end_col": 17,
"end_line": 175,
"start_col": 37,
"start_line": 49
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let readable_itype = (i: itype { allow_reader_of_itype i == true }) | let readable_itype = | false | null | false | (i: itype{allow_reader_of_itype i == true}) | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"InterpreterTarget.itype",
"Prims.eq2",
"Prims.bool",
"InterpreterTarget.allow_reader_of_itype"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val readable_itype : Type0 | [] | InterpreterTarget.readable_itype | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 67,
"end_line": 45,
"start_col": 21,
"start_line": 45
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lam a = A.ident & a | let lam a = | false | null | false | A.ident & a | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple2",
"Ast.ident"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lam : a: Type -> Type | [] | InterpreterTarget.lam | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | a: Type -> Type | {
"end_col": 23,
"end_line": 24,
"start_col": 12,
"start_line": 24
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let non_empty_string = s:string { s <> "" } | let non_empty_string = | false | null | false | s: string{s <> ""} | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"Prims.string",
"Prims.b2t",
"Prims.op_disEquality"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp
let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable
let readable_dtyp = (d: dtyp { allow_reader_of_dtyp d == true }) | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val non_empty_string : Type0 | [] | InterpreterTarget.non_empty_string | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 43,
"end_line": 65,
"start_col": 23,
"start_line": 65
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let readable_dtyp = (d: dtyp { allow_reader_of_dtyp d == true }) | let readable_dtyp = | false | null | false | (d: dtyp{allow_reader_of_dtyp d == true}) | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"InterpreterTarget.dtyp",
"Prims.eq2",
"Prims.bool",
"InterpreterTarget.allow_reader_of_dtyp"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp
let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val readable_dtyp : Type0 | [] | InterpreterTarget.readable_dtyp | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 64,
"end_line": 63,
"start_col": 20,
"start_line": 63
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let action = T.action | let action = | false | null | false | T.action | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"Target.action"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val action : Type0 | [] | InterpreterTarget.action | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 21,
"end_line": 23,
"start_col": 13,
"start_line": 23
} |
|
Prims.Tot | val allow_reader_of_itype (i: itype) : bool | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true | val allow_reader_of_itype (i: itype) : bool
let allow_reader_of_itype (i: itype) : bool = | false | null | false | match i with
| AllBytes | AllZeros -> false
| _ -> true | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"InterpreterTarget.itype",
"Prims.bool"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype) | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val allow_reader_of_itype (i: itype) : bool | [] | InterpreterTarget.allow_reader_of_itype | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | i: InterpreterTarget.itype -> Prims.bool | {
"end_col": 15,
"end_line": 43,
"start_col": 4,
"start_line": 40
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let expr = T.expr | let expr = | false | null | false | T.expr | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"Target.expr"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val expr : Type0 | [] | InterpreterTarget.expr | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 17,
"end_line": 22,
"start_col": 11,
"start_line": 22
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let not_type_decl = (d: T.decl { ~ (T.Type_decl? (fst d)) }) | let not_type_decl = | false | null | false | (d: T.decl{~(T.Type_decl? (fst d))}) | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"Target.decl",
"Prims.l_not",
"Prims.b2t",
"Target.uu___is_Type_decl",
"FStar.Pervasives.Native.fst",
"Target.decl'",
"Target.decl_attributes"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp
let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable
let readable_dtyp = (d: dtyp { allow_reader_of_dtyp d == true })
let non_empty_string = s:string { s <> "" }
let nes (s:string)
: non_empty_string
= if s = "" then "missing" else s
noeq
type typ : Type =
| T_false:
fn:non_empty_string ->
typ
| T_denoted:
fn:non_empty_string ->
d:dtyp ->
typ
| T_pair:
fn:non_empty_string ->
t1:typ ->
t2:typ ->
typ
| T_dep_pair:
fn:non_empty_string ->
t1:readable_dtyp ->
t2:lam typ ->
typ
| T_refine:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
typ
| T_refine_with_action:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
a:lam action ->
typ
| T_dep_pair_with_refinement:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
k:lam typ ->
typ
| T_dep_pair_with_action:
fn:non_empty_string ->
base:readable_dtyp ->
k:lam typ ->
a:lam action ->
typ
| T_dep_pair_with_refinement_and_action:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
k:lam typ ->
a:lam action ->
typ
| T_if_else:
b:expr ->
t1:typ ->
t2:typ ->
typ
| T_with_action:
fn:non_empty_string ->
base:typ ->
act:action ->
typ
| T_with_dep_action:
fn:non_empty_string ->
head:readable_dtyp ->
act:lam action ->
typ
| T_with_comment:
fn:non_empty_string ->
t:typ ->
c:string ->
typ
| T_nlist:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_at_most:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_exact:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_string:
fn:non_empty_string ->
element_type:readable_dtyp ->
terminator:expr ->
typ
val inv_eloc : Type0
noeq
type type_decl = {
name : T.typedef_name;
typ : typ;
kind : T.parser_kind;
inv_eloc : inv_eloc;
allow_reading: bool;
attrs : T.decl_attributes;
enum_typ: option (t:T.typ {T.T_refine? t }) | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val not_type_decl : Type0 | [] | InterpreterTarget.not_type_decl | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 60,
"end_line": 188,
"start_col": 20,
"start_line": 188
} |
|
Prims.Tot | val decl:Type0 | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decl : Type0 = either not_type_decl type_decl | val decl:Type0
let decl:Type0 = | false | null | false | either not_type_decl type_decl | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"FStar.Pervasives.either",
"InterpreterTarget.not_type_decl",
"InterpreterTarget.type_decl"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp
let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable
let readable_dtyp = (d: dtyp { allow_reader_of_dtyp d == true })
let non_empty_string = s:string { s <> "" }
let nes (s:string)
: non_empty_string
= if s = "" then "missing" else s
noeq
type typ : Type =
| T_false:
fn:non_empty_string ->
typ
| T_denoted:
fn:non_empty_string ->
d:dtyp ->
typ
| T_pair:
fn:non_empty_string ->
t1:typ ->
t2:typ ->
typ
| T_dep_pair:
fn:non_empty_string ->
t1:readable_dtyp ->
t2:lam typ ->
typ
| T_refine:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
typ
| T_refine_with_action:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
a:lam action ->
typ
| T_dep_pair_with_refinement:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
k:lam typ ->
typ
| T_dep_pair_with_action:
fn:non_empty_string ->
base:readable_dtyp ->
k:lam typ ->
a:lam action ->
typ
| T_dep_pair_with_refinement_and_action:
fn:non_empty_string ->
base:readable_dtyp ->
refinement:lam expr ->
k:lam typ ->
a:lam action ->
typ
| T_if_else:
b:expr ->
t1:typ ->
t2:typ ->
typ
| T_with_action:
fn:non_empty_string ->
base:typ ->
act:action ->
typ
| T_with_dep_action:
fn:non_empty_string ->
head:readable_dtyp ->
act:lam action ->
typ
| T_with_comment:
fn:non_empty_string ->
t:typ ->
c:string ->
typ
| T_nlist:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_at_most:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_exact:
fn:non_empty_string ->
n:expr ->
t:typ ->
typ
| T_string:
fn:non_empty_string ->
element_type:readable_dtyp ->
terminator:expr ->
typ
val inv_eloc : Type0
noeq
type type_decl = {
name : T.typedef_name;
typ : typ;
kind : T.parser_kind;
inv_eloc : inv_eloc;
allow_reading: bool;
attrs : T.decl_attributes;
enum_typ: option (t:T.typ {T.T_refine? t })
} | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decl:Type0 | [] | InterpreterTarget.decl | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 49,
"end_line": 189,
"start_col": 19,
"start_line": 189
} |
Prims.Tot | val nes (s: string) : non_empty_string | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nes (s:string)
: non_empty_string
= if s = "" then "missing" else s | val nes (s: string) : non_empty_string
let nes (s: string) : non_empty_string = | false | null | false | if s = "" then "missing" else s | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"Prims.string",
"Prims.op_Equality",
"Prims.bool",
"InterpreterTarget.non_empty_string"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp
let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable
let readable_dtyp = (d: dtyp { allow_reader_of_dtyp d == true })
let non_empty_string = s:string { s <> "" }
let nes (s:string) | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nes (s: string) : non_empty_string | [] | InterpreterTarget.nes | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: Prims.string -> InterpreterTarget.non_empty_string | {
"end_col": 35,
"end_line": 69,
"start_col": 4,
"start_line": 69
} |
Prims.Tot | val allow_reader_of_dtyp (d: dtyp) : Tot bool | [
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let allow_reader_of_dtyp (d: dtyp) : Tot bool =
match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable | val allow_reader_of_dtyp (d: dtyp) : Tot bool
let allow_reader_of_dtyp (d: dtyp) : Tot bool = | false | null | false | match d with
| DT_IType i -> allow_reader_of_itype i
| DT_App readable _ _ -> readable | {
"checked_file": "InterpreterTarget.fsti.checked",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.All.fst.checked",
"Binding.fsti.checked",
"Ast.fst.checked"
],
"interface_file": false,
"source_file": "InterpreterTarget.fsti"
} | [
"total"
] | [
"InterpreterTarget.dtyp",
"InterpreterTarget.itype",
"InterpreterTarget.allow_reader_of_itype",
"Prims.bool",
"Ast.ident",
"Prims.list",
"InterpreterTarget.expr"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
module A = Ast
module T = Target
open Binding
let expr = T.expr
let action = T.action
let lam a = A.ident & a
type itype =
| UInt8
| UInt16
| UInt32
| UInt64
| UInt8BE
| UInt16BE
| UInt32BE
| UInt64BE
| Unit
| AllBytes
| AllZeros
let allow_reader_of_itype (i:itype)
: bool
= match i with
| AllBytes
| AllZeros -> false
| _ -> true
let readable_itype = (i: itype { allow_reader_of_itype i == true })
noeq
type dtyp : Type =
| DT_IType:
i:itype -> dtyp
| DT_App:
readable: bool ->
hd:A.ident ->
args:list expr ->
dtyp | false | true | InterpreterTarget.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val allow_reader_of_dtyp (d: dtyp) : Tot bool | [] | InterpreterTarget.allow_reader_of_dtyp | {
"file_name": "src/3d/InterpreterTarget.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | d: InterpreterTarget.dtyp -> Prims.bool | {
"end_col": 35,
"end_line": 61,
"start_col": 2,
"start_line": 59
} |
FStar.Pervasives.Lemma | val lemma_simd_round_key (prev0 prev1:quad32) (rcon:nat32) (round:int) : Lemma
(simd_round_key_256 prev0 prev1 rcon round == round_key_256_rcon prev0 prev1 rcon round) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_simd_round_key (prev0 prev1:quad32) (rcon:nat32) (round:int) =
quad32_xor_reveal ();
commute_rot_word_sub_word prev1.lo0 rcon;
Vale.Arch.Types.xor_lemmas () | val lemma_simd_round_key (prev0 prev1:quad32) (rcon:nat32) (round:int) : Lemma
(simd_round_key_256 prev0 prev1 rcon round == round_key_256_rcon prev0 prev1 rcon round)
let lemma_simd_round_key (prev0 prev1: quad32) (rcon: nat32) (round: int) = | false | null | true | quad32_xor_reveal ();
commute_rot_word_sub_word prev1.lo0 rcon;
Vale.Arch.Types.xor_lemmas () | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.int",
"Vale.Arch.Types.xor_lemmas",
"Prims.unit",
"Vale.AES.AES_BE_s.commute_rot_word_sub_word",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.quad32_xor_reveal"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal ()
#reset-options "--fuel 8 --ifuel 0"
let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8))
=
expand_key_reveal ()
open FStar.Mul
#reset-options "--fuel 1 --ifuel 0 --z3rlimit 40 --using_facts_from '* -FStar.Seq.Properties'"
let lemma_expand_key_256_i (key:aes_key_word AES_256) (i:nat) : Lemma
(requires
1 < i /\ i < 15
)
(ensures (
let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in // Current
let w = expand_key AES_256 key (n + 4) in // Next 4 words
let prev0 = Mkfour v.[m + 3] v.[m + 2] v.[m + 1] v.[m + 0] in // Penultimate 4 words in Current
let prev1 = Mkfour v.[m + 7] v.[m + 6] v.[m + 5] v.[m + 4] in // Ultimate 4 words in Current
round_key_256 prev0 prev1 i == Mkfour w.[n + 3] w.[n + 2] w.[n + 1] w.[n + 0] // NextQuad == Next 4 words
))
=
expand_key_reveal ();
let n = 4 * i in
// unfold expand_key 8 times (could use fuel, but that unfolds everything):
let _ = expand_key AES_256 key (n + 1) in
let _ = expand_key AES_256 key (n + 2) in
let _ = expand_key AES_256 key (n + 3) in
let _ = expand_key AES_256 key (n + 4) in
if i < 14 then (
let _ = expand_key AES_256 key (n + 5) in
let _ = expand_key AES_256 key (n + 6) in
let _ = expand_key AES_256 key (n + 7) in
()
) else ();
()
#reset-options
// expand_key for large 'size' argument agrees with expand_key for smaller 'size' argument
let rec lemma_expand_append (key:aes_key_word AES_256) (size1:nat) (size2:nat) : Lemma
(requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2)
=
expand_key_reveal ();
if size1 < size2 then lemma_expand_append key size1 (size2 - 1)
// quad32 key expansion is equivalent to nat32 key expansion
let rec lemma_expand_key_256 (key:seq nat32) (size:nat) =
lemma_expand_append key (4 * size) 60;
if size = 0 then () else
let i = size - 1 in
lemma_expand_key_256 key i;
lemma_reveal_expand_key_256 key i;
if i < 2 then
(
lemma_expand_append key 4 60;
lemma_expand_append key 8 60;
lemma_expand_key_256_0 key
)
else
(
lemma_expand_append key (4 * i) 60;
lemma_expand_key_256 key (i - 1);
lemma_expand_key_256_i key i
)
// SIMD version of round_key_256 is equivalent to scalar round_key_256
#push-options "--fuel 3 --ifuel 3" // REVIEW: Why do we need this? | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_simd_round_key (prev0 prev1:quad32) (rcon:nat32) (round:int) : Lemma
(simd_round_key_256 prev0 prev1 rcon round == round_key_256_rcon prev0 prev1 rcon round) | [] | Vale.AES.AES256_helpers_BE.lemma_simd_round_key | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
prev0: Vale.Def.Types_s.quad32 ->
prev1: Vale.Def.Types_s.quad32 ->
rcon: Vale.Def.Types_s.nat32 ->
round: Prims.int
-> FStar.Pervasives.Lemma
(ensures
Vale.AES.AES256_helpers_BE.simd_round_key_256 prev0 prev1 rcon round ==
Vale.AES.AES256_helpers_BE.round_key_256_rcon prev0 prev1 rcon round) | {
"end_col": 31,
"end_line": 84,
"start_col": 2,
"start_line": 82
} |
FStar.Pervasives.Lemma | val lemma_reveal_expand_key_256 (key: aes_key_word AES_256) (round: nat)
: Lemma
(expand_key_256 key round ==
(if round = 0
then Mkfour key.[ 3 ] key.[ 2 ] key.[ 1 ] key.[ 0 ]
else
if round = 1
then Mkfour key.[ 7 ] key.[ 6 ] key.[ 5 ] key.[ 4 ]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal () | val lemma_reveal_expand_key_256 (key: aes_key_word AES_256) (round: nat)
: Lemma
(expand_key_256 key round ==
(if round = 0
then Mkfour key.[ 3 ] key.[ 2 ] key.[ 1 ] key.[ 0 ]
else
if round = 1
then Mkfour key.[ 7 ] key.[ 6 ] key.[ 5 ] key.[ 4 ]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
let lemma_reveal_expand_key_256 (key: aes_key_word AES_256) (round: nat)
: Lemma
(expand_key_256 key round ==
(if round = 0
then Mkfour key.[ 3 ] key.[ 2 ] key.[ 1 ] key.[ 0 ]
else
if round = 1
then Mkfour key.[ 7 ] key.[ 6 ] key.[ 5 ] key.[ 4 ]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
)) = | false | null | true | expand_key_256_reveal () | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_BE_s.aes_key_word",
"Vale.AES.AES_common_s.AES_256",
"Prims.nat",
"Vale.AES.AES256_helpers_BE.expand_key_256_reveal",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.AES.AES256_helpers_BE.expand_key_256",
"Prims.op_Equality",
"Prims.int",
"Vale.Def.Words_s.Mkfour",
"Vale.AES.AES256_helpers_BE.op_String_Access",
"Prims.bool",
"Vale.AES.AES256_helpers_BE.round_key_256",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
)) | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reveal_expand_key_256 (key: aes_key_word AES_256) (round: nat)
: Lemma
(expand_key_256 key round ==
(if round = 0
then Mkfour key.[ 3 ] key.[ 2 ] key.[ 1 ] key.[ 0 ]
else
if round = 1
then Mkfour key.[ 7 ] key.[ 6 ] key.[ 5 ] key.[ 4 ]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
)) | [] | Vale.AES.AES256_helpers_BE.lemma_reveal_expand_key_256 | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: Vale.AES.AES_BE_s.aes_key_word Vale.AES.AES_common_s.AES_256 -> round: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Vale.AES.AES256_helpers_BE.expand_key_256 key round ==
(match round = 0 with
| true -> Vale.Def.Words_s.Mkfour key.[ 3 ] key.[ 2 ] key.[ 1 ] key.[ 0 ]
| _ ->
(match round = 1 with
| true -> Vale.Def.Words_s.Mkfour key.[ 7 ] key.[ 6 ] key.[ 5 ] key.[ 4 ]
| _ ->
Vale.AES.AES256_helpers_BE.round_key_256 (Vale.AES.AES256_helpers_BE.expand_key_256 key
(round - 2))
(Vale.AES.AES256_helpers_BE.expand_key_256 key (round - 1))
round)
<:
Vale.Def.Words_s.four Vale.Def.Types_s.nat32)) | {
"end_col": 26,
"end_line": 10,
"start_col": 2,
"start_line": 10
} |
FStar.Pervasives.Lemma | val lemma_expand_key_256_0 (key: aes_key_word AES_256)
: Lemma (equal key (expand_key AES_256 key 8)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8))
=
expand_key_reveal () | val lemma_expand_key_256_0 (key: aes_key_word AES_256)
: Lemma (equal key (expand_key AES_256 key 8))
let lemma_expand_key_256_0 (key: aes_key_word AES_256)
: Lemma (equal key (expand_key AES_256 key 8)) = | false | null | true | expand_key_reveal () | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_BE_s.aes_key_word",
"Vale.AES.AES_common_s.AES_256",
"Vale.AES.AES_BE_s.expand_key_reveal",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat32",
"Vale.AES.AES_BE_s.expand_key",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal ()
#reset-options "--fuel 8 --ifuel 0"
let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8)) | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 8,
"initial_ifuel": 0,
"max_fuel": 8,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_expand_key_256_0 (key: aes_key_word AES_256)
: Lemma (equal key (expand_key AES_256 key 8)) | [] | Vale.AES.AES256_helpers_BE.lemma_expand_key_256_0 | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: Vale.AES.AES_BE_s.aes_key_word Vale.AES.AES_common_s.AES_256
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal key (Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256 key 8)) | {
"end_col": 22,
"end_line": 16,
"start_col": 2,
"start_line": 16
} |
FStar.Pervasives.Lemma | val lemma_expand_append (key: aes_key_word AES_256) (size1 size2: nat)
: Lemma (requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_expand_append (key:aes_key_word AES_256) (size1:nat) (size2:nat) : Lemma
(requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2)
=
expand_key_reveal ();
if size1 < size2 then lemma_expand_append key size1 (size2 - 1) | val lemma_expand_append (key: aes_key_word AES_256) (size1 size2: nat)
: Lemma (requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2)
let rec lemma_expand_append (key: aes_key_word AES_256) (size1 size2: nat)
: Lemma (requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2) = | false | null | true | expand_key_reveal ();
if size1 < size2 then lemma_expand_append key size1 (size2 - 1) | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma",
""
] | [
"Vale.AES.AES_BE_s.aes_key_word",
"Vale.AES.AES_common_s.AES_256",
"Prims.nat",
"Prims.op_LessThan",
"Vale.AES.AES256_helpers_BE.lemma_expand_append",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.unit",
"Vale.AES.AES_BE_s.expand_key_reveal",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat32",
"Vale.AES.AES_BE_s.expand_key",
"FStar.Seq.Base.slice",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal ()
#reset-options "--fuel 8 --ifuel 0"
let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8))
=
expand_key_reveal ()
open FStar.Mul
#reset-options "--fuel 1 --ifuel 0 --z3rlimit 40 --using_facts_from '* -FStar.Seq.Properties'"
let lemma_expand_key_256_i (key:aes_key_word AES_256) (i:nat) : Lemma
(requires
1 < i /\ i < 15
)
(ensures (
let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in // Current
let w = expand_key AES_256 key (n + 4) in // Next 4 words
let prev0 = Mkfour v.[m + 3] v.[m + 2] v.[m + 1] v.[m + 0] in // Penultimate 4 words in Current
let prev1 = Mkfour v.[m + 7] v.[m + 6] v.[m + 5] v.[m + 4] in // Ultimate 4 words in Current
round_key_256 prev0 prev1 i == Mkfour w.[n + 3] w.[n + 2] w.[n + 1] w.[n + 0] // NextQuad == Next 4 words
))
=
expand_key_reveal ();
let n = 4 * i in
// unfold expand_key 8 times (could use fuel, but that unfolds everything):
let _ = expand_key AES_256 key (n + 1) in
let _ = expand_key AES_256 key (n + 2) in
let _ = expand_key AES_256 key (n + 3) in
let _ = expand_key AES_256 key (n + 4) in
if i < 14 then (
let _ = expand_key AES_256 key (n + 5) in
let _ = expand_key AES_256 key (n + 6) in
let _ = expand_key AES_256 key (n + 7) in
()
) else ();
()
#reset-options
// expand_key for large 'size' argument agrees with expand_key for smaller 'size' argument
let rec lemma_expand_append (key:aes_key_word AES_256) (size1:nat) (size2:nat) : Lemma
(requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2) | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_expand_append (key: aes_key_word AES_256) (size1 size2: nat)
: Lemma (requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2) | [
"recursion"
] | Vale.AES.AES256_helpers_BE.lemma_expand_append | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
key: Vale.AES.AES_BE_s.aes_key_word Vale.AES.AES_common_s.AES_256 ->
size1: Prims.nat ->
size2: Prims.nat
-> FStar.Pervasives.Lemma (requires size1 <= size2 /\ size2 <= 60)
(ensures
FStar.Seq.Base.equal (Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256 key size1)
(FStar.Seq.Base.slice (Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256
key
size2)
0
size1))
(decreases size2) | {
"end_col": 65,
"end_line": 57,
"start_col": 2,
"start_line": 56
} |
FStar.Pervasives.Lemma | val lemma_expand_key_256 (key:seq nat32) (size:nat) : Lemma
(requires size <= 15 /\ is_aes_key_word AES_256 key)
(ensures (
let s = key_schedule_to_round_keys size (expand_key AES_256 key 60) in
(forall (i:nat).{:pattern (expand_key_256 key i)} i < size ==> expand_key_256 key i == s.[i])
)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_expand_key_256 (key:seq nat32) (size:nat) =
lemma_expand_append key (4 * size) 60;
if size = 0 then () else
let i = size - 1 in
lemma_expand_key_256 key i;
lemma_reveal_expand_key_256 key i;
if i < 2 then
(
lemma_expand_append key 4 60;
lemma_expand_append key 8 60;
lemma_expand_key_256_0 key
)
else
(
lemma_expand_append key (4 * i) 60;
lemma_expand_key_256 key (i - 1);
lemma_expand_key_256_i key i
) | val lemma_expand_key_256 (key:seq nat32) (size:nat) : Lemma
(requires size <= 15 /\ is_aes_key_word AES_256 key)
(ensures (
let s = key_schedule_to_round_keys size (expand_key AES_256 key 60) in
(forall (i:nat).{:pattern (expand_key_256 key i)} i < size ==> expand_key_256 key i == s.[i])
))
let rec lemma_expand_key_256 (key: seq nat32) (size: nat) = | false | null | true | lemma_expand_append key (4 * size) 60;
if size = 0
then ()
else
let i = size - 1 in
lemma_expand_key_256 key i;
lemma_reveal_expand_key_256 key i;
if i < 2
then
(lemma_expand_append key 4 60;
lemma_expand_append key 8 60;
lemma_expand_key_256_0 key)
else
(lemma_expand_append key (4 * i) 60;
lemma_expand_key_256 key (i - 1);
lemma_expand_key_256_i key i) | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.AES.AES256_helpers_BE.lemma_expand_key_256_0",
"Prims.unit",
"Vale.AES.AES256_helpers_BE.lemma_expand_append",
"Vale.AES.AES256_helpers_BE.lemma_expand_key_256_i",
"Vale.AES.AES256_helpers_BE.lemma_expand_key_256",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Vale.AES.AES256_helpers_BE.lemma_reveal_expand_key_256"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal ()
#reset-options "--fuel 8 --ifuel 0"
let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8))
=
expand_key_reveal ()
open FStar.Mul
#reset-options "--fuel 1 --ifuel 0 --z3rlimit 40 --using_facts_from '* -FStar.Seq.Properties'"
let lemma_expand_key_256_i (key:aes_key_word AES_256) (i:nat) : Lemma
(requires
1 < i /\ i < 15
)
(ensures (
let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in // Current
let w = expand_key AES_256 key (n + 4) in // Next 4 words
let prev0 = Mkfour v.[m + 3] v.[m + 2] v.[m + 1] v.[m + 0] in // Penultimate 4 words in Current
let prev1 = Mkfour v.[m + 7] v.[m + 6] v.[m + 5] v.[m + 4] in // Ultimate 4 words in Current
round_key_256 prev0 prev1 i == Mkfour w.[n + 3] w.[n + 2] w.[n + 1] w.[n + 0] // NextQuad == Next 4 words
))
=
expand_key_reveal ();
let n = 4 * i in
// unfold expand_key 8 times (could use fuel, but that unfolds everything):
let _ = expand_key AES_256 key (n + 1) in
let _ = expand_key AES_256 key (n + 2) in
let _ = expand_key AES_256 key (n + 3) in
let _ = expand_key AES_256 key (n + 4) in
if i < 14 then (
let _ = expand_key AES_256 key (n + 5) in
let _ = expand_key AES_256 key (n + 6) in
let _ = expand_key AES_256 key (n + 7) in
()
) else ();
()
#reset-options
// expand_key for large 'size' argument agrees with expand_key for smaller 'size' argument
let rec lemma_expand_append (key:aes_key_word AES_256) (size1:nat) (size2:nat) : Lemma
(requires size1 <= size2 /\ size2 <= 60)
(ensures equal (expand_key AES_256 key size1) (slice (expand_key AES_256 key size2) 0 size1))
(decreases size2)
=
expand_key_reveal ();
if size1 < size2 then lemma_expand_append key size1 (size2 - 1)
// quad32 key expansion is equivalent to nat32 key expansion | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_expand_key_256 (key:seq nat32) (size:nat) : Lemma
(requires size <= 15 /\ is_aes_key_word AES_256 key)
(ensures (
let s = key_schedule_to_round_keys size (expand_key AES_256 key 60) in
(forall (i:nat).{:pattern (expand_key_256 key i)} i < size ==> expand_key_256 key i == s.[i])
)) | [
"recursion"
] | Vale.AES.AES256_helpers_BE.lemma_expand_key_256 | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> size: Prims.nat
-> FStar.Pervasives.Lemma
(requires size <= 15 /\ Vale.AES.AES_BE_s.is_aes_key_word Vale.AES.AES_common_s.AES_256 key)
(ensures
(let s =
Vale.AES.AES_BE_s.key_schedule_to_round_keys size
(Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256 key 60)
in
forall (i: Prims.nat). {:pattern Vale.AES.AES256_helpers_BE.expand_key_256 key i}
i < size ==> Vale.AES.AES256_helpers_BE.expand_key_256 key i == s.[ i ])) | {
"end_col": 3,
"end_line": 77,
"start_col": 2,
"start_line": 61
} |
FStar.Pervasives.Lemma | val lemma_expand_key_256_i (key: aes_key_word AES_256) (i: nat)
: Lemma (requires 1 < i /\ i < 15)
(ensures
(let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in
let w = expand_key AES_256 key (n + 4) in
let prev0 = Mkfour v.[ m + 3 ] v.[ m + 2 ] v.[ m + 1 ] v.[ m + 0 ] in
let prev1 = Mkfour v.[ m + 7 ] v.[ m + 6 ] v.[ m + 5 ] v.[ m + 4 ] in
round_key_256 prev0 prev1 i == Mkfour w.[ n + 3 ] w.[ n + 2 ] w.[ n + 1 ] w.[ n + 0 ])) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_expand_key_256_i (key:aes_key_word AES_256) (i:nat) : Lemma
(requires
1 < i /\ i < 15
)
(ensures (
let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in // Current
let w = expand_key AES_256 key (n + 4) in // Next 4 words
let prev0 = Mkfour v.[m + 3] v.[m + 2] v.[m + 1] v.[m + 0] in // Penultimate 4 words in Current
let prev1 = Mkfour v.[m + 7] v.[m + 6] v.[m + 5] v.[m + 4] in // Ultimate 4 words in Current
round_key_256 prev0 prev1 i == Mkfour w.[n + 3] w.[n + 2] w.[n + 1] w.[n + 0] // NextQuad == Next 4 words
))
=
expand_key_reveal ();
let n = 4 * i in
// unfold expand_key 8 times (could use fuel, but that unfolds everything):
let _ = expand_key AES_256 key (n + 1) in
let _ = expand_key AES_256 key (n + 2) in
let _ = expand_key AES_256 key (n + 3) in
let _ = expand_key AES_256 key (n + 4) in
if i < 14 then (
let _ = expand_key AES_256 key (n + 5) in
let _ = expand_key AES_256 key (n + 6) in
let _ = expand_key AES_256 key (n + 7) in
()
) else ();
() | val lemma_expand_key_256_i (key: aes_key_word AES_256) (i: nat)
: Lemma (requires 1 < i /\ i < 15)
(ensures
(let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in
let w = expand_key AES_256 key (n + 4) in
let prev0 = Mkfour v.[ m + 3 ] v.[ m + 2 ] v.[ m + 1 ] v.[ m + 0 ] in
let prev1 = Mkfour v.[ m + 7 ] v.[ m + 6 ] v.[ m + 5 ] v.[ m + 4 ] in
round_key_256 prev0 prev1 i == Mkfour w.[ n + 3 ] w.[ n + 2 ] w.[ n + 1 ] w.[ n + 0 ]))
let lemma_expand_key_256_i (key: aes_key_word AES_256) (i: nat)
: Lemma (requires 1 < i /\ i < 15)
(ensures
(let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in
let w = expand_key AES_256 key (n + 4) in
let prev0 = Mkfour v.[ m + 3 ] v.[ m + 2 ] v.[ m + 1 ] v.[ m + 0 ] in
let prev1 = Mkfour v.[ m + 7 ] v.[ m + 6 ] v.[ m + 5 ] v.[ m + 4 ] in
round_key_256 prev0 prev1 i == Mkfour w.[ n + 3 ] w.[ n + 2 ] w.[ n + 1 ] w.[ n + 0 ])) = | false | null | true | expand_key_reveal ();
let n = 4 * i in
let _ = expand_key AES_256 key (n + 1) in
let _ = expand_key AES_256 key (n + 2) in
let _ = expand_key AES_256 key (n + 3) in
let _ = expand_key AES_256 key (n + 4) in
if i < 14
then
(let _ = expand_key AES_256 key (n + 5) in
let _ = expand_key AES_256 key (n + 6) in
let _ = expand_key AES_256 key (n + 7) in
());
() | {
"checked_file": "Vale.AES.AES256_helpers_BE.fst.checked",
"dependencies": [
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.AES256_helpers_BE.fst"
} | [
"lemma"
] | [
"Vale.AES.AES_BE_s.aes_key_word",
"Vale.AES.AES_common_s.AES_256",
"Prims.nat",
"Prims.unit",
"Prims.op_LessThan",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Prims.eq2",
"FStar.Seq.Base.length",
"Prims.op_Addition",
"Vale.AES.AES_BE_s.expand_key",
"Prims.bool",
"Prims.int",
"FStar.Mul.op_Star",
"Vale.AES.AES_BE_s.expand_key_reveal",
"Prims.l_and",
"Prims.b2t",
"Prims.squash",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.AES.AES256_helpers_BE.round_key_256",
"Vale.Def.Words_s.Mkfour",
"Vale.AES.AES256_helpers_BE.op_String_Access",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.AES256_helpers_BE
let lemma_reveal_expand_key_256 (key:aes_key_word AES_256) (round:nat) : Lemma
(expand_key_256 key round == (
if round = 0 then Mkfour key.[3] key.[2] key.[1] key.[0]
else if round = 1 then Mkfour key.[7] key.[6] key.[5] key.[4]
else round_key_256 (expand_key_256 key (round - 2)) (expand_key_256 key (round - 1)) round
))
=
expand_key_256_reveal ()
#reset-options "--fuel 8 --ifuel 0"
let lemma_expand_key_256_0 (key:aes_key_word AES_256) : Lemma
(equal key (expand_key AES_256 key 8))
=
expand_key_reveal ()
open FStar.Mul
#reset-options "--fuel 1 --ifuel 0 --z3rlimit 40 --using_facts_from '* -FStar.Seq.Properties'"
let lemma_expand_key_256_i (key:aes_key_word AES_256) (i:nat) : Lemma
(requires
1 < i /\ i < 15
)
(ensures (
let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in // Current
let w = expand_key AES_256 key (n + 4) in // Next 4 words
let prev0 = Mkfour v.[m + 3] v.[m + 2] v.[m + 1] v.[m + 0] in // Penultimate 4 words in Current
let prev1 = Mkfour v.[m + 7] v.[m + 6] v.[m + 5] v.[m + 4] in // Ultimate 4 words in Current
round_key_256 prev0 prev1 i == Mkfour w.[n + 3] w.[n + 2] w.[n + 1] w.[n + 0] // NextQuad == Next 4 words
)) | false | false | Vale.AES.AES256_helpers_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_expand_key_256_i (key: aes_key_word AES_256) (i: nat)
: Lemma (requires 1 < i /\ i < 15)
(ensures
(let m = 4 * (i - 2) in
let n = 4 * i in
let v = expand_key AES_256 key n in
let w = expand_key AES_256 key (n + 4) in
let prev0 = Mkfour v.[ m + 3 ] v.[ m + 2 ] v.[ m + 1 ] v.[ m + 0 ] in
let prev1 = Mkfour v.[ m + 7 ] v.[ m + 6 ] v.[ m + 5 ] v.[ m + 4 ] in
round_key_256 prev0 prev1 i == Mkfour w.[ n + 3 ] w.[ n + 2 ] w.[ n + 1 ] w.[ n + 0 ])) | [] | Vale.AES.AES256_helpers_BE.lemma_expand_key_256_i | {
"file_name": "vale/code/crypto/aes/Vale.AES.AES256_helpers_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: Vale.AES.AES_BE_s.aes_key_word Vale.AES.AES_common_s.AES_256 -> i: Prims.nat
-> FStar.Pervasives.Lemma (requires 1 < i /\ i < 15)
(ensures
(let m = 4 * (i - 2) in
let n = 4 * i in
let v = Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256 key n in
let w = Vale.AES.AES_BE_s.expand_key Vale.AES.AES_common_s.AES_256 key (n + 4) in
let prev0 = Vale.Def.Words_s.Mkfour v.[ m + 3 ] v.[ m + 2 ] v.[ m + 1 ] v.[ m + 0 ] in
let prev1 = Vale.Def.Words_s.Mkfour v.[ m + 7 ] v.[ m + 6 ] v.[ m + 5 ] v.[ m + 4 ] in
Vale.AES.AES256_helpers_BE.round_key_256 prev0 prev1 i ==
Vale.Def.Words_s.Mkfour w.[ n + 3 ] w.[ n + 2 ] w.[ n + 1 ] w.[ n + 0 ])) | {
"end_col": 4,
"end_line": 47,
"start_col": 2,
"start_line": 34
} |
Prims.Tot | val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c | val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b = | false | null | false | let c = a * b in
almost_mont_reduction pbits rLen n mu c | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction",
"Prims.int",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n | false | true | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat
-> Prims.int | {
"end_col": 41,
"end_line": 22,
"start_col": 41,
"start_line": 20
} |
Prims.Tot | val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_sqr pbits rLen n mu a =
let c = a * a in
almost_mont_reduction pbits rLen n mu c | val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int
let almost_mont_sqr pbits rLen n mu a = | false | null | false | let c = a * a in
almost_mont_reduction pbits rLen n mu c | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction",
"Prims.int",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n
val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c | false | true | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_sqr | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> Prims.int | {
"end_col": 41,
"end_line": 27,
"start_col": 39,
"start_line": 25
} |
Prims.Tot | val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n | val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c = | false | null | false | let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.bool",
"Prims.op_Subtraction",
"Prims.int",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication | false | true | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> Prims.int | {
"end_col": 52,
"end_line": 17,
"start_col": 45,
"start_line": 15
} |
FStar.Pervasives.Lemma | val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_fits_c_lt_rr c r n =
assert (c < r * r);
Math.Lemmas.cancel_mul_div r r;
assert (c / r < r);
Math.Lemmas.lemma_div_le (c - n) c r | val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r)
let lemma_fits_c_lt_rr c r n = | false | null | true | assert (c < r * r);
Math.Lemmas.cancel_mul_div r r;
assert (c / r < r);
Math.Lemmas.lemma_div_le (c - n) c r | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.pos",
"FStar.Math.Lemmas.lemma_div_le",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"FStar.Math.Lemmas.cancel_mul_div",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n
val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c
val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int
let almost_mont_sqr pbits rLen n mu a =
let c = a * a in
almost_mont_reduction pbits rLen n mu c
/// Lemma (almost_mont_mul pbits rLen n mu a b % n == a * b * d % n)
val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r) | false | false | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r) | [] | Hacl.Spec.AlmostMontgomery.Lemmas.lemma_fits_c_lt_rr | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | c: Prims.nat -> r: Prims.pos -> n: Prims.pos
-> FStar.Pervasives.Lemma (requires c < r * r) (ensures (c - n) / r < r) | {
"end_col": 38,
"end_line": 40,
"start_col": 2,
"start_line": 37
} |
FStar.Pervasives.Lemma | val almost_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures (let res = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == a * b * d % n /\ res < r)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_mul_lemma pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let res = almost_mont_mul pbits rLen n mu a b in
Math.Lemmas.lemma_mult_lt_sqr a b r;
assert (a * b < r * r);
almost_mont_reduction_lemma pbits rLen n mu (a * b) | val almost_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures (let res = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == a * b * d % n /\ res < r))
let almost_mont_mul_lemma pbits rLen n mu a b = | false | null | true | let r = pow2 (pbits * rLen) in
let res = almost_mont_mul pbits rLen n mu a b in
Math.Lemmas.lemma_mult_lt_sqr a b r;
assert (a * b < r * r);
almost_mont_reduction_lemma pbits rLen n mu (a * b) | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction_lemma",
"FStar.Mul.op_Star",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.lemma_mult_lt_sqr",
"Prims.int",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul",
"Prims.pow2"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n
val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c
val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int
let almost_mont_sqr pbits rLen n mu a =
let c = a * a in
almost_mont_reduction pbits rLen n mu c
/// Lemma (almost_mont_mul pbits rLen n mu a b % n == a * b * d % n)
val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r)
let lemma_fits_c_lt_rr c r n =
assert (c < r * r);
Math.Lemmas.cancel_mul_div r r;
assert (c / r < r);
Math.Lemmas.lemma_div_le (c - n) c r
val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r))
let almost_mont_reduction_lemma pbits rLen n mu c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
M.mont_reduction_loop_div_r_lemma pbits rLen n mu c;
assert (res % n == c * d % n /\ res <= (c - n) / r + n);
let res1 = if res < r then res else res - n in
if res < r then ()
else begin
assert (res1 % n == (res - n) % n);
Math.Lemmas.lemma_mod_sub res n 1;
assert (res1 % n == res % n);
assert (res1 <= (c - n) / r);
lemma_fits_c_lt_rr c r n end
val almost_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures (let res = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == a * b * d % n /\ res < r)) | false | false | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures (let res = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == a * b * d % n /\ res < r)) | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul_lemma | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(requires
(let r = Prims.pow2 (pbits * rLen) in
Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let res = Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul pbits rLen n mu a b in
let r = Prims.pow2 (pbits * rLen) in
let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in
res % n == (a * b) * d % n /\ res < r)
<:
Type0)) | {
"end_col": 53,
"end_line": 81,
"start_col": 47,
"start_line": 76
} |
FStar.Pervasives.Lemma | val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_reduction_lemma pbits rLen n mu c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
M.mont_reduction_loop_div_r_lemma pbits rLen n mu c;
assert (res % n == c * d % n /\ res <= (c - n) / r + n);
let res1 = if res < r then res else res - n in
if res < r then ()
else begin
assert (res1 % n == (res - n) % n);
Math.Lemmas.lemma_mod_sub res n 1;
assert (res1 % n == res % n);
assert (res1 <= (c - n) / r);
lemma_fits_c_lt_rr c r n end | val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r))
let almost_mont_reduction_lemma pbits rLen n mu c = | false | null | true | let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
M.mont_reduction_loop_div_r_lemma pbits rLen n mu c;
assert (res % n == c * d % n /\ res <= (c - n) / r + n);
let res1 = if res < r then res else res - n in
if res < r
then ()
else
(assert (res1 % n == (res - n) % n);
Math.Lemmas.lemma_mod_sub res n 1;
assert (res1 % n == res % n);
assert (res1 <= (c - n) / r);
lemma_fits_c_lt_rr c r n) | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims.op_LessThan",
"Prims.bool",
"Hacl.Spec.AlmostMontgomery.Lemmas.lemma_fits_c_lt_rr",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Prims.op_Subtraction",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.l_and",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_lemma",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n
val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c
val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int
let almost_mont_sqr pbits rLen n mu a =
let c = a * a in
almost_mont_reduction pbits rLen n mu c
/// Lemma (almost_mont_mul pbits rLen n mu a b % n == a * b * d % n)
val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r)
let lemma_fits_c_lt_rr c r n =
assert (c < r * r);
Math.Lemmas.cancel_mul_div r r;
assert (c / r < r);
Math.Lemmas.lemma_div_le (c - n) c r
val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r)) | false | false | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r)) | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction_lemma | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat
-> FStar.Pervasives.Lemma
(requires
(let r = Prims.pow2 (pbits * rLen) in
Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ c < r * r))
(ensures
(let res = Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction pbits rLen n mu c in
let r = Prims.pow2 (pbits * rLen) in
let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in
res % n == c * d % n /\ res < r)
<:
Type0)) | {
"end_col": 32,
"end_line": 65,
"start_col": 51,
"start_line": 51
} |
FStar.Pervasives.Lemma | val almost_mont_mul_is_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat-> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let c = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
c % n == M.mont_mul pbits rLen n mu (a % n) (b % n) /\ c < r)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.AlmostMontgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let almost_mont_mul_is_mont_mul_lemma pbits rLen n mu a b =
let c = almost_mont_mul pbits rLen n mu a b in
almost_mont_mul_lemma pbits rLen n mu a b;
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
assert (c % n == a * b * d % n /\ c < r);
let c1 = M.mont_mul pbits rLen n mu (a % n) (b % n) in
calc (==) {
c1;
(==) { M.mont_mul_lemma pbits rLen n mu (a % n) (b % n) }
(a % n) * (b % n) * d % n;
(==) { M.lemma_mod_mul_distr3 (a % n) b d n }
(a % n) * b * d % n;
(==) {
Math.Lemmas.paren_mul_right (a % n) b d;
Math.Lemmas.lemma_mod_mul_distr_l a (b * d) n;
Math.Lemmas.paren_mul_right a b d }
a * b * d % n;
};
assert (c % n == c1) | val almost_mont_mul_is_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat-> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let c = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
c % n == M.mont_mul pbits rLen n mu (a % n) (b % n) /\ c < r))
let almost_mont_mul_is_mont_mul_lemma pbits rLen n mu a b = | false | null | true | let c = almost_mont_mul pbits rLen n mu a b in
almost_mont_mul_lemma pbits rLen n mu a b;
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
assert (c % n == (a * b) * d % n /\ c < r);
let c1 = M.mont_mul pbits rLen n mu (a % n) (b % n) in
calc ( == ) {
c1;
( == ) { M.mont_mul_lemma pbits rLen n mu (a % n) (b % n) }
((a % n) * (b % n)) * d % n;
( == ) { M.lemma_mod_mul_distr3 (a % n) b d n }
((a % n) * b) * d % n;
( == ) { (Math.Lemmas.paren_mul_right (a % n) b d;
Math.Lemmas.lemma_mod_mul_distr_l a (b * d) n;
Math.Lemmas.paren_mul_right a b d) }
(a * b) * d % n;
};
assert (c % n == c1) | {
"checked_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.AlmostMontgomery.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.unit",
"FStar.Calc.calc_finish",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma",
"Prims.squash",
"Hacl.Spec.Montgomery.Lemmas.lemma_mod_mul_distr3",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Hacl.Spec.Montgomery.Lemmas.mont_mul",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pow2",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul_lemma",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul"
] | [] | module Hacl.Spec.AlmostMontgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// High-level specification of Almost Montgomery Multiplication
val almost_mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> int
let almost_mont_reduction pbits rLen n mu c =
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
if res < pow2 (pbits * rLen) then res else res - n
val almost_mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> int
let almost_mont_mul pbits rLen n mu a b =
let c = a * b in
almost_mont_reduction pbits rLen n mu c
val almost_mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> int
let almost_mont_sqr pbits rLen n mu a =
let c = a * a in
almost_mont_reduction pbits rLen n mu c
/// Lemma (almost_mont_mul pbits rLen n mu a b % n == a * b * d % n)
val lemma_fits_c_lt_rr: c:nat -> r:pos -> n:pos -> Lemma
(requires c < r * r)
(ensures (c - n) / r < r)
let lemma_fits_c_lt_rr c r n =
assert (c < r * r);
Math.Lemmas.cancel_mul_div r r;
assert (c / r < r);
Math.Lemmas.lemma_div_le (c - n) c r
val almost_mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ c < r * r))
(ensures (let res = almost_mont_reduction pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == c * d % n /\ res < r))
let almost_mont_reduction_lemma pbits rLen n mu c =
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
let res = M.mont_reduction_loop_div_r pbits rLen n mu c in
M.mont_reduction_loop_div_r_lemma pbits rLen n mu c;
assert (res % n == c * d % n /\ res <= (c - n) / r + n);
let res1 = if res < r then res else res - n in
if res < r then ()
else begin
assert (res1 % n == (res - n) % n);
Math.Lemmas.lemma_mod_sub res n 1;
assert (res1 % n == res % n);
assert (res1 <= (c - n) / r);
lemma_fits_c_lt_rr c r n end
val almost_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures (let res = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
let d, _ = M.eea_pow2_odd (pbits * rLen) n in
res % n == a * b * d % n /\ res < r))
let almost_mont_mul_lemma pbits rLen n mu a b =
let r = pow2 (pbits * rLen) in
let res = almost_mont_mul pbits rLen n mu a b in
Math.Lemmas.lemma_mult_lt_sqr a b r;
assert (a * b < r * r);
almost_mont_reduction_lemma pbits rLen n mu (a * b)
/// Properties
val almost_mont_mul_is_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat-> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let c = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
c % n == M.mont_mul pbits rLen n mu (a % n) (b % n) /\ c < r)) | false | false | Hacl.Spec.AlmostMontgomery.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val almost_mont_mul_is_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat-> b:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
M.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let c = almost_mont_mul pbits rLen n mu a b in
let r = pow2 (pbits * rLen) in
c % n == M.mont_mul pbits rLen n mu (a % n) (b % n) /\ c < r)) | [] | Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul_is_mont_mul_lemma | {
"file_name": "code/bignum/Hacl.Spec.AlmostMontgomery.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(requires
(let r = Prims.pow2 (pbits * rLen) in
Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ a < r /\ b < r))
(ensures
(let c = Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul pbits rLen n mu a b in
let r = Prims.pow2 (pbits * rLen) in
c % n == Hacl.Spec.Montgomery.Lemmas.mont_mul pbits rLen n mu (a % n) (b % n) /\ c < r)) | {
"end_col": 22,
"end_line": 114,
"start_col": 59,
"start_line": 94
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let n = 8 | let n = | false | null | false | 8 | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val n : Prims.int | [] | FStar.Int8.n | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.int | {
"end_col": 16,
"end_line": 20,
"start_col": 15,
"start_line": 20
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Plus_Hat = add | let op_Plus_Hat = | false | null | false | add | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.add"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Plus_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Plus_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 28,
"end_line": 121,
"start_col": 25,
"start_line": 121
} |
|
Prims.Tot | val gt (a b: t) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) | val gt (a b: t) : Tot bool
let gt (a b: t) : Tot bool = | false | null | false | gt #n (v a) (v b) | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int.gt",
"FStar.Int8.n",
"FStar.Int8.v",
"Prims.bool"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gt (a b: t) : Tot bool | [] | FStar.Int8.gt | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 49,
"end_line": 115,
"start_col": 32,
"start_line": 115
} |
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Percent_Hat = rem | let op_Percent_Hat = | false | null | false | rem | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.rem"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Percent_Hat : a: FStar.Int8.t -> b: FStar.Int8.t{FStar.Int8.v b <> 0} -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Percent_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t{FStar.Int8.v b <> 0} -> Prims.Pure FStar.Int8.t | {
"end_col": 31,
"end_line": 125,
"start_col": 28,
"start_line": 125
} |
|
Prims.Tot | val lt (a b: t) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) | val lt (a b: t) : Tot bool
let lt (a b: t) : Tot bool = | false | null | false | lt #n (v a) (v b) | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int.lt",
"FStar.Int8.n",
"FStar.Int8.v",
"Prims.bool"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lt (a b: t) : Tot bool | [] | FStar.Int8.lt | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 49,
"end_line": 117,
"start_col": 32,
"start_line": 117
} |
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Star_Hat = mul | let op_Star_Hat = | false | null | false | mul | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.mul"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Star_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Star_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 28,
"end_line": 123,
"start_col": 25,
"start_line": 123
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Less_Hat = shift_left | let op_Less_Less_Hat = | false | null | false | shift_left | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.shift_left"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Less_Hat : a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Less_Less_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | {
"end_col": 40,
"end_line": 129,
"start_col": 30,
"start_line": 129
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Subtraction_Hat = sub | let op_Subtraction_Hat = | false | null | false | sub | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.sub"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *) | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Subtraction_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Subtraction_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 35,
"end_line": 122,
"start_col": 32,
"start_line": 122
} |
|
Prims.Tot | val gte (a b: t) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) | val gte (a b: t) : Tot bool
let gte (a b: t) : Tot bool = | false | null | false | gte #n (v a) (v b) | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int.gte",
"FStar.Int8.n",
"FStar.Int8.v",
"Prims.bool"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gte (a b: t) : Tot bool | [] | FStar.Int8.gte | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 51,
"end_line": 116,
"start_col": 33,
"start_line": 116
} |
Prims.Tot | val eq (a b: t) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) | val eq (a b: t) : Tot bool
let eq (a b: t) : Tot bool = | false | null | false | eq #n (v a) (v b) | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int.eq",
"FStar.Int8.n",
"FStar.Int8.v",
"Prims.bool"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eq (a b: t) : Tot bool | [] | FStar.Int8.eq | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 49,
"end_line": 114,
"start_col": 32,
"start_line": 114
} |
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Greater_Hat = shift_right | let op_Greater_Greater_Hat = | false | null | false | shift_right | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.shift_right"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Greater_Hat : a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Greater_Greater_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | {
"end_col": 47,
"end_line": 130,
"start_col": 36,
"start_line": 130
} |
|
Prims.Tot | val lte (a b: t) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) | val lte (a b: t) : Tot bool
let lte (a b: t) : Tot bool = | false | null | false | lte #n (v a) (v b) | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int.lte",
"FStar.Int8.n",
"FStar.Int8.v",
"Prims.bool"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lte (a b: t) : Tot bool | [] | FStar.Int8.lte | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 51,
"end_line": 118,
"start_col": 33,
"start_line": 118
} |
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Amp_Hat = logand | let op_Amp_Hat = | false | null | false | logand | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.logand"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Amp_Hat : x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Amp_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 30,
"end_line": 127,
"start_col": 24,
"start_line": 127
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Greater_Greater_Hat = shift_arithmetic_right | let op_Greater_Greater_Greater_Hat = | false | null | false | shift_arithmetic_right | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.shift_arithmetic_right"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Greater_Greater_Hat : a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Greater_Greater_Greater_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int8.t | {
"end_col": 66,
"end_line": 131,
"start_col": 44,
"start_line": 131
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Equals_Hat = gte | let op_Greater_Equals_Hat = | false | null | false | gte | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.gte"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
unfold let op_Equals_Hat = eq | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Equals_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | [] | FStar.Int8.op_Greater_Equals_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 38,
"end_line": 134,
"start_col": 35,
"start_line": 134
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Equals_Hat = eq | let op_Equals_Hat = | false | null | false | eq | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.eq"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Equals_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | [] | FStar.Int8.op_Equals_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 29,
"end_line": 132,
"start_col": 27,
"start_line": 132
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Slash_Hat = div | let op_Slash_Hat = | false | null | false | div | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.div"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Slash_Hat : a: FStar.Int8.t -> b: FStar.Int8.t{FStar.Int8.v b <> 0} -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Slash_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t{FStar.Int8.v b <> 0} -> Prims.Pure FStar.Int8.t | {
"end_col": 29,
"end_line": 124,
"start_col": 26,
"start_line": 124
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Hat = gt | let op_Greater_Hat = | false | null | false | gt | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.gt"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | [] | FStar.Int8.op_Greater_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 30,
"end_line": 133,
"start_col": 28,
"start_line": 133
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Equals_Hat = lte | let op_Less_Equals_Hat = | false | null | false | lte | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.lte"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Equals_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | [] | FStar.Int8.op_Less_Equals_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 35,
"end_line": 136,
"start_col": 32,
"start_line": 136
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Hat_Hat = logxor | let op_Hat_Hat = | false | null | false | logxor | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.logxor"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Hat_Hat : x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Hat_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 30,
"end_line": 126,
"start_col": 24,
"start_line": 126
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Hat = lt | let op_Less_Hat = | false | null | false | lt | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.lt"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt | false | true | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Hat : a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | [] | FStar.Int8.op_Less_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int8.t -> Prims.bool | {
"end_col": 27,
"end_line": 135,
"start_col": 25,
"start_line": 135
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Bar_Hat = logor | let op_Bar_Hat = | false | null | false | logor | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [] | [
"FStar.Int8.logor"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Bar_Hat : x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | [] | FStar.Int8.op_Bar_Hat | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Int8.t -> y: FStar.Int8.t -> Prims.Pure FStar.Int8.t | {
"end_col": 29,
"end_line": 128,
"start_col": 24,
"start_line": 128
} |
|
Prims.Tot | val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ct_abs (a:t{min_int n < v a}) : Tot (b:t{v b = abs (v a)}) =
let mask = a >>>^ UInt32.uint_to_t (n - 1) in
if 0 <= v a then
begin
sign_bit_positive (v a);
nth_lemma (v mask) (FStar.Int.zero _);
logxor_lemma_1 (v a)
end
else
begin
sign_bit_negative (v a);
nth_lemma (v mask) (ones _);
logxor_lemma_2 (v a);
lognot_negative (v a);
UInt.lemma_lognot_value #n (to_uint (v a))
end;
(a ^^ mask) -^ mask | val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)})
let ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) = | false | null | false | let mask = a >>>^ UInt32.uint_to_t (n - 1) in
if 0 <= v a
then
(sign_bit_positive (v a);
nth_lemma (v mask) (FStar.Int.zero _);
logxor_lemma_1 (v a))
else
(sign_bit_negative (v a);
nth_lemma (v mask) (ones _);
logxor_lemma_2 (v a);
lognot_negative (v a);
UInt.lemma_lognot_value #n (to_uint (v a)));
(a ^^ mask) -^ mask | {
"checked_file": "FStar.Int8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int8.fsti"
} | [
"total"
] | [
"FStar.Int8.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Int.min_int",
"FStar.Int8.n",
"FStar.Int8.v",
"FStar.Int8.op_Subtraction_Hat",
"FStar.Int8.op_Hat_Hat",
"Prims.unit",
"Prims.op_LessThanOrEqual",
"FStar.Int.logxor_lemma_1",
"FStar.Int.nth_lemma",
"FStar.Int.zero",
"FStar.Int.sign_bit_positive",
"Prims.bool",
"FStar.UInt.lemma_lognot_value",
"FStar.Int.to_uint",
"FStar.Int.lognot_negative",
"FStar.Int.logxor_lemma_2",
"FStar.Int.ones",
"FStar.Int.sign_bit_negative",
"FStar.Int8.op_Greater_Greater_Greater_Hat",
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"Prims.op_Equality",
"Prims.int",
"Prims.abs"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
open FStar.Int
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly
* a copy-paste of this module. *)
new val t : eqtype
val v (x:t) : Tot (int_t n)
val int_to_t: x:int_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x))
val uv_inv (x : t) : Lemma
(ensures (int_to_t (v x) == x))
[SMTPat (v x)]
val vu_inv (x : int_t n) : Lemma
(ensures (v (int_to_t x) == x))
[SMTPat (int_to_t x)]
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(* Subtraction primitives *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(* Multiplication primitives *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(* Division primitives *)
val div (a:t) (b:t{v b <> 0}) : Pure t
// division overflows on INT_MIN / -1
(requires (size (v a / v b) n))
(ensures (fun c -> v a / v b = v c))
(* Modulo primitives *)
(* If a/b is not representable the result of a%b is undefind *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires (size (v a / v b) n))
(ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
(* Bitwise operators *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(* Shift operators *)
(** If a is negative the result is implementation-defined *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c))
(** If a is negative or a * pow2 s is not representable the result is undefined *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
(* Comparison operators *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(* Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Subtraction_Hat = sub
unfold let op_Star_Hat = mul
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte
unfold let op_Less_Hat = lt
unfold let op_Less_Equals_Hat = lte | false | false | FStar.Int8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) | [] | FStar.Int8.ct_abs | {
"file_name": "ulib/FStar.Int8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t{FStar.Int.min_int FStar.Int8.n < FStar.Int8.v a}
-> b: FStar.Int8.t{FStar.Int8.v b = Prims.abs (FStar.Int8.v a)} | {
"end_col": 21,
"end_line": 155,
"start_col": 64,
"start_line": 139
} |
FStar.Pervasives.Lemma | val lemma_shift_update_last:
a:alg
-> rem: nat
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a}
-> s:state a ->
Lemma (
blake2_update_last a 0 rem (b `Seq.append` d) s ==
blake2_update_last a (size_block a) rem d s
) | [
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.Sequence.Lemmas",
"short_module": "Lems"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_shift_update_last a rem b d s =
let m = b `Seq.append` d in
assert (Seq.slice m (length m - rem) (length m) `Seq.equal` Seq.slice d (length d - rem) (length d));
assert (get_last_padded_block a (b `Seq.append` d) rem == get_last_padded_block a d rem) | val lemma_shift_update_last:
a:alg
-> rem: nat
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a}
-> s:state a ->
Lemma (
blake2_update_last a 0 rem (b `Seq.append` d) s ==
blake2_update_last a (size_block a) rem d s
)
let lemma_shift_update_last a rem b d s = | false | null | true | let m = b `Seq.append` d in
assert ((Seq.slice m (length m - rem) (length m))
`Seq.equal`
(Seq.slice d (length d - rem) (length d)));
assert (get_last_padded_block a (b `Seq.append` d) rem == get_last_padded_block a d rem) | {
"checked_file": "Spec.Blake2.Alternative.fst.checked",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Spec.Blake2.Alternative.fst"
} | [
"lemma"
] | [
"Spec.Blake2.alg",
"Prims.nat",
"Spec.Blake2.block_s",
"Lib.ByteSequence.bytes",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Blake2.size_block",
"Spec.Blake2.max_limb",
"Spec.Blake2.state",
"Prims._assert",
"Prims.eq2",
"Spec.Blake2.get_last_padded_block",
"FStar.Seq.Base.append",
"Lib.IntTypes.uint8",
"Prims.unit",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t"
] | [] | module Spec.Blake2.Alternative
open Spec.Blake2
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Lems = Lib.Sequence.Lemmas
module UpdateMulti = Lib.UpdateMulti
#set-options "--fuel 0 --ifuel 0 --z3rlimit 50"
val lemma_shift_update_last:
a:alg
-> rem: nat
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a}
-> s:state a ->
Lemma (
blake2_update_last a 0 rem (b `Seq.append` d) s ==
blake2_update_last a (size_block a) rem d s
) | false | false | Spec.Blake2.Alternative.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_shift_update_last:
a:alg
-> rem: nat
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a}
-> s:state a ->
Lemma (
blake2_update_last a 0 rem (b `Seq.append` d) s ==
blake2_update_last a (size_block a) rem d s
) | [] | Spec.Blake2.Alternative.lemma_shift_update_last | {
"file_name": "specs/lemmas/Spec.Blake2.Alternative.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Blake2.alg ->
rem: Prims.nat ->
b: Spec.Blake2.block_s a ->
d:
Lib.ByteSequence.bytes
{ Lib.Sequence.length d + Spec.Blake2.size_block a <= Spec.Blake2.max_limb a /\
rem <= Lib.Sequence.length d /\ rem <= Spec.Blake2.size_block a } ->
s: Spec.Blake2.state a
-> FStar.Pervasives.Lemma
(ensures
Spec.Blake2.blake2_update_last a 0 rem (FStar.Seq.Base.append b d) s ==
Spec.Blake2.blake2_update_last a (Spec.Blake2.size_block a) rem d s) | {
"end_col": 90,
"end_line": 30,
"start_col": 41,
"start_line": 27
} |
FStar.Pervasives.Lemma | val lemma_update1_shift:
a:alg
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a}
-> i:nat{i < length d / size_block a /\ (size_block a) + length d <= max_limb a}
-> s:state a ->
Lemma (
blake2_update1 a 0 (b `Seq.append` d) (i + 1) s == blake2_update1 a (size_block a) d i s
) | [
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.Sequence.Lemmas",
"short_module": "Lems"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_update1_shift a b d i s =
assert (get_blocki a (b `Seq.append` d) (i + 1) `Seq.equal` get_blocki a d i) | val lemma_update1_shift:
a:alg
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a}
-> i:nat{i < length d / size_block a /\ (size_block a) + length d <= max_limb a}
-> s:state a ->
Lemma (
blake2_update1 a 0 (b `Seq.append` d) (i + 1) s == blake2_update1 a (size_block a) d i s
)
let lemma_update1_shift a b d i s = | false | null | true | assert ((get_blocki a (b `Seq.append` d) (i + 1)) `Seq.equal` (get_blocki a d i)) | {
"checked_file": "Spec.Blake2.Alternative.fst.checked",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Spec.Blake2.Alternative.fst"
} | [
"lemma"
] | [
"Spec.Blake2.alg",
"Spec.Blake2.block_s",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Blake2.size_block",
"Spec.Blake2.max_limb",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.op_Division",
"Spec.Blake2.state",
"Prims._assert",
"FStar.Seq.Base.equal",
"Lib.IntTypes.uint8",
"Spec.Blake2.get_blocki",
"FStar.Seq.Base.append",
"Prims.unit"
] | [] | module Spec.Blake2.Alternative
open Spec.Blake2
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Lems = Lib.Sequence.Lemmas
module UpdateMulti = Lib.UpdateMulti
#set-options "--fuel 0 --ifuel 0 --z3rlimit 50"
val lemma_shift_update_last:
a:alg
-> rem: nat
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a}
-> s:state a ->
Lemma (
blake2_update_last a 0 rem (b `Seq.append` d) s ==
blake2_update_last a (size_block a) rem d s
)
let lemma_shift_update_last a rem b d s =
let m = b `Seq.append` d in
assert (Seq.slice m (length m - rem) (length m) `Seq.equal` Seq.slice d (length d - rem) (length d));
assert (get_last_padded_block a (b `Seq.append` d) rem == get_last_padded_block a d rem)
val lemma_update1_shift:
a:alg
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a}
-> i:nat{i < length d / size_block a /\ (size_block a) + length d <= max_limb a}
-> s:state a ->
Lemma (
blake2_update1 a 0 (b `Seq.append` d) (i + 1) s == blake2_update1 a (size_block a) d i s
) | false | false | Spec.Blake2.Alternative.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_update1_shift:
a:alg
-> b:block_s a
-> d:bytes{length d + (size_block a) <= max_limb a}
-> i:nat{i < length d / size_block a /\ (size_block a) + length d <= max_limb a}
-> s:state a ->
Lemma (
blake2_update1 a 0 (b `Seq.append` d) (i + 1) s == blake2_update1 a (size_block a) d i s
) | [] | Spec.Blake2.Alternative.lemma_update1_shift | {
"file_name": "specs/lemmas/Spec.Blake2.Alternative.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Blake2.alg ->
b: Spec.Blake2.block_s a ->
d:
Lib.ByteSequence.bytes
{Lib.Sequence.length d + Spec.Blake2.size_block a <= Spec.Blake2.max_limb a} ->
i:
Prims.nat
{ i < Lib.Sequence.length d / Spec.Blake2.size_block a /\
Spec.Blake2.size_block a + Lib.Sequence.length d <= Spec.Blake2.max_limb a } ->
s: Spec.Blake2.state a
-> FStar.Pervasives.Lemma
(ensures
Spec.Blake2.blake2_update1 a 0 (FStar.Seq.Base.append b d) (i + 1) s ==
Spec.Blake2.blake2_update1 a (Spec.Blake2.size_block a) d i s) | {
"end_col": 79,
"end_line": 43,
"start_col": 2,
"start_line": 43
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.