effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
false
null
true
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.logxor_vec", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[]
FStar.UInt128.logxor_vec_append
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a1: FStar.BitVector.bv_t n1 -> b1: FStar.BitVector.bv_t n1 -> a2: FStar.BitVector.bv_t n2 -> b2: FStar.BitVector.bv_t n2 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.BitVector.logxor_vec a1 b1) (FStar.BitVector.logxor_vec a2 b2) == FStar.BitVector.logxor_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2))
{ "end_col": 85, "end_line": 421, "start_col": 2, "start_line": 420 }
Prims.Pure
val mul_wide: x:U64.t -> y:U64.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide (x y:U64.t) : Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y)) = mul_wide_low_ok x y; mul_wide_high_ok x y; product_div_bound (U64.v x) (U64.v y); Math.modulo_lemma (mul_wide_high x y) (pow2 64); mul_wide_impl x y
val mul_wide: x:U64.t -> y:U64.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y)) let mul_wide (x y: U64.t) : Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y)) =
false
null
false
mul_wide_low_ok x y; mul_wide_high_ok x y; product_div_bound (U64.v x) (U64.v y); Math.modulo_lemma (mul_wide_high x y) (pow2 64); mul_wide_impl x y
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt128.mul_wide_impl", "Prims.unit", "FStar.Math.Lemmas.modulo_lemma", "FStar.UInt128.mul_wide_high", "Prims.pow2", "FStar.UInt128.product_div_bound", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt128.mul_wide_high_ok", "FStar.UInt128.mul_wide_low_ok", "FStar.UInt128.t", "Prims.l_True", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "FStar.Mul.op_Star" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32) let product_div_bound (#n:pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) = Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n+n) (x * y) n let mul_wide (x y:U64.t) : Pure t (requires True)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide: x:U64.t -> y:U64.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y))
[]
FStar.UInt128.mul_wide
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 19, "end_line": 1214, "start_col": 2, "start_line": 1210 }
Prims.Pure
val add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low
val add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
false
null
false
let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = (U64.v hi % pow2 (64 - s)) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64 - s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64 - s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64 - s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "FStar.UInt64.add", "Prims.unit", "FStar.UInt128.mod_mul_pow2", "FStar.UInt64.v", "Prims.op_Subtraction", "Prims._assert", "Prims.pow2", "FStar.UInt128.pow2_div_bound", "FStar.UInt64.n", "Prims.eq2", "Prims.int", "FStar.UInt128.mod_mul", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.op_Modulus", "FStar.UInt.uint_t", "FStar.UInt64.shift_right", "FStar.UInt32.sub", "FStar.UInt128.u32_64", "FStar.UInt64.shift_left", "Prims.op_disEquality", "Prims.op_Equality", "Prims.op_Addition" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s)))
[]
FStar.UInt128.add_u64_shift_left
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt64.t
{ "end_col": 18, "end_line": 558, "start_col": 105, "start_line": 545 }
Prims.Pure
val shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r
val shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
false
null
false
let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64) } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.op_LessThan", "Prims.unit", "FStar.UInt128.div_plus_multiple", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.pow2", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Division", "FStar.UInt128.v", "Prims.op_Subtraction", "FStar.UInt128.div_product", "FStar.Math.Lemmas.pow2_plus", "FStar.UInt.uint_t", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt64.shift_right", "FStar.UInt32.sub", "FStar.UInt128.u32_64", "FStar.UInt64.uint_to_t", "Prims.l_True" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s)))
[]
FStar.UInt128.shift_right_large
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> s: FStar.UInt32.t{FStar.UInt32.v s >= 64 /\ FStar.UInt32.v s < 128} -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 798, "start_col": 52, "start_line": 790 }
FStar.Pervasives.Lemma
val product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let product_div_bound (#n:pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) = Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n+n) (x * y) n
val product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) let product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) =
false
null
true
Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n + n) (x * y) n
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt128.pow2_div_bound", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit", "FStar.UInt128.product_bound", "Prims.pow2", "FStar.Math.Lemmas.pow2_plus", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32) let product_div_bound (#n:pos) (x y: UInt.uint_t n) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n)
[]
FStar.UInt128.product_div_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt.uint_t n -> y: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures x * y / Prims.pow2 n < Prims.pow2 n)
{ "end_col": 33, "end_line": 1205, "start_col": 2, "start_line": 1203 }
Prims.Tot
val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)})
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; }
val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)}) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
false
null
false
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "Prims.unit", "FStar.UInt128.lt_characterization", "FStar.UInt128.gte_characterization", "FStar.UInt64.t", "FStar.UInt64.logor", "FStar.UInt64.logand", "FStar.UInt64.eq_mask", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt64.gte_mask", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt64.lognot", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt128.v", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan", "FStar.UInt128.n" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)})
[]
FStar.UInt128.gte_mask
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> c: FStar.UInt128.t { (FStar.UInt128.v a >= FStar.UInt128.v b ==> FStar.UInt128.v c = Prims.pow2 FStar.UInt128.n - 1) /\ (FStar.UInt128.v a < FStar.UInt128.v b ==> FStar.UInt128.v c = 0) }
{ "end_col": 30, "end_line": 892, "start_col": 87, "start_line": 884 }
Prims.Tot
val constant_time_carry (a b: U64.t) : Tot U64.t
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
val constant_time_carry (a b: U64.t) : Tot U64.t let constant_time_carry (a b: U64.t) : Tot U64.t =
false
null
false
let open U64 in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt64.op_Greater_Greater_Hat", "FStar.UInt64.op_Hat_Hat", "FStar.UInt64.op_Bar_Hat", "FStar.UInt64.op_Subtraction_Percent_Hat", "FStar.UInt32.__uint_to_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b
false
true
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant_time_carry (a b: U64.t) : Tot U64.t
[]
FStar.UInt128.constant_time_carry
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.UInt64.t
{ "end_col": 46, "end_line": 103, "start_col": 2, "start_line": 99 }
Prims.Tot
val vec128 (a: t) : BV.bv_t 128
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
val vec128 (a: t) : BV.bv_t 128 let vec128 (a: t) : BV.bv_t 128 =
false
null
false
UInt.to_vec #128 (v a)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.t", "FStar.UInt.to_vec", "FStar.UInt128.v", "FStar.BitVector.bv_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vec128 (a: t) : BV.bv_t 128
[]
FStar.UInt128.vec128
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> FStar.BitVector.bv_t 128
{ "end_col": 56, "end_line": 388, "start_col": 34, "start_line": 388 }
Prims.Tot
val sub_mod_impl (a b: t) : t
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
val sub_mod_impl (a b: t) : t let sub_mod_impl (a b: t) : t =
false
null
false
let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l) }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "FStar.UInt64.sub_mod", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.carry", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt64.t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
false
true
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod_impl (a b: t) : t
[]
FStar.UInt128.sub_mod_impl
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> FStar.UInt128.t
{ "end_col": 69, "end_line": 302, "start_col": 31, "start_line": 299 }
Prims.Tot
val vec64 (a: U64.t) : BV.bv_t 64
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
val vec64 (a: U64.t) : BV.bv_t 64 let vec64 (a: U64.t) : BV.bv_t 64 =
false
null
false
UInt.to_vec (U64.v a)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt.to_vec", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.BitVector.bv_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vec64 (a: U64.t) : BV.bv_t 64
[]
FStar.UInt128.vec64
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> FStar.BitVector.bv_t 64
{ "end_col": 57, "end_line": 389, "start_col": 36, "start_line": 389 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let fact0 (a b: uint_t 64) =
false
null
false
carry_bv a b == int2bv 0
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt.uint_t", "Prims.eq2", "FStar.BV.bv_t", "FStar.UInt128.carry_bv", "FStar.BV.int2bv", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl())
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fact0 : a: FStar.UInt.uint_t 64 -> b: FStar.UInt.uint_t 64 -> Prims.logical
[]
FStar.UInt128.fact0
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt.uint_t 64 -> b: FStar.UInt.uint_t 64 -> Prims.logical
{ "end_col": 53, "end_line": 68, "start_col": 29, "start_line": 68 }
Prims.Tot
val t: (x:Type0{hasEq x})
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t = uint128
val t: (x:Type0{hasEq x}) let t =
false
null
false
uint128
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.uint128" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t }
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t: (x:Type0{hasEq x})
[]
FStar.UInt128.t
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Type0{Prims.hasEq x}
{ "end_col": 15, "end_line": 113, "start_col": 8, "start_line": 113 }
FStar.Pervasives.Lemma
val lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b
val lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) let lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) =
false
null
true
int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt.uint_t", "FStar.UInt128.lem_ult_2", "Prims.unit", "FStar.UInt128.lem_ult_1", "FStar.UInt128.int2bv_ult", "Prims.l_True", "Prims.squash", "Prims.op_LessThan", "FStar.UInt128.fact1", "Prims.bool", "FStar.UInt128.fact0", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b)
[]
FStar.UInt128.lem_ult
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt.uint_t 64 -> b: FStar.UInt.uint_t 64 -> FStar.Pervasives.Lemma (ensures ((match a < b with | true -> FStar.UInt128.fact1 a b | _ -> FStar.UInt128.fact0 a b) <: Type0))
{ "end_col": 17, "end_line": 96, "start_col": 4, "start_line": 94 }
Prims.Pure
val carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b
val carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
false
null
false
constant_time_carry_ok a b; constant_time_carry a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt128.constant_time_carry", "Prims.unit", "FStar.UInt128.constant_time_carry_ok", "Prims.l_True", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "Prims.op_LessThan", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0)))
[]
FStar.UInt128.carry
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
{ "end_col": 25, "end_line": 176, "start_col": 2, "start_line": 175 }
Prims.Tot
val lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt())
val lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (bvult (int2bv a) (int2bv b) ==> fact1 a b) (fun _ -> (); (T.norm [delta_only [`%fact1; `%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'" ; smt ()))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt.uint_t", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Prims.b2t", "FStar.BV.bvult", "FStar.BV.int2bv", "FStar.UInt128.fact1", "Prims.unit", "FStar.Tactics.V2.Derived.smt", "FStar.Tactics.V2.Builtins.set_options", "FStar.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Prims.squash" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
[]
FStar.UInt128.lem_ult_1
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt.uint_t 64 -> b: FStar.UInt.uint_t 64 -> Prims.squash (FStar.BV.bvult (FStar.BV.int2bv a) (FStar.BV.int2bv b) ==> FStar.UInt128.fact1 a b)
{ "end_col": 17, "end_line": 75, "start_col": 4, "start_line": 72 }
FStar.Pervasives.Lemma
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k)
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' =
false
null
true
assert (a % k < k); assert (a % k < k' * k)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "Prims._assert", "Prims.op_LessThan", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k)
[]
FStar.UInt128.mod_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat -> k: Prims.nat{k > 0} -> k': Prims.nat{k' > 0} -> FStar.Pervasives.Lemma (ensures a % k % (k' * k) == a % k)
{ "end_col": 25, "end_line": 203, "start_col": 2, "start_line": 202 }
Prims.Tot
val v (x:t) : Tot (uint_t n)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
val v (x:t) : Tot (uint_t n) let v x =
false
null
false
U64.v x.low + (U64.v x.high) * (pow2 64)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.t", "Prims.op_Addition", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.Mul.op_Star", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.pow2", "FStar.UInt.uint_t", "FStar.UInt128.n" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t
false
true
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val v (x:t) : Tot (uint_t n)
[]
FStar.UInt128.v
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt128.t -> FStar.UInt.uint_t FStar.UInt128.n
{ "end_col": 50, "end_line": 119, "start_col": 10, "start_line": 119 }
FStar.Pervasives.Lemma
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 =
false
null
true
Math.division_multiplication_lemma n m1 m2
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Math.Lemmas.division_multiplication_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2)
[]
FStar.UInt128.div_product
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m1: Prims.nat{m1 > 0} -> m2: Prims.nat{m2 > 0} -> FStar.Pervasives.Lemma (ensures n / (m1 * m2) == n / m1 / m2)
{ "end_col": 44, "end_line": 211, "start_col": 2, "start_line": 211 }
FStar.Pervasives.Lemma
val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_div_cancel n k = Math.cancel_mul_div n k
val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k =
false
null
true
Math.cancel_mul_div n k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Math.Lemmas.cancel_mul_div", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n)
[]
FStar.UInt128.mul_div_cancel
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n * k / k == n)
{ "end_col": 25, "end_line": 216, "start_col": 2, "start_line": 216 }
FStar.Pervasives.Lemma
val sub_mod_wrap_ok (a b: t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b
val sub_mod_wrap_ok (a b: t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) let sub_mod_wrap_ok (a b: t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
false
null
true
if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.op_LessThan", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.sub_mod_wrap1_ok", "Prims.bool", "FStar.UInt128.sub_mod_wrap2_ok", "Prims.unit", "Prims.b2t", "Prims.op_Subtraction", "FStar.UInt128.v", "Prims.squash", "Prims.op_Equality", "Prims.int", "FStar.UInt128.sub_mod_impl", "Prims.op_Addition", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod_wrap_ok (a b: t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[]
FStar.UInt128.sub_mod_wrap_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b < 0) (ensures FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) = FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128)
{ "end_col": 29, "end_line": 359, "start_col": 2, "start_line": 357 }
FStar.Pervasives.Lemma
val mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k) let mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k) =
false
null
true
mod_spec n k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "FStar.UInt128.mod_spec", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k)
[]
FStar.UInt128.mod_spec_rew_n
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n == (n / k) * k + n % k)
{ "end_col": 47, "end_line": 224, "start_col": 35, "start_line": 224 }
FStar.Pervasives.Lemma
val to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high)
val to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
false
null
true
to_vec_append (U64.v a.low) (U64.v a.high)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "FStar.UInt128.to_vec_append", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.bool", "FStar.UInt128.vec128", "FStar.Seq.Base.append", "FStar.UInt128.vec64", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low))
[]
FStar.UInt128.to_vec_v
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> FStar.Pervasives.Lemma (ensures FStar.UInt128.vec128 a == FStar.Seq.Base.append (FStar.UInt128.vec64 (Mkuint128?.high a)) (FStar.UInt128.vec64 (Mkuint128?.low a)))
{ "end_col": 44, "end_line": 393, "start_col": 2, "start_line": 393 }
Prims.Pure
val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); }
val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) let uint_to_t x =
false
null
false
div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)) }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt.uint_t", "FStar.UInt128.n", "FStar.UInt128.Mkuint128", "FStar.UInt64.uint_to_t", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "Prims.unit", "FStar.UInt128.div_mod", "FStar.UInt128.t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint_to_t: x:uint_t n -> Pure t (requires True) (ensures (fun y -> v y = x))
[]
FStar.UInt128.uint_to_t
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt.uint_t FStar.UInt128.n -> Prims.Pure FStar.UInt128.t
{ "end_col": 45, "end_line": 126, "start_col": 4, "start_line": 124 }
FStar.Pervasives.Lemma
val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2
val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 =
false
null
true
Math.modulo_scale_lemma n k1 k2
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.modulo_scale_lemma", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
[]
FStar.UInt128.mod_mul
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k1: Prims.pos -> k2: Prims.pos -> FStar.Pervasives.Lemma (ensures (n % k2) * k1 == n * k1 % (k1 * k2))
{ "end_col": 33, "end_line": 221, "start_col": 2, "start_line": 221 }
FStar.Pervasives.Lemma
val shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) let shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) =
false
null
true
assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt128.mod_mul_cancel", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.pow2_plus", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.l_True", "Prims.squash", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0)
[]
FStar.UInt128.shift_past_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k1: Prims.nat -> k2: Prims.nat{k2 >= k1} -> FStar.Pervasives.Lemma (ensures n * Prims.pow2 k2 % Prims.pow2 k1 == 0)
{ "end_col": 47, "end_line": 488, "start_col": 2, "start_line": 485 }
FStar.Pervasives.Lemma
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' =
false
null
true
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.UInt.uint_t", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.Math.Lemmas.distributivity_sub_left", "Prims.pow2", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.op_Subtraction" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
[]
FStar.UInt128.shift_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
num: FStar.UInt.uint_t n -> n': Prims.nat -> FStar.Pervasives.Lemma (ensures num * Prims.pow2 n' <= Prims.pow2 (n' + n) - Prims.pow2 n')
{ "end_col": 21, "end_line": 376, "start_col": 2, "start_line": 374 }
FStar.Pervasives.Lemma
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) let sub_mod_wrap1_ok a b =
false
null
true
let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; if U64.v a.high = U64.v b.high then () else (u64_diff_wrap a.high b.high; ())
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.op_Equality", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.bool", "Prims.unit", "FStar.UInt128.u64_diff_wrap", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt128.carry", "FStar.UInt64.t", "FStar.UInt64.sub_mod" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 10, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[]
FStar.UInt128.sub_mod_wrap1_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b < 0 /\ FStar.UInt64.v (Mkuint128?.low a) < FStar.UInt64.v (Mkuint128?.low b)) (ensures FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) = FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128)
{ "end_col": 7, "end_line": 334, "start_col": 26, "start_line": 323 }
FStar.Pervasives.Lemma
val mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; ()
val mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0) let mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0) =
false
null
true
mod_spec (n * k) k; mul_div_cancel n k; ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "Prims.unit", "FStar.UInt128.mul_div_cancel", "FStar.UInt128.mod_spec", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0)
[]
FStar.UInt128.mod_mul_cancel
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n * k % k == 0)
{ "end_col": 4, "end_line": 481, "start_col": 2, "start_line": 479 }
Prims.Pure
val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r
val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b))) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
false
null
false
let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.BitVector.bv_t", "FStar.UInt128.vec128", "FStar.BitVector.logand_vec", "FStar.UInt128.to_vec_v", "FStar.UInt128.logand_vec_append", "FStar.UInt128.vec64", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.append", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt64.logand", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "FStar.UInt.uint_t", "FStar.UInt128.n", "FStar.UInt128.v", "FStar.UInt.logand" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logand (v a) (v b)))
[]
FStar.UInt128.logand
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 414, "start_col": 59, "start_line": 404 }
FStar.Pervasives.Lemma
val sub_mod_wrap2_ok (a b: t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); ()
val sub_mod_wrap2_ok (a b: t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) let sub_mod_wrap2_ok (a b: t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
false
null
true
let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "FStar.UInt64.sub_mod", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.pow2", "FStar.UInt128.sum_lt", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.Mul.op_Star", "FStar.UInt128.carry", "FStar.UInt128.sub_mod_impl", "FStar.UInt64.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt128.v", "Prims.op_GreaterThanOrEqual", "Prims.squash", "Prims.op_Equality", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod_wrap2_ok (a b: t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
[]
FStar.UInt128.sub_mod_wrap2_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b < 0 /\ FStar.UInt64.v (Mkuint128?.low a) >= FStar.UInt64.v (Mkuint128?.low b)) (ensures FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) = FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128)
{ "end_col": 4, "end_line": 352, "start_col": 59, "start_line": 343 }
Prims.Pure
val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r
val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a))) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) =
false
null
false
let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.BitVector.bv_t", "FStar.UInt128.vec128", "FStar.BitVector.lognot_vec", "FStar.UInt128.to_vec_v", "FStar.UInt128.lognot_vec_append", "FStar.UInt128.vec64", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.append", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt64.lognot", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "FStar.UInt.uint_t", "FStar.UInt128.n", "FStar.UInt128.v", "FStar.UInt.lognot" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot: a:t -> Pure t (requires True) (ensures (fun r -> v r == lognot (v a)))
[]
FStar.UInt128.lognot
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 475, "start_col": 53, "start_line": 467 }
Prims.Tot
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 =
false
null
false
shift_bound num2 n1; num1 + num2 * pow2 n1
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "Prims.nat", "FStar.UInt.uint_t", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.UInt128.shift_bound" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
[]
FStar.UInt128.append_uint
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
num1: FStar.UInt.uint_t n1 -> num2: FStar.UInt.uint_t n2 -> FStar.UInt.uint_t (n1 + n2)
{ "end_col": 23, "end_line": 381, "start_col": 2, "start_line": 380 }
Prims.Pure
val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) let add_underspec (a b: t) =
false
null
false
let l = U64.add_mod a.low b.low in if v a + v b < pow2 128 then carry_sum_ok a.low b.low; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low) }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "FStar.UInt64.add_underspec", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.carry", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims.unit", "Prims.op_LessThan", "Prims.op_Addition", "FStar.UInt128.v", "Prims.pow2", "FStar.UInt128.carry_sum_ok", "Prims.bool", "FStar.UInt64.t", "FStar.UInt64.add_mod" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); }
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
[]
FStar.UInt128.add_underspec
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 83, "end_line": 197, "start_col": 28, "start_line": 189 }
FStar.Pervasives.Lemma
val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_double a k = mod_mod a k 1
val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k =
false
null
true
mod_mod a k 1
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "FStar.UInt128.mod_mod", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k)
[]
FStar.UInt128.mod_double
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures a % k % k == a % k)
{ "end_col": 15, "end_line": 493, "start_col": 2, "start_line": 493 }
FStar.Pervasives.Lemma
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 =
false
null
true
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.lognot_vec", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
[]
FStar.UInt128.lognot_vec_append
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a1: FStar.BitVector.bv_t n1 -> a2: FStar.BitVector.bv_t n2 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.BitVector.lognot_vec a1) (FStar.BitVector.lognot_vec a2) == FStar.BitVector.lognot_vec (FStar.Seq.Base.append a1 a2))
{ "end_col": 67, "end_line": 463, "start_col": 2, "start_line": 462 }
Prims.Pure
val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r
val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b))) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
false
null
false
let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.BitVector.bv_t", "FStar.UInt128.vec128", "FStar.BitVector.logor_vec", "FStar.UInt128.to_vec_v", "FStar.UInt128.logor_vec_append", "FStar.UInt128.vec64", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.append", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt64.logor", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "FStar.UInt.uint_t", "FStar.UInt128.n", "FStar.UInt128.v", "FStar.UInt.logor" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor: a:t -> b:t -> Pure t (requires True) (ensures (fun r -> v r == logor (v a) (v b)))
[]
FStar.UInt128.logor
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 456, "start_col": 58, "start_line": 446 }
Prims.Pure
val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b
val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c)) let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) =
false
null
false
(if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt128.sub_mod_impl", "Prims.unit", "Prims.op_GreaterThanOrEqual", "Prims.op_Subtraction", "FStar.UInt128.v", "FStar.UInt128.sub_mod_pos_ok", "Prims.bool", "FStar.UInt128.sub_mod_wrap_ok", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a - v b) % pow2 n = v c))
[]
FStar.UInt128.sub_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 18, "end_line": 368, "start_col": 2, "start_line": 365 }
FStar.Pervasives.Lemma
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
false
null
true
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.logor_vec", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[]
FStar.UInt128.logor_vec_append
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a1: FStar.BitVector.bv_t n1 -> b1: FStar.BitVector.bv_t n1 -> a2: FStar.BitVector.bv_t n2 -> b2: FStar.BitVector.bv_t n2 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.BitVector.logor_vec a1 b1) (FStar.BitVector.logor_vec a2 b2) == FStar.BitVector.logor_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2))
{ "end_col": 84, "end_line": 442, "start_col": 2, "start_line": 441 }
FStar.Pervasives.Lemma
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
false
null
true
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.logand_vec", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
[]
FStar.UInt128.logand_vec_append
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a1: FStar.BitVector.bv_t n1 -> b1: FStar.BitVector.bv_t n1 -> a2: FStar.BitVector.bv_t n2 -> b2: FStar.BitVector.bv_t n2 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.BitVector.logand_vec a1 b1) (FStar.BitVector.logand_vec a2 b2) == FStar.BitVector.logand_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2))
{ "end_col": 85, "end_line": 400, "start_col": 2, "start_line": 399 }
FStar.Pervasives.Lemma
val div_plus_multiple (a b: nat) (k: pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k
val div_plus_multiple (a b: nat) (k: pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) let div_plus_multiple (a b: nat) (k: pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) =
false
null
true
Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.small_division_lemma_1", "Prims.unit", "FStar.Math.Lemmas.division_addition_lemma", "Prims.b2t", "Prims.op_LessThan", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Division", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_plus_multiple (a b: nat) (k: pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b))
[]
FStar.UInt128.div_plus_multiple
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat -> b: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (requires a < k) (ensures (a + b * k) / k == b)
{ "end_col": 33, "end_line": 566, "start_col": 2, "start_line": 565 }
Prims.Tot
val u32_64:n: U32.t{U32.v n == 64}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val u32_64:n: U32.t{U32.v n == 64} let u32_64:n: U32.t{U32.v n == 64} =
false
null
false
U32.uint_to_t 64
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt32.uint_to_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u32_64:n: U32.t{U32.v n == 64}
[]
FStar.UInt128.u32_64
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: FStar.UInt32.t{FStar.UInt32.v n == 64}
{ "end_col": 61, "end_line": 519, "start_col": 45, "start_line": 519 }
FStar.Pervasives.Lemma
val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s =
false
null
true
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.nat", "FStar.UInt128.shift_left_large_lemma", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128))
[]
FStar.UInt128.shift_left_large_lemma_t
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> s: Prims.nat -> FStar.Pervasives.Lemma (requires s >= 64) (ensures FStar.UInt128.v a * Prims.pow2 s % Prims.pow2 128 == FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s % Prims.pow2 128)
{ "end_col": 63, "end_line": 517, "start_col": 2, "start_line": 517 }
Prims.Pure
val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) =
false
null
false
let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l) }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "FStar.UInt64.sub", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.carry", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt64.t", "FStar.UInt64.sub_mod", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Subtraction", "FStar.UInt128.v", "Prims.op_Equality", "Prims.int" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub: a:t -> b:t -> Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
[]
FStar.UInt128.sub
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 61, "end_line": 291, "start_col": 40, "start_line": 288 }
FStar.Pervasives.Lemma
val pow2_div_bound (#b: _) (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s
val pow2_div_bound (#b: _) (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) let pow2_div_bound #b (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) =
false
null
true
Math.lemma_div_lt n b s
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.lemma_div_lt", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.op_LessThan", "Prims.op_Division", "Prims.pow2", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_div_bound (#b: _) (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s))
[]
FStar.UInt128.pow2_div_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: FStar.UInt.uint_t b -> s: Prims.nat{s <= b} -> FStar.Pervasives.Lemma (ensures n / Prims.pow2 s < Prims.pow2 (b - s))
{ "end_col": 25, "end_line": 540, "start_col": 2, "start_line": 540 }
FStar.Pervasives.Lemma
val sub_mod_pos_ok (a b: t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); ()
val sub_mod_pos_ok (a b: t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) let sub_mod_pos_ok (a b: t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) =
false
null
true
assert (sub a b == sub_mod_impl a b); ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.UInt128.sub", "FStar.UInt128.sub_mod_impl", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Subtraction", "FStar.UInt128.v", "Prims.squash", "Prims.op_Equality", "Prims.int", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 10, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod_pos_ok (a b: t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b))
[]
FStar.UInt128.sub_mod_pos_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b >= 0) (ensures FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) = FStar.UInt128.v a - FStar.UInt128.v b)
{ "end_col": 4, "end_line": 309, "start_col": 2, "start_line": 308 }
FStar.Pervasives.Lemma
val constant_time_carry_ok (a b: U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
val constant_time_carry_ok (a b: U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) let constant_time_carry_ok (a b: U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) =
false
null
true
calc ( == ) { U64.v (constant_time_carry a b); ( == ) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); ( == ) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); ( == ) { (carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); ()) } bv2int (carry_bv (U64.v a) (U64.v b)); ( == ) { (lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; FStar.Tactics.Effect.assert_by_tactic (bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) (fun _ -> (); (T.norm [])); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt64.v_inj", "FStar.UInt128.constant_time_carry", "FStar.UInt64.lt", "FStar.UInt64.uint_to_t", "Prims.bool", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.BV.bv2int", "Prims.op_LessThan", "FStar.UInt64.v", "FStar.BV.int2bv", "FStar.BV.bv_t", "FStar.Tactics.V2.Builtins.norm", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.UInt128.carry_bv", "FStar.UInt128.carry_uint64", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.UInt128.carry_uint64_equiv", "Prims.squash", "FStar.BV.inverse_num_lemma", "FStar.UInt128.bv2int_fun", "FStar.UInt128.carry_uint64_ok", "FStar.UInt128.lem_ult", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b ==
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant_time_carry_ok (a b: U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
[]
FStar.UInt128.constant_time_carry_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt128.constant_time_carry a b == (match FStar.UInt64.lt a b with | true -> FStar.UInt64.uint_to_t 1 | _ -> FStar.UInt64.uint_to_t 0))
{ "end_col": 98, "end_line": 170, "start_col": 4, "start_line": 147 }
Prims.Pure
val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) let sub_underspec (a b: t) =
false
null
false
let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l) }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "FStar.UInt64.sub_underspec", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.carry", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt64.t", "FStar.UInt64.sub_mod" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_underspec: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
[]
FStar.UInt128.sub_underspec
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 81, "end_line": 297, "start_col": 28, "start_line": 294 }
FStar.Pervasives.Lemma
val shift_left_large_lemma (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); ()
val shift_left_large_lemma (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2)) let shift_left_large_lemma (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2)) =
false
null
true
shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1 + s)) (pow2 (n1 + n2)); shift_past_mod a2 (n1 + n2) (n1 + s); mod_double (a1 * pow2 s) (pow2 (n1 + n2)); ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.unit", "FStar.UInt128.mod_double", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Addition", "FStar.UInt128.shift_past_mod", "FStar.UInt128.mod_add", "FStar.UInt128.shift_left_large_val", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left_large_lemma (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2))
[]
FStar.UInt128.shift_left_large_lemma
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a1: FStar.UInt.uint_t n1 -> a2: FStar.UInt.uint_t n2 -> s: Prims.nat{s >= n2} -> FStar.Pervasives.Lemma (ensures (a1 + a2 * Prims.pow2 n1) * Prims.pow2 s % Prims.pow2 (n1 + n2) == a1 * Prims.pow2 s % Prims.pow2 (n1 + n2))
{ "end_col": 4, "end_line": 509, "start_col": 2, "start_line": 505 }
FStar.Pervasives.Lemma
val mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64)
val mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128) let mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128) =
false
null
true
Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.UInt128.mod_mul", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128)
[]
FStar.UInt128.mod_then_mul_64
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> FStar.Pervasives.Lemma (ensures (n % Prims.pow2 64) * Prims.pow2 64 == n * Prims.pow2 64 % Prims.pow2 128)
{ "end_col": 31, "end_line": 589, "start_col": 2, "start_line": 588 }
FStar.Pervasives.Lemma
val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k
val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k =
false
null
true
Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.mod_add", "Prims.unit", "FStar.Math.Lemmas.modulo_lemma", "FStar.Math.Lemmas.lemma_mod_lt", "Prims.op_Addition", "Prims.op_Modulus" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k))
[]
FStar.UInt128.add_mod_small'
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (requires n + m % k < k) (ensures n + m % k == (n + m) % k)
{ "end_col": 15, "end_line": 620, "start_col": 2, "start_line": 618 }
Prims.Pure
val add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + (U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r
val add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + (U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64)) let add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + (U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64)) =
false
null
false
let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64 - s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert ((hi * pow2 s % pow2 64) * pow2 64 == ((hi * pow2 s) * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64 - s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == (hi * pow2 s) * pow2 64 % pow2 128 + (lo * pow2 s / pow2 64) * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.unit", "FStar.UInt128.mul_abc_to_acb", "Prims.pow2", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "FStar.UInt64.v", "Prims.op_Addition", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Subtraction", "FStar.UInt128.div_pow2_diff", "FStar.UInt128.mod_then_mul_64", "FStar.Math.Lemmas.distributivity_add_left", "FStar.UInt.uint_t", "FStar.UInt128.add_u64_shift_left", "Prims.op_disEquality" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 ==
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + (U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64))
[]
FStar.UInt128.add_u64_shift_left_respec
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt64.t
{ "end_col": 3, "end_line": 612, "start_col": 63, "start_line": 598 }
FStar.Pervasives.Lemma
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) let mul_mod_bound n s1 s2 =
false
null
true
mod_mul n (pow2 s1) (pow2 (s2 - s1)); Math.lemma_mod_lt n (pow2 (s2 - s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2 - s1)) (pow2 (s2 - s1) - 1); Math.pow2_plus (s2 - s1) s1
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.pow2", "Prims.op_Modulus", "FStar.Math.Lemmas.lemma_mod_lt", "FStar.UInt128.mod_mul" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
[]
FStar.UInt128.mul_mod_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> s1: Prims.nat -> s2: Prims.nat{s2 >= s1} -> FStar.Pervasives.Lemma (ensures n * Prims.pow2 s1 % Prims.pow2 s2 <= Prims.pow2 s2 - Prims.pow2 s1)
{ "end_col": 27, "end_line": 641, "start_col": 2, "start_line": 637 }
Prims.Tot
val pll_l (x y: U64.t) : UInt.uint_t 32
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y)
val pll_l (x y: U64.t) : UInt.uint_t 32 let pll_l (x y: U64.t) : UInt.uint_t 32 =
false
null
false
l32 (pll x y)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.l32", "FStar.UInt128.pll", "FStar.UInt.uint_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pll_l (x y: U64.t) : UInt.uint_t 32
[]
FStar.UInt128.pll_l
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.UInt.uint_t 32
{ "end_col": 15, "end_line": 986, "start_col": 2, "start_line": 986 }
Prims.Tot
val pll_h (x y: U64.t) : UInt.uint_t 32
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y)
val pll_h (x y: U64.t) : UInt.uint_t 32 let pll_h (x y: U64.t) : UInt.uint_t 32 =
false
null
false
h32 (pll x y)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.h32", "FStar.UInt128.pll", "FStar.UInt.uint_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pll_h (x y: U64.t) : UInt.uint_t 32
[]
FStar.UInt128.pll_h
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.UInt.uint_t 32
{ "end_col": 15, "end_line": 988, "start_col": 2, "start_line": 988 }
FStar.Pervasives.Lemma
val shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; ()
val shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s)) let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s)) =
false
null
true
Math.pow2_plus 64 s; ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt128.t", "Prims.nat", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "FStar.UInt128.v", "Prims.pow2", "Prims.op_Addition", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s))
[]
FStar.UInt128.shift_t_val
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt128.v a * Prims.pow2 s == FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s + FStar.UInt64.v (Mkuint128?.high a) * Prims.pow2 (64 + s))
{ "end_col": 6, "end_line": 626, "start_col": 4, "start_line": 625 }
Prims.Pure
val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r
val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c)) let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
false
null
false
let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low) } in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc ( == ) { U64.v r.high * pow2 64; ( == ) { () } ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; ( == ) { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); ( == ) { () } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % pow2 128; ( == ) { () } (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * (pow2 64) + (a_l + b_l) % (pow2 64) ) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.unit", "FStar.Pervasives.assert_spinoff", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "FStar.UInt128.v", "Prims.pow2", "Prims._assert", "Prims.eq2", "FStar.Mul.op_Star", "FStar.UInt128.mod_spec_rew_n", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_Division", "FStar.UInt128.mod_add_small", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.UInt128.mod_mul", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.UInt128.carry_sum_ok", "FStar.UInt.uint_t", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt64.add_mod", "FStar.UInt128.carry", "FStar.UInt64.t", "Prims.l_True" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod: a:t -> b:t -> Pure t (requires True) (ensures (fun c -> (v a + v b) % pow2 n = v c))
[]
FStar.UInt128.add_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 282, "start_col": 53, "start_line": 242 }
Prims.Pure
val add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high
val add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
false
null
false
let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = (U64.v hi % pow2 s) * pow2 (64 - s) in Math.pow2_plus (64 - s) s; mod_mul (U64.v hi) (pow2 (64 - s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "FStar.UInt64.add", "Prims.unit", "FStar.UInt128.mod_mul_pow2", "FStar.UInt64.v", "Prims.op_Subtraction", "Prims._assert", "Prims.pow2", "FStar.UInt128.pow2_div_bound", "FStar.UInt64.n", "Prims.eq2", "Prims.int", "FStar.UInt128.mod_mul", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.op_Division", "FStar.UInt.uint_t", "FStar.UInt64.shift_left", "FStar.UInt32.sub", "FStar.UInt128.u32_64", "FStar.UInt64.shift_right", "Prims.op_disEquality", "Prims.op_Addition" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64))
[]
FStar.UInt128.add_u64_shift_right
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt64.t
{ "end_col": 18, "end_line": 728, "start_col": 73, "start_line": 716 }
FStar.Pervasives.Lemma
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 =
false
null
true
Math.paren_mul_right a (pow2 (n1 - n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Subtraction", "Prims.unit", "FStar.UInt128.mul_div_cancel", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Math.Lemmas.paren_mul_right" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
[]
FStar.UInt128.mul_pow2_diff
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat -> n1: Prims.nat -> n2: Prims.nat{n2 <= n1} -> FStar.Pervasives.Lemma (ensures a * Prims.pow2 (n1 - n2) == a * Prims.pow2 n1 / Prims.pow2 n2)
{ "end_col": 29, "end_line": 735, "start_col": 2, "start_line": 733 }
FStar.Pervasives.Lemma
val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b =
false
null
true
UInt.logand_lemma_1 (U64.v a)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt.logand_lemma_1", "FStar.UInt64.n", "FStar.UInt64.v", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)]
[]
FStar.UInt128.u64_and_0
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v b = 0 ==> FStar.UInt64.v (FStar.UInt64.logand a b) = 0) [SMTPat (FStar.UInt64.logand a b)]
{ "end_col": 49, "end_line": 823, "start_col": 20, "start_line": 823 }
FStar.Pervasives.Lemma
val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1
val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 =
false
null
true
div_product n1 k1 k2; div_product n1 k2 k1
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.div_product", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1)
[]
FStar.UInt128.div_product_comm
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n1: Prims.nat -> k1: Prims.pos -> k2: Prims.pos -> FStar.Pervasives.Lemma (ensures n1 / k1 / k2 == n1 / k2 / k1)
{ "end_col": 24, "end_line": 754, "start_col": 4, "start_line": 753 }
Prims.Pure
val add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r
val add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) let add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
false
null
false
let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.unit", "FStar.UInt128.mul_pow2_diff", "FStar.UInt64.v", "FStar.UInt.uint_t", "FStar.UInt128.add_u64_shift_right", "Prims.op_disEquality", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Division", "Prims.pow2", "Prims.op_Modulus", "FStar.Mul.op_Star" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64))
[]
FStar.UInt128.add_u64_shift_right_respec
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt64.t
{ "end_col": 3, "end_line": 744, "start_col": 78, "start_line": 740 }
Prims.Pure
val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s)))))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s
val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
false
null
false
if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt32.t", "FStar.UInt32.lt", "FStar.UInt128.u32_64", "FStar.UInt128.shift_right_small", "Prims.bool", "FStar.UInt128.shift_right_large", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "Prims.op_Division", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right: a:t -> s:UInt32.t -> Pure t (requires (U32.v s < n)) (ensures (fun c -> v c = (v a / (pow2 (UInt32.v s)))))
[]
FStar.UInt128.shift_right
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 30, "end_line": 805, "start_col": 2, "start_line": 803 }
Prims.Pure
val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low)
val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b))) let lte (a b: t) =
false
null
false
U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.op_BarBar", "FStar.UInt64.lt", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_AmpAmp", "FStar.UInt64.eq", "FStar.UInt64.lte", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high ||
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lte #n (v a) (v b)))
[]
FStar.UInt128.lte
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
{ "end_col": 63, "end_line": 815, "start_col": 18, "start_line": 814 }
FStar.Pervasives.Lemma
val u64_1_or (a b: U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b
val u64_1_or (a b: U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_1_or (a b: U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] =
false
null
true
u64_logor_comm a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt128.u64_logor_comm", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.UInt64.v", "Prims.op_Subtraction", "Prims.pow2", "FStar.UInt64.logor", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_1_or (a b: U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)]
[]
FStar.UInt128.u64_1_or
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v a = Prims.pow2 64 - 1 ==> FStar.UInt64.v (FStar.UInt64.logor a b) = Prims.pow2 64 - 1) [SMTPat (FStar.UInt64.logor a b)]
{ "end_col": 20, "end_line": 864, "start_col": 2, "start_line": 864 }
Prims.Pure
val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low)
val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b))) let lt (a b: t) =
false
null
false
U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.op_BarBar", "FStar.UInt64.lt", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_AmpAmp", "FStar.UInt64.eq", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high ||
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == lt #n (v a) (v b)))
[]
FStar.UInt128.lt
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
{ "end_col": 61, "end_line": 811, "start_col": 17, "start_line": 810 }
Prims.Pure
val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low)
val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b))) let gte (a b: t) =
false
null
false
U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.op_BarBar", "FStar.UInt64.gt", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_AmpAmp", "FStar.UInt64.eq", "FStar.UInt64.gte", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high ||
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gte #n (v a) (v b)))
[]
FStar.UInt128.gte
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
{ "end_col": 63, "end_line": 813, "start_col": 18, "start_line": 812 }
FStar.Pervasives.Lemma
val u64_0_and (a b: U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b
val u64_0_and (a b: U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_0_and (a b: U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] =
false
null
true
u64_logand_comm a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt128.u64_logand_comm", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.UInt64.v", "FStar.UInt64.logand", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_0_and (a b: U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)]
[]
FStar.UInt128.u64_0_and
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v a = 0 ==> FStar.UInt64.v (FStar.UInt64.logand a b) = 0) [SMTPat (FStar.UInt64.logand a b)]
{ "end_col": 21, "end_line": 828, "start_col": 2, "start_line": 828 }
FStar.Pervasives.Lemma
val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a =
false
null
true
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt.nth_lemma", "FStar.UInt.lognot", "FStar.UInt.ones", "FStar.UInt.zero", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)]
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)]
[]
FStar.UInt128.u64_not_1
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v a = Prims.pow2 64 - 1 ==> FStar.UInt64.v (FStar.UInt64.lognot a) = 0) [SMTPat (FStar.UInt64.lognot a)]
{ "end_col": 64, "end_line": 880, "start_col": 2, "start_line": 880 }
FStar.Pervasives.Lemma
val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b =
false
null
true
UInt.logor_lemma_2 (U64.v a)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt.logor_lemma_2", "FStar.UInt64.n", "FStar.UInt64.v", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)]
[]
FStar.UInt128.u64_or_1
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v b = Prims.pow2 64 - 1 ==> FStar.UInt64.v (FStar.UInt64.logor a b) = Prims.pow2 64 - 1) [SMTPat (FStar.UInt64.logor a b)]
{ "end_col": 47, "end_line": 859, "start_col": 19, "start_line": 859 }
Prims.Pure
val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low)
val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b))) let gt (a b: t) =
false
null
false
U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "Prims.op_BarBar", "FStar.UInt64.gt", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.op_AmpAmp", "FStar.UInt64.eq", "FStar.UInt128.__proj__Mkuint128__item__low", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt (a:t) (b:t) : Pure bool (requires True) (ensures (fun r -> r == gt #n (v a) (v b)))
[]
FStar.UInt128.gt
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool
{ "end_col": 61, "end_line": 809, "start_col": 17, "start_line": 808 }
Prims.Pure
val shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s)))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r
val shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
false
null
false
if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64 - s) + a_l / pow2 s); u128_div_pow2 a s; r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt128.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "FStar.UInt32.eq", "FStar.UInt32.__uint_to_t", "Prims.bool", "Prims.unit", "FStar.UInt128.u128_div_pow2", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Prims.op_Division", "FStar.UInt128.shift_right_reconstruct", "FStar.UInt.uint_t", "FStar.UInt64.v", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt128.add_u64_shift_right_respec", "FStar.UInt64.shift_right", "Prims.l_True" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s)))
[]
FStar.UInt128.shift_right_small
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 786, "start_col": 2, "start_line": 776 }
FStar.Pervasives.Lemma
val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)]
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a =
false
null
true
UInt.lognot_lemma_1 #64
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt.lognot_lemma_1", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)]
[]
FStar.UInt128.u64_not_0
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v a = 0 ==> FStar.UInt64.v (FStar.UInt64.lognot a) = Prims.pow2 64 - 1) [SMTPat (FStar.UInt64.lognot a)]
{ "end_col": 41, "end_line": 874, "start_col": 18, "start_line": 874 }
Prims.Tot
val u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
val u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1} let u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1} =
false
null
false
U64.uint_to_t 0xffffffff
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.uint_to_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1}
[]
FStar.UInt128.u64_l32_mask
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t{FStar.UInt64.v x == Prims.pow2 32 - 1}
{ "end_col": 76, "end_line": 899, "start_col": 52, "start_line": 899 }
Prims.Tot
val phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
val phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} let phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
false
null
false
mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.h32", "FStar.UInt64.v", "FStar.UInt128.l32", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[]
FStar.UInt128.phl
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
{ "end_col": 45, "end_line": 981, "start_col": 2, "start_line": 981 }
Prims.Tot
val pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
val pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} let pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
false
null
false
mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.l32", "FStar.UInt64.v", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[]
FStar.UInt128.pll
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
{ "end_col": 45, "end_line": 977, "start_col": 2, "start_line": 977 }
Prims.Tot
val l32 (x: UInt.uint_t 64) : UInt.uint_t 32
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32
val l32 (x: UInt.uint_t 64) : UInt.uint_t 32 let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 =
false
null
false
x % pow2 32
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt.uint_t", "Prims.op_Modulus", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l32 (x: UInt.uint_t 64) : UInt.uint_t 32
[]
FStar.UInt128.l32
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt.uint_t 64 -> FStar.UInt.uint_t 32
{ "end_col": 58, "end_line": 967, "start_col": 47, "start_line": 967 }
Prims.Tot
val phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y))
val phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} let phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
false
null
false
mul32_bound (h32 (U64.v x)) (h32 (U64.v y))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.h32", "FStar.UInt64.v", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
[]
FStar.UInt128.phh
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
{ "end_col": 45, "end_line": 983, "start_col": 2, "start_line": 983 }
Prims.Tot
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul32_bound x y = u32_product_bound x y; x * y
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y =
false
null
false
u32_product_bound x y; x * y
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt.uint_t", "FStar.Mul.op_Star", "Prims.unit", "FStar.UInt128.u32_product_bound", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.eq2", "Prims.int" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
[]
FStar.UInt128.mul32_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt.uint_t 32 -> y: FStar.UInt.uint_t 32 -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1 /\ n == x * y}
{ "end_col": 7, "end_line": 974, "start_col": 2, "start_line": 973 }
FStar.Pervasives.Lemma
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u32_product_bound a b = uint_product_bound #32 a b
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b =
false
null
true
uint_product_bound #32 a b
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.UInt128.uint_product_bound", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
[]
FStar.UInt128.u32_product_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat{a < Prims.pow2 32} -> b: Prims.nat{b < Prims.pow2 32} -> FStar.Pervasives.Lemma (ensures FStar.UInt.size (a * b) 64 /\ a * b < Prims.pow2 64 - Prims.pow2 32 - 1)
{ "end_col": 28, "end_line": 938, "start_col": 2, "start_line": 938 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y
let mul_wide_low (x y: U64.t) =
false
null
false
(plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "Prims.op_Addition", "Prims.op_Modulus", "FStar.Mul.op_Star", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.pll_l", "Prims.int" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y)
false
true
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_low : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
[]
FStar.UInt128.mul_wide_low
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
{ "end_col": 107, "end_line": 990, "start_col": 32, "start_line": 990 }
Prims.Pure
val u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
val u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
false
null
false
UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt64.logand", "FStar.UInt128.u64_l32_mask", "Prims.unit", "FStar.UInt.logand_mask", "FStar.UInt64.n", "FStar.UInt64.v", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32))
[]
FStar.UInt128.u64_mod_32
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
{ "end_col": 27, "end_line": 905, "start_col": 2, "start_line": 904 }
FStar.Pervasives.Lemma
val u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32)
val u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a) let u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a) =
false
null
true
div_mod (U64.v a) (pow2 32)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt128.div_mod", "FStar.UInt64.v", "Prims.pow2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a)
[]
FStar.UInt128.u64_32_digits
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures (FStar.UInt64.v a / Prims.pow2 32) * Prims.pow2 32 + FStar.UInt64.v a % Prims.pow2 32 == FStar.UInt64.v a)
{ "end_col": 29, "end_line": 908, "start_col": 2, "start_line": 908 }
Prims.Pure
val mul32: x:U64.t -> y:U32.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U32.v y))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r
val mul32: x:U64.t -> y:U32.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U32.v y)) let mul32 x y =
false
null
false
let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32 } in u64_32_digits x; assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; assert (U64.v x1y' == (U64.v x / pow2 32) * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "FStar.UInt64.v", "FStar.UInt32.v", "Prims.op_Addition", "Prims.pow2", "FStar.UInt128.mul32_digits", "Prims.op_Division", "FStar.UInt128.u64_32_digits", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "FStar.UInt128.u32_combine", "FStar.UInt64.shift_right", "FStar.UInt128.u32_32", "FStar.UInt64.add", "FStar.UInt64.mul", "FStar.Int.Cast.uint32_to_uint64", "FStar.UInt128.u32_product_bound", "FStar.UInt128.u64_mod_32", "FStar.UInt128.t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul32: x:U64.t -> y:U32.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U32.v y))
[]
FStar.UInt128.mul32
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t
{ "end_col": 3, "end_line": 965, "start_col": 15, "start_line": 940 }
FStar.Pervasives.Lemma
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b =
false
null
true
product_bound a b (pow2 n); Math.pow2_plus n n
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.UInt.uint_t", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.UInt128.product_bound", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
[]
FStar.UInt128.uint_product_bound
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures a * b <= Prims.pow2 (2 * n) - 2 * Prims.pow2 n + 1)
{ "end_col": 20, "end_line": 933, "start_col": 2, "start_line": 932 }
Prims.Tot
val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)})
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; }
val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
false
null
false
let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask }
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "FStar.UInt64.t", "FStar.UInt64.logand", "FStar.UInt64.eq_mask", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.__proj__Mkuint128__item__high", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "FStar.UInt.uint_t", "FStar.UInt128.n", "FStar.UInt128.v", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_disEquality" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)})
[]
FStar.UInt128.eq_mask
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt128.t -> c: FStar.UInt128.t { (FStar.UInt128.v a = FStar.UInt128.v b ==> FStar.UInt128.v c = Prims.pow2 FStar.UInt128.n - 1) /\ (FStar.UInt128.v a <> FStar.UInt128.v b ==> FStar.UInt128.v c = 0) }
{ "end_col": 30, "end_line": 841, "start_col": 87, "start_line": 838 }
FStar.Pervasives.Lemma
val product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y))
val product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) =
false
null
true
assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt128.u64_32_product", "FStar.UInt128.l32", "FStar.UInt64.v", "FStar.UInt128.h32", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.l_True", "Prims.squash", "FStar.UInt128.phh", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "FStar.UInt128.pll_l", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 +
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y)
[]
FStar.UInt128.product_expand
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y == FStar.UInt128.phh x y * Prims.pow2 64 + (FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y) * Prims.pow2 32 + FStar.UInt128.pll_l x y)
{ "end_col": 80, "end_line": 1077, "start_col": 2, "start_line": 1075 }
FStar.Pervasives.Lemma
val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64)
val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) let u64_32_product xl xh yl yh =
false
null
true
assert (xh >= 0); assert (pow2 32 >= 0); assert (xh * pow2 32 >= 0); product_sums xl (xh * pow2 32) yl (yh * pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt.uint_t", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.UInt128.mul_abc_to_acb", "FStar.UInt128.product_sums", "Prims.b2t", "Prims.op_GreaterThanOrEqual" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25"
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 25, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64)
[]
FStar.UInt128.u64_32_product
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
xl: FStar.UInt.uint_t 32 -> xh: FStar.UInt.uint_t 32 -> yl: FStar.UInt.uint_t 32 -> yh: FStar.UInt.uint_t 32 -> FStar.Pervasives.Lemma (ensures (xl + xh * Prims.pow2 32) * (yl + yh * Prims.pow2 32) == xl * yl + (xl * yh) * Prims.pow2 32 + (xh * yl) * Prims.pow2 32 + (xh * yh) * Prims.pow2 64)
{ "end_col": 65, "end_line": 1068, "start_col": 2, "start_line": 1061 }
Prims.Pure
val mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t')
val mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) =
false
null
false
let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t')
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.Pervasives.Native.Mktuple4", "FStar.UInt64.add", "FStar.UInt64.mul", "Prims.unit", "FStar.UInt128.u32_product_bound", "FStar.UInt64.v", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt64.n", "FStar.UInt128.h32", "FStar.UInt64.shift_right", "FStar.UInt128.u32_32", "FStar.UInt128.pll_h", "FStar.UInt128.pll_l", "FStar.UInt128.u64_mod_32", "FStar.UInt.uint_t", "FStar.UInt128.pll", "FStar.Pervasives.Native.tuple4", "Prims.l_True", "Prims.l_and", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Addition", "FStar.UInt128.phl" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y))
[]
FStar.UInt128.mul_wide_impl_t'
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure (((FStar.UInt64.t * FStar.UInt64.t) * FStar.UInt64.t) * FStar.UInt64.t)
{ "end_col": 18, "end_line": 1018, "start_col": 39, "start_line": 1004 }
Prims.Tot
val mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64})
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r
val mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) let mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) =
false
null
false
let u1, w3, x', t' = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1 } in r
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "Prims.op_Modulus", "Prims.op_Addition", "FStar.UInt128.phh", "Prims.op_Division", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.plh", "FStar.UInt64.add_mod", "FStar.UInt64.add", "FStar.UInt64.mul", "FStar.Mul.op_Star", "FStar.UInt128.pll_l", "FStar.UInt128.u32_combine'", "FStar.UInt128.mod_mul_pow2", "FStar.UInt128.u32_product_bound", "FStar.UInt64.shift_right", "FStar.UInt128.u32_32", "Prims.l_or", "FStar.UInt.size", "FStar.UInt64.n", "FStar.UInt128.h32", "FStar.UInt128.u64_mod_32", "FStar.UInt128.t", "Prims.l_and", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.mul_wide_low", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.mul_wide_high", "FStar.Pervasives.Native.tuple4", "FStar.UInt128.mul_wide_impl_t'" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64})
[]
FStar.UInt128.mul_wide_impl
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> r: FStar.UInt128.t { FStar.UInt64.v (Mkuint128?.low r) == FStar.UInt128.mul_wide_low x y /\ FStar.UInt64.v (Mkuint128?.high r) == FStar.UInt128.mul_wide_high x y % Prims.pow2 64 }
{ "end_col": 3, "end_line": 1051, "start_col": 60, "start_line": 1029 }
FStar.Pervasives.Lemma
val add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k
val add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k) let add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k) =
false
null
true
mod_add n m k; mod_add n (m % k) k; mod_double m k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.mod_double", "Prims.unit", "FStar.UInt128.mod_add", "Prims.op_Modulus", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k)
[]
FStar.UInt128.add_mod_then_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n + m % k) % k == (n + m) % k)
{ "end_col": 16, "end_line": 1089, "start_col": 2, "start_line": 1087 }
Prims.Pure
val u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32)
val u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo)) let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo)) =
false
null
false
U64.add lo (U64.shift_left hi u32_32)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[]
[ "FStar.UInt64.t", "FStar.UInt64.add", "FStar.UInt64.shift_left", "FStar.UInt128.u32_32", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo))
[]
FStar.UInt128.u32_combine
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
{ "end_col": 39, "end_line": 920, "start_col": 2, "start_line": 920 }
FStar.Pervasives.Lemma
val shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64)
val shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) let shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) =
false
null
true
add_mod_small' m (n * pow2 32) (pow2 64)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.UInt128.add_mod_small'", "FStar.Mul.op_Star", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64)
[]
FStar.UInt128.shift_add
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat{m < Prims.pow2 32} -> FStar.Pervasives.Lemma (ensures n * Prims.pow2 32 % Prims.pow2 64 + m == (n * Prims.pow2 32 + m) % Prims.pow2 64)
{ "end_col": 40, "end_line": 1093, "start_col": 2, "start_line": 1093 }
FStar.Pervasives.Lemma
val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k
val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k =
false
null
true
assert (n - n % k == (n / k) * k); Math.multiple_modulo_lemma (n / k) k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.multiple_modulo_lemma", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Mul.op_Star" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0)
[]
FStar.UInt128.mod_spec_mod
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n - n % k) % k == 0)
{ "end_col": 36, "end_line": 1140, "start_col": 2, "start_line": 1139 }
FStar.Pervasives.Lemma
val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; ()
val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k =
false
null
true
Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "Prims.unit", "FStar.UInt128.div_mod", "FStar.Math.Lemmas.distributivity_add_left", "Prims.op_Division" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k))
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k))
[]
FStar.UInt128.div_sum_combine1
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n / k + m / k) * k == n - n % k + (m - m % k))
{ "end_col": 4, "end_line": 1152, "start_col": 2, "start_line": 1149 }
FStar.Pervasives.Lemma
val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); ()
val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) let product_high_expand x y =
false
null
true
Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); ()
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "Prims.unit", "FStar.Math.Lemmas.division_addition_lemma", "Prims.op_Addition", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.phh", "FStar.UInt128.product_high32", "FStar.UInt128.div_product", "FStar.UInt128.mul_wide_high", "FStar.Math.Lemmas.pow2_plus" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 15, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32)
[]
FStar.UInt128.product_high_expand
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y / Prims.pow2 64 == FStar.UInt128.phh x y + (FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y) / Prims.pow2 32)
{ "end_col": 4, "end_line": 1129, "start_col": 2, "start_line": 1125 }
FStar.Pervasives.Lemma
val n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k
val n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0) let n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0) =
false
null
true
mod_spec_mod n k; mod_0 k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.mod_0", "Prims.unit", "FStar.UInt128.mod_spec_mod", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0)
[]
FStar.UInt128.n_minus_mod_exact
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n - n % k) % k == 0)
{ "end_col": 11, "end_line": 1160, "start_col": 4, "start_line": 1159 }
FStar.Pervasives.Lemma
val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k))
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k
val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) let sum_rounded_mod_exact n m k =
false
null
true
n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n % k) (m - m % k) k; Math.div_exact_r ((n - n % k) + (m - m % k)) k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.div_exact_r", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.unit", "FStar.UInt128.mod_add", "FStar.UInt128.sub_mod_gt_0", "FStar.UInt128.n_minus_mod_exact" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k))
[]
FStar.UInt128.sum_rounded_mod_exact
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures ((n - n % k + (m - m % k)) / k) * k == n - n % k + (m - m % k))
{ "end_col": 46, "end_line": 1174, "start_col": 2, "start_line": 1169 }
FStar.Pervasives.Lemma
val mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32)
val mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) =
false
null
true
product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32)
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "FStar.UInt64.t", "FStar.UInt128.sum_shift_carry", "Prims.op_Addition", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "FStar.UInt128.plh", "Prims.pow2", "Prims.unit", "FStar.UInt128.product_high_expand", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Division", "FStar.Mul.op_Star", "FStar.UInt64.v", "FStar.UInt128.mul_wide_high", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k let mul_wide_high_ok (x y: U64.t) :
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y)
[]
FStar.UInt128.mul_wide_high_ok
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y / Prims.pow2 64 == FStar.UInt128.mul_wide_high x y)
{ "end_col": 59, "end_line": 1199, "start_col": 2, "start_line": 1198 }
FStar.Pervasives.Lemma
val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k
val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k =
false
null
true
div_sum_combine a (b + a % k) k; add_mod_then_mod b a k; Math.lemma_mod_spec (a + b) k
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_spec", "Prims.op_Addition", "Prims.unit", "FStar.UInt128.add_mod_then_mod", "FStar.UInt128.div_sum_combine", "Prims.op_Modulus" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k)
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k)
[]
FStar.UInt128.sum_shift_carry
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.nat -> b: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures a / k + (b + a % k) / k == (a + b) / k)
{ "end_col": 29, "end_line": 1194, "start_col": 2, "start_line": 1190 }
FStar.Pervasives.Lemma
val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k)
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k))
val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) let div_sum_combine n m k =
false
null
true
sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n % k) + (m - m % k)) / k) k; assert (n + m - n % k - m % k == (n - n % k) + (m - m % k))
{ "checked_file": "FStar.UInt128.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.op_Modulus", "Prims.unit", "FStar.UInt128.mul_injective", "Prims.op_Division", "FStar.UInt128.div_sum_combine1", "FStar.UInt128.sum_rounded_mod_exact" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails
false
false
FStar.UInt128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k)
[]
FStar.UInt128.div_sum_combine
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures n / k + m / k == (n + (m - n % k) - m % k) / k)
{ "end_col": 57, "end_line": 1184, "start_col": 2, "start_line": 1181 }