effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val create4 (x0 x1 x2 x3: uint64) : list uint64 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] | val create4 (x0 x1 x2 x3: uint64) : list uint64
let create4 (x0 x1 x2 x3: uint64) : list uint64 = | false | null | false | [x0; x1; x2; x3] | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Lib.IntTypes.uint64",
"Prims.Cons",
"Prims.Nil",
"Prims.list"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create4 (x0 x1 x2 x3: uint64) : list uint64 | [] | Hacl.Spec.P256.PrecompTable.create4 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x0: Lib.IntTypes.uint64 ->
x1: Lib.IntTypes.uint64 ->
x2: Lib.IntTypes.uint64 ->
x3: Lib.IntTypes.uint64
-> Prims.list Lib.IntTypes.uint64 | {
"end_col": 65,
"end_line": 16,
"start_col": 49,
"start_line": 16
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_list = x:list uint64{FL.length x == 4} | let felem_list = | false | null | false | x: list uint64 {FL.length x == 4} | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Prims.list",
"Lib.IntTypes.uint64",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_list : Type0 | [] | Hacl.Spec.P256.PrecompTable.felem_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 48,
"end_line": 19,
"start_col": 17,
"start_line": 19
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_list = x:list uint64{FL.length x == 12} | let point_list = | false | null | false | x: list uint64 {FL.length x == 12} | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Prims.list",
"Lib.IntTypes.uint64",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
inline_for_extraction noextract
let felem_list = x:list uint64{FL.length x == 4} | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_list : Type0 | [] | Hacl.Spec.P256.PrecompTable.point_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 49,
"end_line": 21,
"start_col": 17,
"start_line": 21
} |
|
Prims.Tot | val proj_point_to_list (p: S.proj_point) : point_list | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let proj_point_to_list (p:S.proj_point) : point_list =
[@inline_let] let (px, py, pz) = p in
[@inline_let] let pxM = SM.to_mont px in
[@inline_let] let pyM = SM.to_mont py in
[@inline_let] let pzM = SM.to_mont pz in
FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM) | val proj_point_to_list (p: S.proj_point) : point_list
let proj_point_to_list (p: S.proj_point) : point_list = | false | null | false | [@@ inline_let ]let px, py, pz = p in
[@@ inline_let ]let pxM = SM.to_mont px in
[@@ inline_let ]let pyM = SM.to_mont py in
[@@ inline_let ]let pzM = SM.to_mont pz in
let open FL in felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Spec.P256.PointOps.proj_point",
"Prims.nat",
"FStar.List.Tot.Base.op_At",
"Lib.IntTypes.uint64",
"Hacl.Spec.P256.PrecompTable.felem_to_list",
"Spec.P256.PointOps.felem",
"Hacl.Spec.P256.Montgomery.to_mont",
"Hacl.Spec.P256.PrecompTable.point_list"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
inline_for_extraction noextract
let felem_list = x:list uint64{FL.length x == 4}
inline_for_extraction noextract
let point_list = x:list uint64{FL.length x == 12}
inline_for_extraction noextract
let felem_to_list (x:S.felem) : felem_list =
[@inline_let] let x0 = x % pow2 64 in
[@inline_let] let x1 = x / pow2 64 % pow2 64 in
[@inline_let] let x2 = x / pow2 128 % pow2 64 in
[@inline_let] let x3 = x / pow2 192 % pow2 64 in
[@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in
assert_norm (FL.length r = 4);
r
inline_for_extraction noextract | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val proj_point_to_list (p: S.proj_point) : point_list | [] | Hacl.Spec.P256.PrecompTable.proj_point_to_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.P256.PointOps.proj_point -> Hacl.Spec.P256.PrecompTable.point_list | {
"end_col": 64,
"end_line": 39,
"start_col": 2,
"start_line": 35
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_inv_list (p:point_list) =
let x = Seq.seq_of_list p <: lseq uint64 12 in
point_inv_seq x | let point_inv_list (p: point_list) = | false | null | false | let x = Seq.seq_of_list p <: lseq uint64 12 in
point_inv_seq x | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Hacl.Spec.P256.PrecompTable.point_list",
"Hacl.Impl.P256.Point.point_inv_seq",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Seq.Properties.seq_of_list",
"Lib.IntTypes.uint64",
"Prims.logical"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
inline_for_extraction noextract
let felem_list = x:list uint64{FL.length x == 4}
inline_for_extraction noextract
let point_list = x:list uint64{FL.length x == 12}
inline_for_extraction noextract
let felem_to_list (x:S.felem) : felem_list =
[@inline_let] let x0 = x % pow2 64 in
[@inline_let] let x1 = x / pow2 64 % pow2 64 in
[@inline_let] let x2 = x / pow2 128 % pow2 64 in
[@inline_let] let x3 = x / pow2 192 % pow2 64 in
[@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in
assert_norm (FL.length r = 4);
r
inline_for_extraction noextract
let proj_point_to_list (p:S.proj_point) : point_list =
[@inline_let] let (px, py, pz) = p in
[@inline_let] let pxM = SM.to_mont px in
[@inline_let] let pyM = SM.to_mont py in
[@inline_let] let pzM = SM.to_mont pz in
FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM) | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_inv_list : p: Hacl.Spec.P256.PrecompTable.point_list -> Prims.logical | [] | Hacl.Spec.P256.PrecompTable.point_inv_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Spec.P256.PrecompTable.point_list -> Prims.logical | {
"end_col": 17,
"end_line": 44,
"start_col": 35,
"start_line": 42
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_eval_list (p:point_list) =
let x = Seq.seq_of_list p <: lseq uint64 12 in
from_mont_point (as_point_nat_seq x) | let point_eval_list (p: point_list) = | false | null | false | let x = Seq.seq_of_list p <: lseq uint64 12 in
from_mont_point (as_point_nat_seq x) | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Hacl.Spec.P256.PrecompTable.point_list",
"Hacl.Impl.P256.Point.from_mont_point",
"Hacl.Impl.P256.Point.as_point_nat_seq",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Seq.Properties.seq_of_list",
"Lib.IntTypes.uint64",
"Spec.P256.PointOps.proj_point"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
inline_for_extraction noextract
let felem_list = x:list uint64{FL.length x == 4}
inline_for_extraction noextract
let point_list = x:list uint64{FL.length x == 12}
inline_for_extraction noextract
let felem_to_list (x:S.felem) : felem_list =
[@inline_let] let x0 = x % pow2 64 in
[@inline_let] let x1 = x / pow2 64 % pow2 64 in
[@inline_let] let x2 = x / pow2 128 % pow2 64 in
[@inline_let] let x3 = x / pow2 192 % pow2 64 in
[@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in
assert_norm (FL.length r = 4);
r
inline_for_extraction noextract
let proj_point_to_list (p:S.proj_point) : point_list =
[@inline_let] let (px, py, pz) = p in
[@inline_let] let pxM = SM.to_mont px in
[@inline_let] let pyM = SM.to_mont py in
[@inline_let] let pzM = SM.to_mont pz in
FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM)
inline_for_extraction noextract
let point_inv_list (p:point_list) =
let x = Seq.seq_of_list p <: lseq uint64 12 in
point_inv_seq x | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_eval_list : p: Hacl.Spec.P256.PrecompTable.point_list -> Spec.P256.PointOps.proj_point | [] | Hacl.Spec.P256.PrecompTable.point_eval_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Spec.P256.PrecompTable.point_list -> Spec.P256.PointOps.proj_point | {
"end_col": 38,
"end_line": 49,
"start_col": 36,
"start_line": 47
} |
|
Prims.Tot | val felem_to_list (x: S.felem) : felem_list | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_to_list (x:S.felem) : felem_list =
[@inline_let] let x0 = x % pow2 64 in
[@inline_let] let x1 = x / pow2 64 % pow2 64 in
[@inline_let] let x2 = x / pow2 128 % pow2 64 in
[@inline_let] let x3 = x / pow2 192 % pow2 64 in
[@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in
assert_norm (FL.length r = 4);
r | val felem_to_list (x: S.felem) : felem_list
let felem_to_list (x: S.felem) : felem_list = | false | null | false | [@@ inline_let ]let x0 = x % pow2 64 in
[@@ inline_let ]let x1 = x / pow2 64 % pow2 64 in
[@@ inline_let ]let x2 = x / pow2 128 % pow2 64 in
[@@ inline_let ]let x3 = x / pow2 192 % pow2 64 in
[@@ inline_let ]let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in
assert_norm (FL.length r = 4);
r | {
"checked_file": "Hacl.Spec.P256.PrecompTable.fsti.checked",
"dependencies": [
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.PrecompTable.fsti"
} | [
"total"
] | [
"Spec.P256.PointOps.felem",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.uint64",
"Prims.list",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.P256.PrecompTable.create4",
"Lib.IntTypes.u64",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"Hacl.Spec.P256.PrecompTable.felem_list"
] | [] | module Hacl.Spec.P256.PrecompTable
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Impl.P256.Point
module S = Spec.P256
module SM = Hacl.Spec.P256.Montgomery
module FL = FStar.List.Tot
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
inline_for_extraction noextract
let felem_list = x:list uint64{FL.length x == 4}
inline_for_extraction noextract
let point_list = x:list uint64{FL.length x == 12}
inline_for_extraction noextract | false | true | Hacl.Spec.P256.PrecompTable.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_to_list (x: S.felem) : felem_list | [] | Hacl.Spec.P256.PrecompTable.felem_to_list | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.P256.PointOps.felem -> Hacl.Spec.P256.PrecompTable.felem_list | {
"end_col": 3,
"end_line": 31,
"start_col": 2,
"start_line": 25
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mem_of #a #f (s:ordset a f) x = mem x s | let mem_of #a #f (s: ordset a f) x = | false | null | false | mem x s | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"FStar.OrdSet.ordset",
"FStar.OrdSet.mem",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mem_of : s: FStar.OrdSet.ordset a f -> x: a -> Prims.bool | [] | FStar.OrdSet.mem_of | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.OrdSet.ordset a f -> x: a -> Prims.bool | {
"end_col": 50,
"end_line": 45,
"start_col": 43,
"start_line": 45
} |
|
Prims.Tot | val strict_superset (#a #f: _) (s1 s2: ordset a f) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1 | val strict_superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
let strict_superset #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool = | false | null | false | strict_subset s2 s1 | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"FStar.OrdSet.ordset",
"FStar.OrdSet.strict_subset",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
(* currying-friendly version of mem, ready to be used as a lambda *)
unfold let mem_of #a #f (s:ordset a f) x = mem x s
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty})
: Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
(*
liat is the reverse of tail, i.e. a list of all but the last element.
A shortcut to (fst (unsnoc s)), which as a word is composed
in a remarkably similar fashion.
*)
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{
(forall x. mem x l = (mem x s && (x <> last s))) /\
(if tail s <> empty then (l <> empty) && (head s = head l) else true)
})
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){
p = (liat s, last s)
})
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{
sorted f l /\
(forall x. (List.Tot.mem x l = mem x s))
})
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f)
(requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val strict_superset (#a #f: _) (s1 s2: ordset a f) : Tot bool | [] | FStar.OrdSet.strict_superset | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool | {
"end_col": 78,
"end_line": 88,
"start_col": 59,
"start_line": 88
} |
Prims.Tot | val superset (#a #f: _) (s1 s2: ordset a f) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1 | val superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
let superset #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool = | false | null | false | subset s2 s1 | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"FStar.OrdSet.ordset",
"FStar.OrdSet.subset",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
(* currying-friendly version of mem, ready to be used as a lambda *)
unfold let mem_of #a #f (s:ordset a f) x = mem x s
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty})
: Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
(*
liat is the reverse of tail, i.e. a list of all but the last element.
A shortcut to (fst (unsnoc s)), which as a word is composed
in a remarkably similar fashion.
*)
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{
(forall x. mem x l = (mem x s && (x <> last s))) /\
(if tail s <> empty then (l <> empty) && (head s = head l) else true)
})
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){
p = (liat s, last s)
})
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{
sorted f l /\
(forall x. (List.Tot.mem x l = mem x s))
})
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f)
(requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val superset (#a #f: _) (s1 s2: ordset a f) : Tot bool | [] | FStar.OrdSet.superset | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool | {
"end_col": 64,
"end_line": 81,
"start_col": 52,
"start_line": 81
} |
Prims.Tot | val equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Tot prop =
forall x. mem #_ #f x s1 = mem #_ #f x s2 | val equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop
let equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop = | false | null | false | forall x. mem #_ #f x s1 = mem #_ #f x s2 | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"FStar.OrdSet.ordset",
"Prims.l_Forall",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.OrdSet.mem",
"Prims.prop"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
(* currying-friendly version of mem, ready to be used as a lambda *)
unfold let mem_of #a #f (s:ordset a f) x = mem x s
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty})
: Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
(*
liat is the reverse of tail, i.e. a list of all but the last element.
A shortcut to (fst (unsnoc s)), which as a word is composed
in a remarkably similar fashion.
*)
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{
(forall x. mem x l = (mem x s && (x <> last s))) /\
(if tail s <> empty then (l <> empty) && (head s = head l) else true)
})
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){
p = (liat s, last s)
})
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{
sorted f l /\
(forall x. (List.Tot.mem x l = mem x s))
})
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f)
(requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1
let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop | [] | FStar.OrdSet.equal | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.prop | {
"end_col": 43,
"end_line": 93,
"start_col": 2,
"start_line": 93
} |
Prims.Tot | val sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl) | val sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool
let rec sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool = | false | null | false | match l with
| [] -> true
| x :: [] -> true
| x :: y :: tl -> f x y && x <> y && sorted f (y :: tl) | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"Prims.list",
"Prims.op_AmpAmp",
"Prims.op_disEquality",
"FStar.OrdSet.sorted",
"Prims.Cons",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool | [
"recursion"
] | FStar.OrdSet.sorted | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: FStar.OrdSet.cmp a -> l: Prims.list a -> Prims.bool | {
"end_col": 51,
"end_line": 29,
"start_col": 2,
"start_line": 26
} |
Prims.Tot | val disjoint (#a #f: _) (s1 s2: ordset a f) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty | val disjoint (#a #f: _) (s1 s2: ordset a f) : Tot bool
let disjoint #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool = | false | null | false | intersect s1 s2 = empty | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.OrdSet.cmp",
"FStar.OrdSet.ordset",
"Prims.op_Equality",
"FStar.OrdSet.intersect",
"FStar.OrdSet.empty",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
(* currying-friendly version of mem, ready to be used as a lambda *)
unfold let mem_of #a #f (s:ordset a f) x = mem x s
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty})
: Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
(*
liat is the reverse of tail, i.e. a list of all but the last element.
A shortcut to (fst (unsnoc s)), which as a word is composed
in a remarkably similar fashion.
*)
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{
(forall x. mem x l = (mem x s && (x <> last s))) /\
(if tail s <> empty then (l <> empty) && (head s = head l) else true)
})
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){
p = (liat s, last s)
})
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{
sorted f l /\
(forall x. (List.Tot.mem x l = mem x s))
})
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f)
(requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1 | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val disjoint (#a #f: _) (s1 s2: ordset a f) : Tot bool | [] | FStar.OrdSet.disjoint | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool | {
"end_col": 76,
"end_line": 90,
"start_col": 53,
"start_line": 90
} |
Prims.Tot | val inv (#a: _) (c: condition a) : (z: condition a {forall x. c x = not (z x)}) | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let inv #a (c: condition a) : (z:condition a{forall x. c x = not (z x)}) = fun x -> not (c x) | val inv (#a: _) (c: condition a) : (z: condition a {forall x. c x = not (z x)})
let inv #a (c: condition a) : (z: condition a {forall x. c x = not (z x)}) = | false | null | false | fun x -> not (c x) | {
"checked_file": "FStar.OrdSet.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.OrdSet.fsti"
} | [
"total"
] | [
"FStar.OrdSet.condition",
"Prims.op_Negation",
"Prims.bool",
"Prims.l_Forall",
"Prims.b2t",
"Prims.op_Equality"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.OrdSet
type total_order (a:eqtype) (f: (a -> a -> Tot bool)) =
(forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *)
/\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *)
/\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *)
type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool =
match l with
| [] -> true
| x::[] -> true
| x::y::tl -> f x y && x <> y && sorted f (y::tl)
val ordset (a:eqtype) (f:cmp a) : Type0
val hasEq_ordset: a:eqtype -> f:cmp a
-> Lemma (requires (True)) (ensures (hasEq (ordset a f)))
[SMTPat (hasEq (ordset a f))]
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
(* currying-friendly version of mem, ready to be used as a lambda *)
unfold let mem_of #a #f (s:ordset a f) x = mem x s
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty})
: Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
(*
liat is the reverse of tail, i.e. a list of all but the last element.
A shortcut to (fst (unsnoc s)), which as a word is composed
in a remarkably similar fashion.
*)
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{
(forall x. mem x l = (mem x s && (x <> last s))) /\
(if tail s <> empty then (l <> empty) && (head s = head l) else true)
})
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){
p = (liat s, last s)
})
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{
sorted f l /\
(forall x. (List.Tot.mem x l = mem x s))
})
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f)
(requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1
let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty
let equal (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Tot prop =
forall x. mem #_ #f x s1 = mem #_ #f x s2
val eq_lemma: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f
-> Lemma (requires (equal s1 s2))
(ensures (s1 = s2))
[SMTPat (equal s1 s2)]
val mem_empty: #a:eqtype -> #f:cmp a -> x:a
-> Lemma (requires True) (ensures (not (mem #a #f x (empty #a #f))))
[SMTPat (mem #a #f x (empty #a #f))]
val mem_singleton: #a:eqtype -> #f:cmp a -> x:a -> y:a
-> Lemma (requires True)
(ensures (mem #a #f y (singleton #a #f x)) = (x = y))
[SMTPat (mem #a #f y (singleton #a #f x))]
val mem_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a
-> Lemma (requires True)
(ensures (mem #a #f x (union #a #f s1 s2) =
(mem #a #f x s1 || mem #a #f x s2)))
[SMTPat (mem #a #f x (union #a #f s1 s2))]
val mem_intersect: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a
-> Lemma (requires True)
(ensures (mem #a #f x (intersect s1 s2) =
(mem #a #f x s1 && mem #a #f x s2)))
[SMTPat (mem #a #f x (intersect #a #f s1 s2))]
val mem_subset: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f
-> Lemma (requires True)
(ensures (subset #a #f s1 s2 <==>
(forall x. mem #a #f x s1 ==> mem #a #f x s2)))
[SMTPat (subset #a #f s1 s2)]
val choose_empty: #a:eqtype -> #f:cmp a
-> Lemma (requires True) (ensures (None? (choose #a #f (empty #a #f))))
[SMTPat (choose #a #f (empty #a #f))]
(* TODO: FIXME: Pattern does not contain all quantified vars *)
val choose_s: #a:eqtype -> #f:cmp a -> s:ordset a f
-> Lemma (requires (not (s = (empty #a #f))))
(ensures (Some? (choose #a #f s) /\
s = union #a #f (singleton #a #f (Some?.v (choose #a #f s)))
(remove #a #f (Some?.v (choose #a #f s)) s)))
[SMTPat (choose #a #f s)]
val mem_remove: #a:eqtype -> #f:cmp a -> x:a -> y:a -> s:ordset a f
-> Lemma (requires True)
(ensures (mem #a #f x (remove #a #f y s) =
(mem #a #f x s && not (x = y))))
[SMTPat (mem #a #f x (remove #a #f y s))]
val eq_remove: #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f
-> Lemma (requires (not (mem #a #f x s)))
(ensures (s = remove #a #f x s))
[SMTPat (remove #a #f x s)]
val size_empty: #a:eqtype -> #f:cmp a -> s:ordset a f
-> Lemma (requires True) (ensures ((size #a #f s = 0) = (s = empty #a #f)))
[SMTPat (size #a #f s)]
val size_remove: #a:eqtype -> #f:cmp a -> y:a -> s:ordset a f
-> Lemma (requires (mem #a #f y s))
(ensures (size #a #f s = size #a #f (remove #a #f y s) + 1))
[SMTPat (size #a #f (remove #a #f y s))]
val size_singleton: #a:eqtype -> #f:cmp a -> x:a
-> Lemma (requires True) (ensures (size #a #f (singleton #a #f x) = 1))
[SMTPat (size #a #f (singleton #a #f x))]
val subset_size: #a:eqtype -> #f:cmp a -> x:ordset a f -> y:ordset a f
-> Lemma (requires (subset #a #f x y))
(ensures (size #a #f x <= size #a #f y))
[SMTPat (subset #a #f x y)]
(**********)
val size_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f
-> Lemma (requires True)
(ensures ((size #a #f (union #a #f s1 s2) >= size #a #f s1) &&
(size #a #f (union #a #f s1 s2) >= size #a #f s2)))
[SMTPat (size #a #f (union #a #f s1 s2))]
(**********)
val fold (#a:eqtype) (#acc:Type) (#f:cmp a) (g:acc -> a -> acc) (init:acc) (s:ordset a f)
: Tot acc
val map (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa)
: Pure (ordset b fb)
(requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y)))
(ensures (fun sb -> (size sb <= size sa) /\
(as_list sb == FStar.List.Tot.map g (as_list sa)) /\
(let sa = as_list sa in
let sb = as_list sb in
Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))))
val lemma_strict_subset_size (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f)
: Lemma (requires (strict_subset s1 s2))
(ensures (subset s1 s2 /\ size s1 < size s2))
[SMTPat (strict_subset s1 s2)]
val lemma_minus_mem (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) (x:a)
: Lemma (requires True) (ensures (mem x (minus s1 s2) = (mem x s1 && not (mem x s2))))
[SMTPat (mem x (minus s1 s2))]
val lemma_strict_subset_exists_diff (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f)
: Lemma (requires subset s1 s2)
(ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1))))
type condition a = a -> bool | false | false | FStar.OrdSet.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inv (#a: _) (c: condition a) : (z: condition a {forall x. c x = not (z x)}) | [] | FStar.OrdSet.inv | {
"file_name": "ulib/experimental/FStar.OrdSet.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | c: FStar.OrdSet.condition a
-> z: FStar.OrdSet.condition a {forall (x: a). c x = Prims.op_Negation (z x)} | {
"end_col": 93,
"end_line": 205,
"start_col": 75,
"start_line": 205
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2) | let union_contains_element_from_second_argument_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.union"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_contains_element_from_second_argument_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_contains_element_from_second_argument_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 36,
"end_line": 270,
"start_col": 2,
"start_line": 269
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s | let insert_fact = | false | null | false | forall (a: eqtype) (s: set a) (x: a) (o: a). {:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.insert",
"Prims.l_or",
"Prims.eq2"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 45,
"end_line": 207,
"start_col": 2,
"start_line": 206
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) | let empty_set_contains_no_elements_fact = | false | null | false | forall (a: eqtype) (o: a). {:pattern mem o (emptyset)} not (mem o (emptyset #a)) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"Prims.b2t",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.emptyset"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val empty_set_contains_no_elements_fact : Prims.logical | [] | FStar.FiniteSet.Base.empty_set_contains_no_elements_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 81,
"end_line": 166,
"start_col": 2,
"start_line": 166
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s) | let insert_contains_argument_fact = | false | null | false | forall (a: eqtype) (s: set a) (x: a). {:pattern insert x s} mem x (insert x s) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.insert"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_contains_argument_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_contains_argument_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 22,
"end_line": 216,
"start_col": 2,
"start_line": 215
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o | let singleton_contains_fact = | false | null | false | forall (a: eqtype) (r: a) (o: a). {:pattern mem o (singleton r)} mem o (singleton r) <==> r == o | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"Prims.l_iff",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.singleton",
"Prims.eq2"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val singleton_contains_fact : Prims.logical | [] | FStar.FiniteSet.Base.singleton_contains_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 97,
"end_line": 191,
"start_col": 2,
"start_line": 191
} |
|
Prims.Tot | val remove (#a: eqtype) (x: a) (s: set a) : set a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x) | val remove (#a: eqtype) (x: a) (s: set a) : set a
let remove (#a: eqtype) (x: a) (s: set a) : set a = | false | null | false | difference s (singleton x) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.singleton"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a) | false | false | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove (#a: eqtype) (x: a) (s: set a) : set a | [] | FStar.FiniteSet.Base.remove | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> s: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a | {
"end_col": 28,
"end_line": 146,
"start_col": 2,
"start_line": 146
} |
Prims.Tot | val notin (#a: eqtype) (x: a) (s: set a) : bool | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s) | val notin (#a: eqtype) (x: a) (s: set a) : bool
let notin (#a: eqtype) (x: a) (s: set a) : bool = | false | null | false | not (mem x s) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem",
"Prims.bool"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a) | false | false | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val notin (#a: eqtype) (x: a) (s: set a) : bool | [] | FStar.FiniteSet.Base.notin | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> s: FStar.FiniteSet.Base.set a -> Prims.bool | {
"end_col": 15,
"end_line": 150,
"start_col": 2,
"start_line": 150
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s)) | let length_zero_fact = | false | null | false | forall (a: eqtype) (s: set a). {:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_and",
"Prims.l_iff",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"Prims.eq2",
"FStar.FiniteSet.Base.emptyset",
"Prims.op_disEquality",
"Prims.l_Exists",
"FStar.FiniteSet.Base.mem"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val length_zero_fact : Prims.logical | [] | FStar.FiniteSet.Base.length_zero_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 52,
"end_line": 177,
"start_col": 2,
"start_line": 175
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s) | let insert_contains_fact = | false | null | false | forall (a: eqtype) (s: set a) (x: a) (y: a). {:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.insert"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_contains_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_contains_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 34,
"end_line": 225,
"start_col": 2,
"start_line": 224
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 | let intersection_cardinality_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.intersection"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.intersection_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 98,
"end_line": 335,
"start_col": 2,
"start_line": 334
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 | let union_of_disjoint_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"FStar.FiniteSet.Base.disjoint",
"Prims.l_and",
"Prims.eq2",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.union"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_of_disjoint_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_of_disjoint_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 93,
"end_line": 281,
"start_col": 2,
"start_line": 280
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2 | let intersection_idempotent_right_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.intersection"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_idempotent_right_fact : Prims.logical | [] | FStar.FiniteSet.Base.intersection_idempotent_right_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 62,
"end_line": 317,
"start_col": 2,
"start_line": 316
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 | let insert_nonmember_cardinality_fact = | false | null | false | forall (a: eqtype) (s: set a) (x: a). {:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.insert",
"Prims.op_Addition"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_nonmember_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_nonmember_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 66,
"end_line": 243,
"start_col": 2,
"start_line": 242
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2 | let union_idempotent_right_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.union"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_idempotent_right_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_idempotent_right_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 41,
"end_line": 299,
"start_col": 2,
"start_line": 298
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 | let intersection_contains_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.intersection",
"Prims.l_and"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_contains_fact : Prims.logical | [] | FStar.FiniteSet.Base.intersection_contains_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 56,
"end_line": 290,
"start_col": 2,
"start_line": 289
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2) | let union_contains_element_from_first_argument_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.union"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_contains_element_from_first_argument_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_contains_element_from_first_argument_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 36,
"end_line": 261,
"start_col": 2,
"start_line": 260
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2 | let union_contains_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.union",
"Prims.l_or"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_contains_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_contains_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 49,
"end_line": 252,
"start_col": 2,
"start_line": 251
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2 | let intersection_idempotent_left_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.intersection"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intersection_idempotent_left_fact : Prims.logical | [] | FStar.FiniteSet.Base.intersection_idempotent_left_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 62,
"end_line": 326,
"start_col": 2,
"start_line": 325
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2 | let union_idempotent_left_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.union"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_idempotent_left_fact : Prims.logical | [] | FStar.FiniteSet.Base.union_idempotent_left_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 41,
"end_line": 308,
"start_col": 2,
"start_line": 307
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) | let difference_contains_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.difference",
"Prims.l_and",
"Prims.op_Negation"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference_contains_fact : Prims.logical | [] | FStar.FiniteSet.Base.difference_contains_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 60,
"end_line": 344,
"start_col": 2,
"start_line": 343
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2)) | let difference_doesnt_include_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2)) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.op_Negation",
"FStar.FiniteSet.Base.difference"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] ); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference_doesnt_include_fact : Prims.logical | [] | FStar.FiniteSet.Base.difference_doesnt_include_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 47,
"end_line": 353,
"start_col": 2,
"start_line": 352
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) | let equal_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern equal s1 s2}
equal s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.equal",
"Prims.b2t",
"FStar.FiniteSet.Base.mem"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal_fact : Prims.logical | [] | FStar.FiniteSet.Base.equal_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 86,
"end_line": 385,
"start_col": 2,
"start_line": 384
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_remove_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)}
mem x s = true ==> insert x (remove x s) == s | let insert_remove_fact = | false | null | false | forall (a: eqtype) (x: a) (s: set a). {:pattern insert x (remove x s)}
mem x s = true ==> insert x (remove x s) == s | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.FiniteSet.Base.mem",
"Prims.eq2",
"FStar.FiniteSet.Base.insert",
"FStar.FiniteSet.Base.remove"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b);
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2
/// We represent the following Dafny axiom with `disjoint_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
/// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
/// We add a few more facts for the utility function `remove` and for `set_as_list`: | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_remove_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_remove_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 49,
"end_line": 409,
"start_col": 2,
"start_line": 408
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) | let disjoint_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2)) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.disjoint",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Negation",
"FStar.FiniteSet.Base.mem"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b);
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2
/// We represent the following Dafny axiom with `disjoint_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
/// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val disjoint_fact : Prims.logical | [] | FStar.FiniteSet.Base.disjoint_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 99,
"end_line": 403,
"start_col": 2,
"start_line": 402
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) | let subset_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern subset s1 s2}
subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_iff",
"FStar.FiniteSet.Base.subset",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subset_fact : Prims.logical | [] | FStar.FiniteSet.Base.subset_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 86,
"end_line": 376,
"start_col": 2,
"start_line": 375
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2 | let equal_extensionality_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"FStar.FiniteSet.Base.equal",
"Prims.eq2"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal_extensionality_fact : Prims.logical | [] | FStar.FiniteSet.Base.equal_extensionality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 28,
"end_line": 394,
"start_col": 2,
"start_line": 393
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) | let difference_cardinality_fact = | false | null | false | forall (a: eqtype) (s1: set a) (s2: set a). {:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) =
cardinality (union s1 s2) /\
cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"FStar.FiniteSet.Base.union",
"Prims.op_Subtraction"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val difference_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.difference_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 89,
"end_line": 367,
"start_col": 2,
"start_line": 365
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) | let singleton_contains_argument_fact = | false | null | false | forall (a: eqtype) (r: a). {:pattern singleton r} mem r (singleton r) | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"FStar.FiniteSet.Base.singleton"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val singleton_contains_argument_fact : Prims.logical | [] | FStar.FiniteSet.Base.singleton_contains_argument_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 70,
"end_line": 184,
"start_col": 2,
"start_line": 184
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let remove_insert_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)}
mem x s = false ==> remove x (insert x s) == s | let remove_insert_fact = | false | null | false | forall (a: eqtype) (x: a) (s: set a). {:pattern remove x (insert x s)}
mem x s = false ==> remove x (insert x s) == s | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.FiniteSet.Base.mem",
"Prims.eq2",
"FStar.FiniteSet.Base.remove",
"FStar.FiniteSet.Base.insert"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b);
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2
/// We represent the following Dafny axiom with `disjoint_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
/// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
/// We add a few more facts for the utility function `remove` and for `set_as_list`:
let insert_remove_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)}
mem x s = true ==> insert x (remove x s) == s | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val remove_insert_fact : Prims.logical | [] | FStar.FiniteSet.Base.remove_insert_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 50,
"end_line": 413,
"start_col": 2,
"start_line": 412
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let all_finite_set_facts =
empty_set_contains_no_elements_fact
/\ length_zero_fact
/\ singleton_contains_argument_fact
/\ singleton_contains_fact
/\ singleton_cardinality_fact
/\ insert_fact
/\ insert_contains_argument_fact
/\ insert_contains_fact
/\ insert_member_cardinality_fact
/\ insert_nonmember_cardinality_fact
/\ union_contains_fact
/\ union_contains_element_from_first_argument_fact
/\ union_contains_element_from_second_argument_fact
/\ union_of_disjoint_fact
/\ intersection_contains_fact
/\ union_idempotent_right_fact
/\ union_idempotent_left_fact
/\ intersection_idempotent_right_fact
/\ intersection_idempotent_left_fact
/\ intersection_cardinality_fact
/\ difference_contains_fact
/\ difference_doesnt_include_fact
/\ difference_cardinality_fact
/\ subset_fact
/\ equal_fact
/\ equal_extensionality_fact
/\ disjoint_fact
/\ insert_remove_fact
/\ remove_insert_fact
/\ set_as_list_cardinality_fact | let all_finite_set_facts = | false | null | false | empty_set_contains_no_elements_fact /\ length_zero_fact /\ singleton_contains_argument_fact /\
singleton_contains_fact /\ singleton_cardinality_fact /\ insert_fact /\
insert_contains_argument_fact /\ insert_contains_fact /\ insert_member_cardinality_fact /\
insert_nonmember_cardinality_fact /\ union_contains_fact /\
union_contains_element_from_first_argument_fact /\ union_contains_element_from_second_argument_fact /\
union_of_disjoint_fact /\ intersection_contains_fact /\ union_idempotent_right_fact /\
union_idempotent_left_fact /\ intersection_idempotent_right_fact /\
intersection_idempotent_left_fact /\ intersection_cardinality_fact /\ difference_contains_fact /\
difference_doesnt_include_fact /\ difference_cardinality_fact /\ subset_fact /\ equal_fact /\
equal_extensionality_fact /\ disjoint_fact /\ insert_remove_fact /\ remove_insert_fact /\
set_as_list_cardinality_fact | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_and",
"FStar.FiniteSet.Base.empty_set_contains_no_elements_fact",
"FStar.FiniteSet.Base.length_zero_fact",
"FStar.FiniteSet.Base.singleton_contains_argument_fact",
"FStar.FiniteSet.Base.singleton_contains_fact",
"FStar.FiniteSet.Base.singleton_cardinality_fact",
"FStar.FiniteSet.Base.insert_fact",
"FStar.FiniteSet.Base.insert_contains_argument_fact",
"FStar.FiniteSet.Base.insert_contains_fact",
"FStar.FiniteSet.Base.insert_member_cardinality_fact",
"FStar.FiniteSet.Base.insert_nonmember_cardinality_fact",
"FStar.FiniteSet.Base.union_contains_fact",
"FStar.FiniteSet.Base.union_contains_element_from_first_argument_fact",
"FStar.FiniteSet.Base.union_contains_element_from_second_argument_fact",
"FStar.FiniteSet.Base.union_of_disjoint_fact",
"FStar.FiniteSet.Base.intersection_contains_fact",
"FStar.FiniteSet.Base.union_idempotent_right_fact",
"FStar.FiniteSet.Base.union_idempotent_left_fact",
"FStar.FiniteSet.Base.intersection_idempotent_right_fact",
"FStar.FiniteSet.Base.intersection_idempotent_left_fact",
"FStar.FiniteSet.Base.intersection_cardinality_fact",
"FStar.FiniteSet.Base.difference_contains_fact",
"FStar.FiniteSet.Base.difference_doesnt_include_fact",
"FStar.FiniteSet.Base.difference_cardinality_fact",
"FStar.FiniteSet.Base.subset_fact",
"FStar.FiniteSet.Base.equal_fact",
"FStar.FiniteSet.Base.equal_extensionality_fact",
"FStar.FiniteSet.Base.disjoint_fact",
"FStar.FiniteSet.Base.insert_remove_fact",
"FStar.FiniteSet.Base.remove_insert_fact",
"FStar.FiniteSet.Base.set_as_list_cardinality_fact"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b);
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2
/// We represent the following Dafny axiom with `disjoint_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
/// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
/// We add a few more facts for the utility function `remove` and for `set_as_list`:
let insert_remove_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)}
mem x s = true ==> insert x (remove x s) == s
let remove_insert_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)}
mem x s = false ==> remove x (insert x s) == s
let set_as_list_cardinality_fact =
forall (a: eqtype) (s: set a).{:pattern FLT.length (set_as_list s)}
FLT.length (set_as_list s) = cardinality s
(**
The predicate `all_finite_set_facts` collects all the Dafny finite-set axioms.
One can bring all these facts into scope with `all_finite_set_facts_lemma ()`.
**) | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val all_finite_set_facts : Prims.logical | [] | FStar.FiniteSet.Base.all_finite_set_facts | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 33,
"end_line": 454,
"start_col": 4,
"start_line": 425
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 | let singleton_cardinality_fact = | false | null | false | forall (a: eqtype) (r: a). {:pattern cardinality (singleton r)} cardinality (singleton r) = 1 | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.singleton"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val singleton_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.singleton_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 94,
"end_line": 198,
"start_col": 2,
"start_line": 198
} |
|
Prims.Tot | val list_nonrepeating (#a: eqtype) (xs: list a) : bool | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl | val list_nonrepeating (#a: eqtype) (xs: list a) : bool
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = | false | null | false | match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.list",
"Prims.op_AmpAmp",
"Prims.op_Negation",
"FStar.List.Tot.Base.mem",
"FStar.FiniteSet.Base.list_nonrepeating",
"Prims.bool"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`: | false | false | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val list_nonrepeating (#a: eqtype) (xs: list a) : bool | [
"recursion"
] | FStar.FiniteSet.Base.list_nonrepeating | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xs: Prims.list a -> Prims.bool | {
"end_col": 59,
"end_line": 60,
"start_col": 2,
"start_line": 58
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s | let insert_member_cardinality_fact = | false | null | false | forall (a: eqtype) (s: set a) (x: a). {:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.l_imp",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.op_Equality",
"Prims.nat",
"FStar.FiniteSet.Base.cardinality",
"FStar.FiniteSet.Base.insert"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val insert_member_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.insert_member_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 56,
"end_line": 234,
"start_col": 2,
"start_line": 233
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_as_list_cardinality_fact =
forall (a: eqtype) (s: set a).{:pattern FLT.length (set_as_list s)}
FLT.length (set_as_list s) = cardinality s | let set_as_list_cardinality_fact = | false | null | false | forall (a: eqtype) (s: set a). {:pattern FLT.length (set_as_list s)}
FLT.length (set_as_list s) = cardinality s | {
"checked_file": "FStar.FiniteSet.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FiniteSet.Base.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.List.Tot.Base.length",
"FStar.FiniteSet.Base.set_as_list",
"FStar.FiniteSet.Base.cardinality"
] | [] | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
open FStar.FunctionalExtensionality
module FLT = FStar.List.Tot
val set (a: eqtype)
: Type0
(**
We translate each Dafny sequence function prefixed with `Set#`
into an F* function.
**)
/// We represent the Dafny operator [] on sets with `mem`:
val mem (#a: eqtype) (x: a) (s: set a)
: bool
/// We can convert a set to a list with `set_as_list`:
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with
| [] -> true
| hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
val set_as_list (#a: eqtype) (s: set a)
: GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)})
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
val cardinality (#a: eqtype) (s: set a)
: GTot nat
/// We represent the Dafny function `Set#Empty` with `empty`:
///
/// function Set#Empty<T>(): Set T;
val emptyset (#a: eqtype)
: set a
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
val insert (#a: eqtype) (x: a) (s: set a)
: set a
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
val singleton (#a: eqtype) (x: a)
: set a
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
val union (#a: eqtype) (s1: set a) (s2: set a)
: (set a)
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
val intersection (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
val difference (#a: eqtype) (s1: set a) (s2: set a)
: set a
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
val subset (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
val equal (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
val disjoint (#a: eqtype) (s1: set a) (s2: set a)
: Type0
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
val choose (#a: eqtype) (s: set a{exists x. mem x s})
: GTot (x: a{mem x s})
/// We add the utility functions `remove` and `notin`:
let remove (#a: eqtype) (x: a) (s: set a)
: set a =
difference s (singleton x)
let notin (#a: eqtype) (x: a) (s: set a)
: bool =
not (mem x s)
(**
We translate each finite set axiom from the Dafny prelude into an F*
predicate ending in `_fact`.
**)
/// We don't need the following axiom since we return a nat from cardinality:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s));
/// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`:
///
/// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
/// We represent the following Dafny axiom with `length_zero_fact`:
///
/// axiom (forall<T> s: Set T :: { Set#Card(s) }
/// (Set#Card(s) == 0 <==> s == Set#Empty()) &&
/// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
let length_zero_fact =
forall (a: eqtype) (s: set a).{:pattern cardinality s}
(cardinality s = 0 <==> s == emptyset)
/\ (cardinality s <> 0 <==> (exists x. mem x s))
/// We represent the following Dafny axiom with `singleton_contains_argument_fact`:
///
/// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
/// We represent the following Dafny axiom with `singleton_contains_fact`:
///
/// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
/// We represent the following Dafny axiom with `singleton_cardinality_fact`:
///
/// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
let singleton_cardinality_fact =
forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
/// We represent the following Dafny axiom with `insert_fact`:
///
/// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
/// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)}
mem o (insert x s) <==> o == x \/ mem o s
/// We represent the following Dafny axiom with `insert_contains_argument_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
/// Set#UnionOne(a, x)[x]);
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s}
mem x (insert x s)
/// We represent the following Dafny axiom with `insert_contains_fact`:
///
/// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
/// a[y] ==> Set#UnionOne(a, x)[y]);
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s}
mem y s ==> mem y (insert x s)
/// We represent the following Dafny axiom with `insert_member_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
mem x s ==> cardinality (insert x s) = cardinality s
/// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`:
///
/// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) }
/// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)}
not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
/// We represent the following Dafny axiom with `union_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
/// Set#Union(a,b)[o] <==> a[o] || b[o]);
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)}
mem o (union s1 s2) <==> mem o s1 \/ mem o s2
/// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// a[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1}
mem y s1 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
/// b[y] ==> Set#Union(a, b)[y]);
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2}
mem y s2 ==> mem y (union s1 s2)
/// We represent the following Dafny axiom with `union_of_disjoint_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
/// Set#Disjoint(a, b) ==>
/// Set#Difference(Set#Union(a, b), a) == b &&
/// Set#Difference(Set#Union(a, b), b) == a);
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2}
disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
/// We represent the following Dafny axiom with `intersection_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
/// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)}
mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
/// We represent the following Dafny axiom with `union_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
/// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2}
union (union s1 s2) s2 == union s1 s2
/// We represent the following Dafny axiom with `union_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
/// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)}
union s1 (union s1 s2) == union s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_right_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
/// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2}
intersection (intersection s1 s2) s2 == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_idempotent_left_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
/// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)}
intersection s1 (intersection s1 s2) == intersection s1 s2
/// We represent the following Dafny axiom with `intersection_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) }
/// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)}
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
/// We represent the following Dafny axiom with `difference_contains_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
/// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)}
mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
/// We represent the following Dafny axiom with `difference_doesnt_include_fact`:
///
/// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
/// b[y] ==> !Set#Difference(a, b)[y] );
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2}
mem y s2 ==> not (mem y (difference s1 s2))
/// We represent the following Dafny axiom with `difference_cardinality_fact`:
///
/// axiom (forall<T> a, b: Set T ::
/// { Set#Card(Set#Difference(a, b)) }
/// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a))
/// + Set#Card(Set#Intersection(a, b))
/// == Set#Card(Set#Union(a, b)) &&
/// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)}
cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
/// We represent the following Dafny axiom with `subset_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
/// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2}
subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
/// We represent the following Dafny axiom with `equal_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
/// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
/// We represent the following Dafny axiom with `equal_extensionality_fact`:
///
/// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
/// Set#Equal(a,b) ==> a == b);
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2}
equal s1 s2 ==> s1 == s2
/// We represent the following Dafny axiom with `disjoint_fact`:
///
/// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
/// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2}
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
/// We add a few more facts for the utility function `remove` and for `set_as_list`:
let insert_remove_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)}
mem x s = true ==> insert x (remove x s) == s
let remove_insert_fact =
forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)}
mem x s = false ==> remove x (insert x s) == s | false | true | FStar.FiniteSet.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_as_list_cardinality_fact : Prims.logical | [] | FStar.FiniteSet.Base.set_as_list_cardinality_fact | {
"file_name": "ulib/FStar.FiniteSet.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.logical | {
"end_col": 46,
"end_line": 417,
"start_col": 2,
"start_line": 416
} |
|
Prims.Tot | val struct_field' (l: struct_typ') : Tot eqtype | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } ) | val struct_field' (l: struct_typ') : Tot eqtype
let struct_field' (l: struct_typ') : Tot eqtype = | false | null | false | (s: string{List.Tot.mem s (List.Tot.map fst l)}) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ'",
"Prims.string",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"FStar.List.Tot.Base.map",
"FStar.Pervasives.Native.tuple2",
"FStar.Pointer.Base.typ",
"FStar.Pervasives.Native.fst",
"Prims.eqtype"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ') | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_field' (l: struct_typ') : Tot eqtype | [] | FStar.Pointer.Base.struct_field' | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ' -> Prims.eqtype | {
"end_col": 54,
"end_line": 84,
"start_col": 2,
"start_line": 84
} |
FStar.Pervasives.Lemma | val type_of_typ_struct (l: struct_typ)
: Lemma (type_of_typ (TStruct l) == struct l) [SMTPat (type_of_typ (TStruct l))] | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l) | val type_of_typ_struct (l: struct_typ)
: Lemma (type_of_typ (TStruct l) == struct l) [SMTPat (type_of_typ (TStruct l))]
let type_of_typ_struct (l: struct_typ)
: Lemma (type_of_typ (TStruct l) == struct l) [SMTPat (type_of_typ (TStruct l))] = | false | null | true | assert_norm (type_of_typ (TStruct l) == struct l) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Base.TStruct",
"FStar.Pointer.Base.struct",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_typ_struct (l: struct_typ)
: Lemma (type_of_typ (TStruct l) == struct l) [SMTPat (type_of_typ (TStruct l))] | [] | FStar.Pointer.Base.type_of_typ_struct | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ
-> FStar.Pervasives.Lemma
(ensures
FStar.Pointer.Base.type_of_typ (FStar.Pointer.Base.TStruct l) == FStar.Pointer.Base.struct l
) [SMTPat (FStar.Pointer.Base.type_of_typ (FStar.Pointer.Base.TStruct l))] | {
"end_col": 51,
"end_line": 282,
"start_col": 2,
"start_line": 282
} |
Prims.Tot | val pointer (t: typ) : Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } ) | val pointer (t: typ) : Tot Type0
let pointer (t: typ) : Tot Type0 = | false | null | false | (p: npointer t {g_is_null p == false}) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.npointer",
"Prims.eq2",
"Prims.bool",
"FStar.Pointer.Base.g_is_null"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))] | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pointer (t: typ) : Tot Type0 | [] | FStar.Pointer.Base.pointer | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Pointer.Base.typ -> Type0 | {
"end_col": 76,
"end_line": 184,
"start_col": 35,
"start_line": 184
} |
Prims.Tot | val struct_field (l: struct_typ) : Tot eqtype | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields | val struct_field (l: struct_typ) : Tot eqtype
let struct_field (l: struct_typ) : Tot eqtype = | false | null | false | struct_field' l.fields | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct_field'",
"FStar.Pointer.Base.__proj__Mkstruct_typ__item__fields",
"Prims.eqtype"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ) | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_field (l: struct_typ) : Tot eqtype | [] | FStar.Pointer.Base.struct_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ -> Prims.eqtype | {
"end_col": 24,
"end_line": 89,
"start_col": 2,
"start_line": 89
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let union_field = struct_field | let union_field = | false | null | false | struct_field | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_field"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`). | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val union_field : l: FStar.Pointer.Base.struct_typ -> Prims.eqtype | [] | FStar.Pointer.Base.union_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ -> Prims.eqtype | {
"end_col": 30,
"end_line": 94,
"start_col": 18,
"start_line": 94
} |
|
Prims.Tot | val type_of_struct_field (l: struct_typ) : Tot (struct_field l -> Tot Type0) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x) | val type_of_struct_field (l: struct_typ) : Tot (struct_field l -> Tot Type0)
let type_of_struct_field (l: struct_typ) : Tot (struct_field l -> Tot Type0) = | false | null | false | type_of_struct_field' l (fun (x: typ{x << l}) -> type_of_typ x) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.type_of_struct_field'",
"FStar.Pointer.Base.typ",
"Prims.precedes",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Base.struct_field"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_struct_field (l: struct_typ) : Tot (struct_field l -> Tot Type0) | [] | FStar.Pointer.Base.type_of_struct_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ -> _: FStar.Pointer.Base.struct_field l -> Type0 | {
"end_col": 64,
"end_line": 275,
"start_col": 2,
"start_line": 275
} |
Prims.Tot | val dfst_struct_field (s: struct_typ) (p: (x: struct_field s & type_of_struct_field s x))
: Tot string | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f | val dfst_struct_field (s: struct_typ) (p: (x: struct_field s & type_of_struct_field s x))
: Tot string
let dfst_struct_field (s: struct_typ) (p: (x: struct_field s & type_of_struct_field s x))
: Tot string = | false | null | false | let (| f , _ |) = p in
f | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"Prims.dtuple2",
"FStar.Pointer.Base.struct_field",
"FStar.Pointer.Base.type_of_struct_field",
"Prims.string"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val dfst_struct_field (s: struct_typ) (p: (x: struct_field s & type_of_struct_field s x))
: Tot string | [] | FStar.Pointer.Base.dfst_struct_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
s: FStar.Pointer.Base.struct_typ ->
p:
Prims.dtuple2 (FStar.Pointer.Base.struct_field s)
(fun x -> FStar.Pointer.Base.type_of_struct_field s x)
-> Prims.string | {
"end_col": 3,
"end_line": 300,
"start_col": 1,
"start_line": 298
} |
Prims.Tot | val struct_literal (s: struct_typ) : Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x) | val struct_literal (s: struct_typ) : Tot Type0
let struct_literal (s: struct_typ) : Tot Type0 = | false | null | false | list (x: struct_field s & type_of_struct_field s x) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"Prims.list",
"Prims.dtuple2",
"FStar.Pointer.Base.struct_field",
"FStar.Pointer.Base.type_of_struct_field"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_literal (s: struct_typ) : Tot Type0 | [] | FStar.Pointer.Base.struct_literal | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Pointer.Base.struct_typ -> Type0 | {
"end_col": 100,
"end_line": 302,
"start_col": 49,
"start_line": 302
} |
FStar.Pervasives.Lemma | val type_of_typ_union (l: union_typ)
: Lemma (type_of_typ (TUnion l) == union l) [SMTPat (type_of_typ (TUnion l))] | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l) | val type_of_typ_union (l: union_typ)
: Lemma (type_of_typ (TUnion l) == union l) [SMTPat (type_of_typ (TUnion l))]
let type_of_typ_union (l: union_typ)
: Lemma (type_of_typ (TUnion l) == union l) [SMTPat (type_of_typ (TUnion l))] = | false | null | true | assert_norm (type_of_typ (TUnion l) == union l) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma"
] | [
"FStar.Pointer.Base.union_typ",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Base.TUnion",
"FStar.Pointer.Base.union",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_typ_union (l: union_typ)
: Lemma (type_of_typ (TUnion l) == union l) [SMTPat (type_of_typ (TUnion l))] | [] | FStar.Pointer.Base.type_of_typ_union | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.union_typ
-> FStar.Pervasives.Lemma
(ensures
FStar.Pointer.Base.type_of_typ (FStar.Pointer.Base.TUnion l) == FStar.Pointer.Base.union l)
[SMTPat (FStar.Pointer.Base.type_of_typ (FStar.Pointer.Base.TUnion l))] | {
"end_col": 49,
"end_line": 357,
"start_col": 2,
"start_line": 357
} |
Prims.GTot | val modifies_0 (h0 h1: HS.mem) : GTot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modifies_0 (h0 h1: HS.mem) : GTot Type0 =
modifies loc_none h0 h1 | val modifies_0 (h0 h1: HS.mem) : GTot Type0
let modifies_0 (h0 h1: HS.mem) : GTot Type0 = | false | null | false | modifies loc_none h0 h1 | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"sometrivial"
] | [
"FStar.Monotonic.HyperStack.mem",
"FStar.Pointer.Base.modifies",
"FStar.Pointer.Base.loc_none"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l)
val union_get_key (#l: union_typ) (v: union l) : GTot (struct_field l)
val union_get_value
(#l: union_typ)
(v: union l)
(fd: struct_field l)
: Pure (type_of_struct_field l fd)
(requires (union_get_key v == fd))
(ensures (fun _ -> True))
val union_create
(l: union_typ)
(fd: struct_field l)
(v: type_of_struct_field l fd)
: Tot (union l)
(*** Semantics of pointers *)
(** Operations on pointers *)
val equal
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Ghost bool
(requires True)
(ensures (fun b -> b == true <==> t1 == t2 /\ p1 == p2 ))
val as_addr (#t: typ) (p: pointer t): GTot (x: nat { x > 0 } )
val unused_in
(#value: typ)
(p: pointer value)
(h: HS.mem)
: GTot Type0
val live
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot Type0
val nlive
(#value: typ)
(h: HS.mem)
(p: npointer value)
: GTot Type0
val live_nlive
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(nlive h p <==> live h p)
[SMTPat (nlive h p)]
val g_is_null_nlive
(#t: typ)
(h: HS.mem)
(p: npointer t)
: Lemma
(requires (g_is_null p))
(ensures (nlive h p))
[SMTPat (g_is_null p); SMTPat (nlive h p)]
val live_not_unused_in
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(ensures (live h p /\ p `unused_in` h ==> False))
[SMTPat (live h p); SMTPat (p `unused_in` h)]
val gread
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot (type_of_typ value)
val frameOf
(#value: typ)
(p: pointer value)
: GTot HS.rid
val live_region_frameOf
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(requires (live h p))
(ensures (HS.live_region h (frameOf p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf p))];
[SMTPat (live h p)]
]]
val disjoint_roots_intro_pointer_vs_pointer
(#value1 value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 =!= as_addr p2))
val disjoint_roots_intro_pointer_vs_reference
(#value1: typ)
(#value2: Type)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ p2 `HS.unused_in` h))
(ensures (frameOf p1 <> HS.frameOf p2 \/ as_addr p1 =!= HS.as_addr p2))
val disjoint_roots_intro_reference_vs_pointer
(#value1: Type)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ p2 `unused_in` h))
(ensures (HS.frameOf p1 <> frameOf p2 \/ HS.as_addr p1 =!= as_addr p2))
val is_mm
(#value: typ)
(p: pointer value)
: GTot bool
(* // TODO: recover with addresses?
val recall
(#value: Type)
(p: pointer value {is_eternal_region (frameOf p) && not (is_mm p)})
: HST.Stack unit
(requires (fun m -> True))
(ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 p))
*)
val gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gfield p fd) == as_addr p))
[SMTPat (as_addr (gfield p fd))]
val unused_in_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gfield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gfield p fd) h)]
val live_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gfield p fd) <==> live h p))
[SMTPat (live h (gfield p fd))]
val gread_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (gread h (gfield p fd) == struct_sel (gread h p) fd))
[SMTPatOr [[SMTPat (gread h (gfield p fd))]; [SMTPat (struct_sel (gread h p) fd)]]]
val frameOf_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gfield p fd) == frameOf p))
[SMTPat (frameOf (gfield p fd))]
val is_mm_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gfield p fd) <==> is_mm p))
[SMTPat (is_mm (gfield p fd))]
val gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gufield p fd) == as_addr p))
[SMTPat (as_addr (gufield p fd))]
val unused_in_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gufield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gufield p fd) h)]
val live_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gufield p fd) <==> live h p))
[SMTPat (live h (gufield p fd))]
val gread_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (union_get_key (gread h p) == fd))
(ensures (
union_get_key (gread h p) == fd /\
gread h (gufield p fd) == union_get_value (gread h p) fd
))
[SMTPatOr [[SMTPat (gread h (gufield p fd))]; [SMTPat (union_get_value (gread h p) fd)]]]
val frameOf_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gufield p fd) == frameOf p))
[SMTPat (frameOf (gufield p fd))]
val is_mm_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gufield p fd) <==> is_mm p))
[SMTPat (is_mm (gufield p fd))]
val gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Ghost (pointer value)
(requires (UInt32.v i < UInt32.v length))
(ensures (fun _ -> True))
val as_addr_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ as_addr (gcell p i) == as_addr p))
[SMTPat (as_addr (gcell p i))]
val unused_in_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (unused_in (gcell p i) h <==> unused_in p h)))
[SMTPat (unused_in (gcell p i) h)]
val live_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (live h (gcell p i) <==> live h p)))
[SMTPat (live h (gcell p i))]
val gread_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gread h (gcell p i) == Seq.index (gread h p) (UInt32.v i)))
[SMTPat (gread h (gcell p i))]
val frameOf_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ frameOf (gcell p i) == frameOf p))
[SMTPat (frameOf (gcell p i))]
val is_mm_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ is_mm (gcell p i) == is_mm p))
[SMTPat (is_mm (gcell p i))]
val includes
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: GTot bool
val includes_refl
(#t: typ)
(p: pointer t)
: Lemma
(ensures (includes p p))
[SMTPat (includes p p)]
val includes_trans
(#t1 #t2 #t3: typ)
(p1: pointer t1)
(p2: pointer t2)
(p3: pointer t3)
: Lemma
(requires (includes p1 p2 /\ includes p2 p3))
(ensures (includes p1 p3))
val includes_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gfield p fd)))
val includes_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gufield p fd)))
val includes_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ includes p (gcell p i)))
(** The readable permission.
We choose to implement it only abstractly, instead of explicitly
tracking the permission in the heap.
*)
val readable
(#a: typ)
(h: HS.mem)
(b: pointer a)
: GTot Type0
val readable_live
(#a: typ)
(h: HS.mem)
(b: pointer a)
: Lemma
(requires (readable h b))
(ensures (live h b))
[SMTPatOr [
[SMTPat (readable h b)];
[SMTPat (live h b)];
]]
val readable_gfield
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires (readable h p))
(ensures (readable h (gfield p fd)))
[SMTPat (readable h (gfield p fd))]
val readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (
forall (f: struct_field l) .
readable h (gfield p f)
))
(ensures (readable h p))
// [SMTPat (readable #(TStruct l) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
val readable_struct_forall_mem
(#l: struct_typ)
(p: pointer (TStruct l))
: Lemma (forall
(h: HS.mem)
. (
forall (f: struct_field l) .
readable h (gfield p f)
) ==>
readable h p
)
val readable_struct_fields
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(s: list string)
: GTot Type0
val readable_struct_fields_nil
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(readable_struct_fields h p [])
[SMTPat (readable_struct_fields h p [])]
val readable_struct_fields_cons
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(f: string)
(q: list string)
: Lemma
(requires (readable_struct_fields h p q /\ (List.Tot.mem f (List.Tot.map fst l.fields) ==> (let f : struct_field l = f in readable h (gfield p f)))))
(ensures (readable_struct_fields h p (f::q)))
[SMTPat (readable_struct_fields h p (f::q))]
val readable_struct_fields_readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (readable_struct_fields h p (normalize_term (List.Tot.map fst l.fields))))
(ensures (readable h p))
val readable_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length /\ readable h p))
(ensures (UInt32.v i < UInt32.v length /\ readable h (gcell p i)))
[SMTPat (readable h (gcell p i))]
val readable_array
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
: Lemma
(requires (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v length ==>
readable h (gcell p i)
))
(ensures (readable h p))
// [SMTPat (readable #(TArray length value) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
(* TODO: improve on the following interface *)
val readable_gufield
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (readable h (gufield p fd) <==> (readable h p /\ union_get_key (gread h p) == fd)))
[SMTPat (readable h (gufield p fd))]
(** The active field of a union *)
val is_active_union_field
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot Type0
val is_active_union_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h p))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h (gufield p fd)))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_eq
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd1 fd2: struct_field l)
: Lemma
(requires (is_active_union_field h p fd1 /\ is_active_union_field h p fd2))
(ensures (fd1 == fd2))
[SMTPat (is_active_union_field h p fd1); SMTPat (is_active_union_field h p fd2)]
val is_active_union_field_get_key
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (union_get_key (gread h p) == fd))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd /\ readable h (gufield p fd)))
(ensures (readable h p))
[SMTPat (is_active_union_field h p fd); SMTPat (readable h (gufield p fd))]
val is_active_union_field_includes_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
(#t': typ)
(p' : pointer t')
: Lemma
(requires (includes (gufield p fd) p' /\ readable h p'))
(ensures (is_active_union_field h p fd))
(* Equality predicate on struct contents, without quantifiers *)
let equal_values #a h (b:pointer a) h' (b':pointer a) : GTot Type0 =
(live h b ==> live h' b') /\ (
readable h b ==> (
readable h' b' /\
gread h b == gread h' b'
))
(*** Semantics of buffers *)
(** Operations on buffers *)
val gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: GTot (buffer t)
val singleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gsingleton_buffer_of_pointer p))
val gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: GTot (buffer t)
val buffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gbuffer_of_array_pointer p))
val buffer_length
(#t: typ)
(b: buffer t)
: GTot UInt32.t
val buffer_length_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_length (gsingleton_buffer_of_pointer p) == 1ul))
[SMTPat (buffer_length (gsingleton_buffer_of_pointer p))]
val buffer_length_gbuffer_of_array_pointer
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_length (gbuffer_of_array_pointer p) == len))
[SMTPat (buffer_length (gbuffer_of_array_pointer p))]
val buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_live_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_live h (gsingleton_buffer_of_pointer p) <==> live h p ))
[SMTPat (buffer_live h (gsingleton_buffer_of_pointer p))]
val buffer_live_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_live h (gbuffer_of_array_pointer p) <==> live h p))
[SMTPat (buffer_live h (gbuffer_of_array_pointer p))]
val buffer_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: GTot Type0
val buffer_live_not_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: Lemma
((buffer_live h b /\ buffer_unused_in b h) ==> False)
val buffer_unused_in_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_unused_in (gsingleton_buffer_of_pointer p) h <==> unused_in p h ))
[SMTPat (buffer_unused_in (gsingleton_buffer_of_pointer p) h)]
val buffer_unused_in_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_unused_in (gbuffer_of_array_pointer p) h <==> unused_in p h))
[SMTPat (buffer_unused_in (gbuffer_of_array_pointer p) h)]
val frameOf_buffer
(#t: typ)
(b: buffer t)
: GTot HS.rid
val frameOf_buffer_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (frameOf_buffer (gsingleton_buffer_of_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gsingleton_buffer_of_pointer p))]
val frameOf_buffer_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (frameOf_buffer (gbuffer_of_array_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gbuffer_of_array_pointer p))]
val live_region_frameOf_buffer
(#value: typ)
(h: HS.mem)
(p: buffer value)
: Lemma
(requires (buffer_live h p))
(ensures (HS.live_region h (frameOf_buffer p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf_buffer p))];
[SMTPat (buffer_live h p)]
]]
val buffer_as_addr
(#t: typ)
(b: buffer t)
: GTot (x: nat { x > 0 } )
val buffer_as_addr_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (buffer_as_addr (gsingleton_buffer_of_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gsingleton_buffer_of_pointer p))]
val buffer_as_addr_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (buffer_as_addr (gbuffer_of_array_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gbuffer_of_array_pointer p))]
val gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Ghost (buffer t)
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val frameOf_buffer_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
frameOf_buffer (gsub_buffer b i len) == frameOf_buffer b
))
[SMTPat (frameOf_buffer (gsub_buffer b i len))]
val buffer_as_addr_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_as_addr (gsub_buffer b i len) == buffer_as_addr b
))
[SMTPat (buffer_as_addr (gsub_buffer b i len))]
val sub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i len ))
val offset_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i (UInt32.sub (buffer_length b) i)))
val buffer_length_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_length (gsub_buffer b i len) == len))
[SMTPat (buffer_length (gsub_buffer b i len))]
val buffer_live_gsub_buffer_equiv
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_live h (gsub_buffer b i len) <==> buffer_live h b)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_live_gsub_buffer_intro
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (buffer_live h b /\ UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h (gsub_buffer b i len)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_unused_in_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_unused_in (gsub_buffer b i len) h <==> buffer_unused_in b h)))
[SMTPat (buffer_unused_in (gsub_buffer b i len) h)]
val gsub_buffer_gsub_buffer
(#a: typ)
(b: buffer a)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1
))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\
gsub_buffer (gsub_buffer b i1 len1) i2 len2 == gsub_buffer b FStar.UInt32.(i1 +^ i2) len2
))
[SMTPat (gsub_buffer (gsub_buffer b i1 len1) i2 len2)]
val gsub_buffer_zero_buffer_length
(#a: typ)
(b: buffer a)
: Lemma
(ensures (gsub_buffer b 0ul (buffer_length b) == b))
[SMTPat (gsub_buffer b 0ul (buffer_length b))]
val buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot (Seq.seq (type_of_typ t))
val buffer_length_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires True)
(ensures (Seq.length (buffer_as_seq h b) == UInt32.v (buffer_length b)))
[SMTPat (Seq.length (buffer_as_seq h b))]
val buffer_as_seq_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_as_seq h (gsingleton_buffer_of_pointer p) == Seq.create 1 (gread h p)))
[SMTPat (buffer_as_seq h (gsingleton_buffer_of_pointer p))]
val buffer_as_seq_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray length t))
: Lemma
(requires True)
(ensures (buffer_as_seq h (gbuffer_of_array_pointer p) == gread h p))
[SMTPat (buffer_as_seq h (gbuffer_of_array_pointer p))]
val buffer_as_seq_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_as_seq h (gsub_buffer b i len) == Seq.slice (buffer_as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)))
[SMTPat (buffer_as_seq h (gsub_buffer b i len))]
val gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Ghost (pointer t)
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val pointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (pointer t)
(requires (fun h -> UInt32.v i < UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h p h' -> UInt32.v i < UInt32.v (buffer_length b) /\ h' == h /\ p == gpointer_of_buffer_cell b i))
val gpointer_of_buffer_cell_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
= gpointer_of_buffer_cell_gsub_buffer b i1 len i2
val live_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(h: HS.mem)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
(live h (gpointer_of_buffer_cell b i) <==> buffer_live h b)
))
[SMTPat (live h (gpointer_of_buffer_cell b i))]
val gpointer_of_buffer_cell_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < 1))
(ensures (UInt32.v i < 1 /\ gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i == p))
[SMTPat (gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i)]
val gpointer_of_buffer_cell_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(p: pointer (TArray length t))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i == gcell p i))
[SMTPat (gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i)]
val frameOf_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ frameOf (gpointer_of_buffer_cell b i) == frameOf_buffer b))
[SMTPat (frameOf (gpointer_of_buffer_cell b i))]
val as_addr_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ as_addr (gpointer_of_buffer_cell b i) == buffer_as_addr b))
[SMTPat (as_addr (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
[SMTPat (gread h (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell'
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
val index_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: nat)
: Lemma
(requires (i < UInt32.v (buffer_length b)))
(ensures (i < UInt32.v (buffer_length b) /\ Seq.index (buffer_as_seq h b) i == gread h (gpointer_of_buffer_cell b (UInt32.uint_to_t i))))
[SMTPat (Seq.index (buffer_as_seq h b) i)]
val gsingleton_buffer_of_pointer_gcell
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v len
))
(ensures (
UInt32.v i < UInt32.v len /\
gsingleton_buffer_of_pointer (gcell p i) == gsub_buffer (gbuffer_of_array_pointer p) i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gcell p i))]
val gsingleton_buffer_of_pointer_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i) == gsub_buffer b i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i))]
(* The readable permission lifted to buffers. *)
val buffer_readable
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_readable_buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (buffer_readable h b))
(ensures (buffer_live h b))
[SMTPatOr [
[SMTPat (buffer_readable h b)];
[SMTPat (buffer_live h b)];
]]
val buffer_readable_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(ensures (buffer_readable h (gsingleton_buffer_of_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gsingleton_buffer_of_pointer p))]
val buffer_readable_gbuffer_of_array_pointer
(#len: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_readable h (gbuffer_of_array_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gbuffer_of_array_pointer p))]
val buffer_readable_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h (gsub_buffer b i len)))
[SMTPat (buffer_readable h (gsub_buffer b i len))]
val readable_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ readable h (gpointer_of_buffer_cell b i)))
[SMTPat (readable h (gpointer_of_buffer_cell b i))]
val buffer_readable_intro
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(ensures (buffer_readable h b))
// [SMTPat (buffer_readable h b)] // TODO: dubious pattern, may trigger unreplayable hints
val buffer_readable_elim
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_readable h b
))
(ensures (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(*** The modifies clause *)
val loc : Type u#0
val loc_none: loc
val loc_union
(s1 s2: loc)
: GTot loc
(** The following is useful to make Z3 cut matching loops with
modifies_trans and modifies_refl *)
val loc_union_idem
(s: loc)
: Lemma
(loc_union s s == s)
[SMTPat (loc_union s s)]
val loc_pointer
(#t: typ)
(p: pointer t)
: GTot loc
val loc_buffer
(#t: typ)
(b: buffer t)
: GTot loc
val loc_addresses
(r: HS.rid)
(n: Set.set nat)
: GTot loc
val loc_regions
(r: Set.set HS.rid)
: GTot loc
(* Inclusion of memory locations *)
val loc_includes
(s1 s2: loc)
: GTot Type0
val loc_includes_refl
(s: loc)
: Lemma
(loc_includes s s)
[SMTPat (loc_includes s s)]
val loc_includes_trans
(s1 s2 s3: loc)
: Lemma
(requires (loc_includes s1 s2 /\ loc_includes s2 s3))
(ensures (loc_includes s1 s3))
val loc_includes_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_includes s s1 /\ loc_includes s s2))
(ensures (loc_includes s (loc_union s1 s2)))
[SMTPat (loc_includes s (loc_union s1 s2))]
val loc_includes_union_l
(s1 s2 s: loc)
: Lemma
(requires (loc_includes s1 s \/ loc_includes s2 s))
(ensures (loc_includes (loc_union s1 s2) s))
[SMTPat (loc_includes (loc_union s1 s2) s)]
val loc_includes_none
(s: loc)
: Lemma
(loc_includes s loc_none)
[SMTPat (loc_includes s loc_none)]
val loc_includes_pointer_pointer
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Lemma
(requires (includes p1 p2))
(ensures (loc_includes (loc_pointer p1) (loc_pointer p2)))
[SMTPat (loc_includes (loc_pointer p1) (loc_pointer p2))]
val loc_includes_gsingleton_buffer_of_pointer
(l: loc)
(#t: typ)
(p: pointer t)
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p)))]
val loc_includes_gbuffer_of_array_pointer
(l: loc)
(#len: array_length_t)
(#t: typ)
(p: pointer (TArray len t))
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gbuffer_of_array_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gbuffer_of_array_pointer p)))]
val loc_includes_gpointer_of_array_cell
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_includes l (loc_pointer (gpointer_of_buffer_cell b i)))]
val loc_includes_gsub_buffer_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer (gsub_buffer b i len))))
[SMTPat (loc_includes l (loc_buffer (gsub_buffer b i len)))]
val loc_includes_gsub_buffer_l
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1))
(ensures (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))))
[SMTPat (loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_includes_addresses_pointer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: pointer t)
: Lemma
(requires (frameOf p == r /\ Set.mem (as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_pointer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_pointer p))]
val loc_includes_addresses_buffer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: buffer t)
: Lemma
(requires (frameOf_buffer p == r /\ Set.mem (buffer_as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_buffer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_buffer p))]
val loc_includes_region_pointer
(#t: typ)
(s: Set.set HS.rid)
(p: pointer t)
: Lemma
(requires (Set.mem (frameOf p) s))
(ensures (loc_includes (loc_regions s) (loc_pointer p)))
[SMTPat (loc_includes (loc_regions s) (loc_pointer p))]
val loc_includes_region_buffer
(#t: typ)
(s: Set.set HS.rid)
(b: buffer t)
: Lemma
(requires (Set.mem (frameOf_buffer b) s))
(ensures (loc_includes (loc_regions s) (loc_buffer b)))
[SMTPat (loc_includes (loc_regions s) (loc_buffer b))]
val loc_includes_region_addresses
(s: Set.set HS.rid)
(r: HS.rid)
(a: Set.set nat)
: Lemma
(requires (Set.mem r s))
(ensures (loc_includes (loc_regions s) (loc_addresses r a)))
[SMTPat (loc_includes (loc_regions s) (loc_addresses r a))]
val loc_includes_region_region
(s1 s2: Set.set HS.rid)
: Lemma
(requires (Set.subset s2 s1))
(ensures (loc_includes (loc_regions s1) (loc_regions s2)))
[SMTPat (loc_includes (loc_regions s1) (loc_regions s2))]
val loc_includes_region_union_l
(l: loc)
(s1 s2: Set.set HS.rid)
: Lemma
(requires (loc_includes l (loc_regions (Set.intersect s2 (Set.complement s1)))))
(ensures (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2)))
[SMTPat (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2))]
(* Disjointness of two memory locations *)
val loc_disjoint
(s1 s2: loc)
: GTot Type0
val loc_disjoint_sym
(s1 s2: loc)
: Lemma
(requires (loc_disjoint s1 s2))
(ensures (loc_disjoint s2 s1))
[SMTPat (loc_disjoint s1 s2)]
val loc_disjoint_none_r
(s: loc)
: Lemma
(ensures (loc_disjoint s loc_none))
[SMTPat (loc_disjoint s loc_none)]
val loc_disjoint_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_disjoint s s1 /\ loc_disjoint s s2))
(ensures (loc_disjoint s (loc_union s1 s2)))
[SMTPat (loc_disjoint s (loc_union s1 s2))]
val loc_disjoint_root
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
val loc_disjoint_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd1 fd2: struct_field l)
: Lemma
(requires (fd1 <> fd2))
(ensures (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2))))
[SMTPat (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2)))]
val loc_disjoint_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
UInt32.v i1 <> UInt32.v i2
))
(ensures (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2))
))
[SMTPat (loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2)))]
val loc_disjoint_includes
(p1 p2 p1' p2' : loc)
: Lemma
(requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2))
(ensures (loc_disjoint p1' p2'))
(* TODO: The following is now wrong, should be replaced with readable
val live_not_equal_disjoint
(#t: typ)
(h: HS.mem)
(p1 p2: pointer t)
: Lemma
(requires (live h p1 /\ live h p2 /\ equal p1 p2 == false))
(ensures (disjoint p1 p2))
*)
val live_unused_in_disjoint_strong
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
val live_unused_in_disjoint
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
[SMTPatOr [
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (live h p1)];
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (unused_in p2 h)];
[SMTPat (live h p1); SMTPat (unused_in p2 h)];
]]
val pointer_live_reference_unused_in_disjoint
(#value1: typ)
(#value2: Type0)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ HS.unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_addresses (HS.frameOf p2) (Set.singleton (HS.as_addr p2)))))
[SMTPat (live h p1); SMTPat (HS.unused_in p2 h)]
val reference_live_pointer_unused_in_disjoint
(#value1: Type0)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_addresses (HS.frameOf p1) (Set.singleton (HS.as_addr p1))) (loc_pointer p2)))
[SMTPat (HS.contains h p1); SMTPat (unused_in p2 h)]
val loc_disjoint_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\ (
UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/
UInt32.v i2 + UInt32.v len2 <= UInt32.v i1
)))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\
loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))
))
[SMTPat (loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_disjoint_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\ (
UInt32.v i1 <> UInt32.v i2
)))
(ensures (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2))
))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2)))]
let loc_disjoint_gpointer_of_buffer_cell_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))]
= loc_disjoint_includes l (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i))
let loc_disjoint_gpointer_of_buffer_cell_l
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)]
= loc_disjoint_includes (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) l
val loc_disjoint_addresses
(r1 r2: HS.rid)
(n1 n2: Set.set nat)
: Lemma
(requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty))
(ensures (loc_disjoint (loc_addresses r1 n1) (loc_addresses r2 n2)))
[SMTPat (loc_disjoint (loc_addresses r1 n1) (loc_addresses r2 n2))]
val loc_disjoint_pointer_addresses
(#t: typ)
(p: pointer t)
(r: HS.rid)
(n: Set.set nat)
: Lemma
(requires (r <> frameOf p \/ (~ (Set.mem (as_addr p) n))))
(ensures (loc_disjoint (loc_pointer p) (loc_addresses r n)))
[SMTPat (loc_disjoint (loc_pointer p) (loc_addresses r n))]
val loc_disjoint_buffer_addresses
(#t: typ)
(p: buffer t)
(r: HH.rid)
(n: Set.set nat)
: Lemma
(requires (r <> frameOf_buffer p \/ (~ (Set.mem (buffer_as_addr p) n))))
(ensures (loc_disjoint (loc_buffer p) (loc_addresses r n)))
[SMTPat (loc_disjoint (loc_buffer p) (loc_addresses r n))]
val loc_disjoint_regions
(rs1 rs2: Set.set HS.rid)
: Lemma
(requires (Set.subset (Set.intersect rs1 rs2) Set.empty))
(ensures (loc_disjoint (loc_regions rs1) (loc_regions rs2)))
[SMTPat (loc_disjoint (loc_regions rs1) (loc_regions rs2))]
(** The modifies clause proper *)
val modifies
(s: loc)
(h1 h2: HS.mem)
: GTot Type0
val modifies_loc_regions_intro
(rs: Set.set HS.rid)
(h1 h2: HS.mem)
: Lemma
(requires (HS.modifies rs h1 h2))
(ensures (modifies (loc_regions rs) h1 h2))
val modifies_pointer_elim
(s: loc)
(h1 h2: HS.mem)
(#a': typ)
(p': pointer a')
: Lemma
(requires (
modifies s h1 h2 /\
live h1 p' /\
loc_disjoint (loc_pointer p') s
))
(ensures (
equal_values h1 p' h2 p'
))
[SMTPatOr [
[ SMTPat (modifies s h1 h2); SMTPat (gread h1 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (readable h1 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (live h1 p') ];
[ SMTPat (modifies s h1 h2); SMTPat (gread h2 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (readable h2 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (live h2 p') ]
] ]
val modifies_buffer_elim
(#t1: typ)
(b: buffer t1)
(p: loc)
(h h': HS.mem)
: Lemma
(requires (
loc_disjoint (loc_buffer b) p /\
buffer_live h b /\
(UInt32.v (buffer_length b) == 0 ==> buffer_live h' b) /\ // necessary for liveness, because all buffers of size 0 are disjoint for any memory location, so we cannot talk about their liveness individually without referring to a larger nonempty buffer
modifies p h h'
))
(ensures (
buffer_live h' b /\ (
buffer_readable h b ==> (
buffer_readable h' b /\
buffer_as_seq h b == buffer_as_seq h' b
))))
[SMTPatOr [
[ SMTPat (modifies p h h'); SMTPat (buffer_as_seq h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_readable h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_live h b) ];
[ SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_readable h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_live h' b) ]
] ]
val modifies_reference_elim
(#t: Type0)
(b: HS.reference t)
(p: loc)
(h h': HS.mem)
: Lemma
(requires (
loc_disjoint (loc_addresses (HS.frameOf b) (Set.singleton (HS.as_addr b))) p /\
HS.contains h b /\
modifies p h h'
))
(ensures (
HS.contains h' b /\
HS.sel h b == HS.sel h' b
))
[SMTPatOr [
[ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ];
[ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ]
] ]
val modifies_refl
(s: loc)
(h: HS.mem)
: Lemma
(modifies s h h)
[SMTPat (modifies s h h)]
val modifies_loc_includes
(s1: loc)
(h h': HS.mem)
(s2: loc)
: Lemma
(requires (modifies s2 h h' /\ loc_includes s1 s2))
(ensures (modifies s1 h h'))
[SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]
val modifies_trans
(s12: loc)
(h1 h2: HS.mem)
(s23: loc)
(h3: HS.mem)
: Lemma
(requires (modifies s12 h1 h2 /\ modifies s23 h2 h3))
(ensures (modifies (loc_union s12 s23) h1 h3))
[SMTPat (modifies s12 h1 h2); SMTPat (modifies s23 h2 h3)] | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modifies_0 (h0 h1: HS.mem) : GTot Type0 | [] | FStar.Pointer.Base.modifies_0 | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0 | {
"end_col": 25,
"end_line": 2066,
"start_col": 2,
"start_line": 2066
} |
Prims.GTot | val modifies_1 (#t: typ) (p: pointer t) (h0 h1: HS.mem) : GTot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modifies_1 (#t: typ) (p: pointer t) (h0 h1: HS.mem) : GTot Type0 =
modifies (loc_pointer p) h0 h1 | val modifies_1 (#t: typ) (p: pointer t) (h0 h1: HS.mem) : GTot Type0
let modifies_1 (#t: typ) (p: pointer t) (h0 h1: HS.mem) : GTot Type0 = | false | null | false | modifies (loc_pointer p) h0 h1 | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"sometrivial"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.pointer",
"FStar.Monotonic.HyperStack.mem",
"FStar.Pointer.Base.modifies",
"FStar.Pointer.Base.loc_pointer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l)
val union_get_key (#l: union_typ) (v: union l) : GTot (struct_field l)
val union_get_value
(#l: union_typ)
(v: union l)
(fd: struct_field l)
: Pure (type_of_struct_field l fd)
(requires (union_get_key v == fd))
(ensures (fun _ -> True))
val union_create
(l: union_typ)
(fd: struct_field l)
(v: type_of_struct_field l fd)
: Tot (union l)
(*** Semantics of pointers *)
(** Operations on pointers *)
val equal
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Ghost bool
(requires True)
(ensures (fun b -> b == true <==> t1 == t2 /\ p1 == p2 ))
val as_addr (#t: typ) (p: pointer t): GTot (x: nat { x > 0 } )
val unused_in
(#value: typ)
(p: pointer value)
(h: HS.mem)
: GTot Type0
val live
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot Type0
val nlive
(#value: typ)
(h: HS.mem)
(p: npointer value)
: GTot Type0
val live_nlive
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(nlive h p <==> live h p)
[SMTPat (nlive h p)]
val g_is_null_nlive
(#t: typ)
(h: HS.mem)
(p: npointer t)
: Lemma
(requires (g_is_null p))
(ensures (nlive h p))
[SMTPat (g_is_null p); SMTPat (nlive h p)]
val live_not_unused_in
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(ensures (live h p /\ p `unused_in` h ==> False))
[SMTPat (live h p); SMTPat (p `unused_in` h)]
val gread
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot (type_of_typ value)
val frameOf
(#value: typ)
(p: pointer value)
: GTot HS.rid
val live_region_frameOf
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(requires (live h p))
(ensures (HS.live_region h (frameOf p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf p))];
[SMTPat (live h p)]
]]
val disjoint_roots_intro_pointer_vs_pointer
(#value1 value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 =!= as_addr p2))
val disjoint_roots_intro_pointer_vs_reference
(#value1: typ)
(#value2: Type)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ p2 `HS.unused_in` h))
(ensures (frameOf p1 <> HS.frameOf p2 \/ as_addr p1 =!= HS.as_addr p2))
val disjoint_roots_intro_reference_vs_pointer
(#value1: Type)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ p2 `unused_in` h))
(ensures (HS.frameOf p1 <> frameOf p2 \/ HS.as_addr p1 =!= as_addr p2))
val is_mm
(#value: typ)
(p: pointer value)
: GTot bool
(* // TODO: recover with addresses?
val recall
(#value: Type)
(p: pointer value {is_eternal_region (frameOf p) && not (is_mm p)})
: HST.Stack unit
(requires (fun m -> True))
(ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 p))
*)
val gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gfield p fd) == as_addr p))
[SMTPat (as_addr (gfield p fd))]
val unused_in_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gfield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gfield p fd) h)]
val live_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gfield p fd) <==> live h p))
[SMTPat (live h (gfield p fd))]
val gread_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (gread h (gfield p fd) == struct_sel (gread h p) fd))
[SMTPatOr [[SMTPat (gread h (gfield p fd))]; [SMTPat (struct_sel (gread h p) fd)]]]
val frameOf_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gfield p fd) == frameOf p))
[SMTPat (frameOf (gfield p fd))]
val is_mm_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gfield p fd) <==> is_mm p))
[SMTPat (is_mm (gfield p fd))]
val gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gufield p fd) == as_addr p))
[SMTPat (as_addr (gufield p fd))]
val unused_in_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gufield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gufield p fd) h)]
val live_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gufield p fd) <==> live h p))
[SMTPat (live h (gufield p fd))]
val gread_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (union_get_key (gread h p) == fd))
(ensures (
union_get_key (gread h p) == fd /\
gread h (gufield p fd) == union_get_value (gread h p) fd
))
[SMTPatOr [[SMTPat (gread h (gufield p fd))]; [SMTPat (union_get_value (gread h p) fd)]]]
val frameOf_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gufield p fd) == frameOf p))
[SMTPat (frameOf (gufield p fd))]
val is_mm_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gufield p fd) <==> is_mm p))
[SMTPat (is_mm (gufield p fd))]
val gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Ghost (pointer value)
(requires (UInt32.v i < UInt32.v length))
(ensures (fun _ -> True))
val as_addr_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ as_addr (gcell p i) == as_addr p))
[SMTPat (as_addr (gcell p i))]
val unused_in_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (unused_in (gcell p i) h <==> unused_in p h)))
[SMTPat (unused_in (gcell p i) h)]
val live_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (live h (gcell p i) <==> live h p)))
[SMTPat (live h (gcell p i))]
val gread_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gread h (gcell p i) == Seq.index (gread h p) (UInt32.v i)))
[SMTPat (gread h (gcell p i))]
val frameOf_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ frameOf (gcell p i) == frameOf p))
[SMTPat (frameOf (gcell p i))]
val is_mm_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ is_mm (gcell p i) == is_mm p))
[SMTPat (is_mm (gcell p i))]
val includes
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: GTot bool
val includes_refl
(#t: typ)
(p: pointer t)
: Lemma
(ensures (includes p p))
[SMTPat (includes p p)]
val includes_trans
(#t1 #t2 #t3: typ)
(p1: pointer t1)
(p2: pointer t2)
(p3: pointer t3)
: Lemma
(requires (includes p1 p2 /\ includes p2 p3))
(ensures (includes p1 p3))
val includes_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gfield p fd)))
val includes_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gufield p fd)))
val includes_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ includes p (gcell p i)))
(** The readable permission.
We choose to implement it only abstractly, instead of explicitly
tracking the permission in the heap.
*)
val readable
(#a: typ)
(h: HS.mem)
(b: pointer a)
: GTot Type0
val readable_live
(#a: typ)
(h: HS.mem)
(b: pointer a)
: Lemma
(requires (readable h b))
(ensures (live h b))
[SMTPatOr [
[SMTPat (readable h b)];
[SMTPat (live h b)];
]]
val readable_gfield
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires (readable h p))
(ensures (readable h (gfield p fd)))
[SMTPat (readable h (gfield p fd))]
val readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (
forall (f: struct_field l) .
readable h (gfield p f)
))
(ensures (readable h p))
// [SMTPat (readable #(TStruct l) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
val readable_struct_forall_mem
(#l: struct_typ)
(p: pointer (TStruct l))
: Lemma (forall
(h: HS.mem)
. (
forall (f: struct_field l) .
readable h (gfield p f)
) ==>
readable h p
)
val readable_struct_fields
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(s: list string)
: GTot Type0
val readable_struct_fields_nil
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(readable_struct_fields h p [])
[SMTPat (readable_struct_fields h p [])]
val readable_struct_fields_cons
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(f: string)
(q: list string)
: Lemma
(requires (readable_struct_fields h p q /\ (List.Tot.mem f (List.Tot.map fst l.fields) ==> (let f : struct_field l = f in readable h (gfield p f)))))
(ensures (readable_struct_fields h p (f::q)))
[SMTPat (readable_struct_fields h p (f::q))]
val readable_struct_fields_readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (readable_struct_fields h p (normalize_term (List.Tot.map fst l.fields))))
(ensures (readable h p))
val readable_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length /\ readable h p))
(ensures (UInt32.v i < UInt32.v length /\ readable h (gcell p i)))
[SMTPat (readable h (gcell p i))]
val readable_array
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
: Lemma
(requires (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v length ==>
readable h (gcell p i)
))
(ensures (readable h p))
// [SMTPat (readable #(TArray length value) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
(* TODO: improve on the following interface *)
val readable_gufield
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (readable h (gufield p fd) <==> (readable h p /\ union_get_key (gread h p) == fd)))
[SMTPat (readable h (gufield p fd))]
(** The active field of a union *)
val is_active_union_field
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot Type0
val is_active_union_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h p))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h (gufield p fd)))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_eq
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd1 fd2: struct_field l)
: Lemma
(requires (is_active_union_field h p fd1 /\ is_active_union_field h p fd2))
(ensures (fd1 == fd2))
[SMTPat (is_active_union_field h p fd1); SMTPat (is_active_union_field h p fd2)]
val is_active_union_field_get_key
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (union_get_key (gread h p) == fd))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd /\ readable h (gufield p fd)))
(ensures (readable h p))
[SMTPat (is_active_union_field h p fd); SMTPat (readable h (gufield p fd))]
val is_active_union_field_includes_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
(#t': typ)
(p' : pointer t')
: Lemma
(requires (includes (gufield p fd) p' /\ readable h p'))
(ensures (is_active_union_field h p fd))
(* Equality predicate on struct contents, without quantifiers *)
let equal_values #a h (b:pointer a) h' (b':pointer a) : GTot Type0 =
(live h b ==> live h' b') /\ (
readable h b ==> (
readable h' b' /\
gread h b == gread h' b'
))
(*** Semantics of buffers *)
(** Operations on buffers *)
val gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: GTot (buffer t)
val singleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gsingleton_buffer_of_pointer p))
val gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: GTot (buffer t)
val buffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gbuffer_of_array_pointer p))
val buffer_length
(#t: typ)
(b: buffer t)
: GTot UInt32.t
val buffer_length_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_length (gsingleton_buffer_of_pointer p) == 1ul))
[SMTPat (buffer_length (gsingleton_buffer_of_pointer p))]
val buffer_length_gbuffer_of_array_pointer
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_length (gbuffer_of_array_pointer p) == len))
[SMTPat (buffer_length (gbuffer_of_array_pointer p))]
val buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_live_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_live h (gsingleton_buffer_of_pointer p) <==> live h p ))
[SMTPat (buffer_live h (gsingleton_buffer_of_pointer p))]
val buffer_live_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_live h (gbuffer_of_array_pointer p) <==> live h p))
[SMTPat (buffer_live h (gbuffer_of_array_pointer p))]
val buffer_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: GTot Type0
val buffer_live_not_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: Lemma
((buffer_live h b /\ buffer_unused_in b h) ==> False)
val buffer_unused_in_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_unused_in (gsingleton_buffer_of_pointer p) h <==> unused_in p h ))
[SMTPat (buffer_unused_in (gsingleton_buffer_of_pointer p) h)]
val buffer_unused_in_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_unused_in (gbuffer_of_array_pointer p) h <==> unused_in p h))
[SMTPat (buffer_unused_in (gbuffer_of_array_pointer p) h)]
val frameOf_buffer
(#t: typ)
(b: buffer t)
: GTot HS.rid
val frameOf_buffer_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (frameOf_buffer (gsingleton_buffer_of_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gsingleton_buffer_of_pointer p))]
val frameOf_buffer_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (frameOf_buffer (gbuffer_of_array_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gbuffer_of_array_pointer p))]
val live_region_frameOf_buffer
(#value: typ)
(h: HS.mem)
(p: buffer value)
: Lemma
(requires (buffer_live h p))
(ensures (HS.live_region h (frameOf_buffer p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf_buffer p))];
[SMTPat (buffer_live h p)]
]]
val buffer_as_addr
(#t: typ)
(b: buffer t)
: GTot (x: nat { x > 0 } )
val buffer_as_addr_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (buffer_as_addr (gsingleton_buffer_of_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gsingleton_buffer_of_pointer p))]
val buffer_as_addr_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (buffer_as_addr (gbuffer_of_array_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gbuffer_of_array_pointer p))]
val gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Ghost (buffer t)
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val frameOf_buffer_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
frameOf_buffer (gsub_buffer b i len) == frameOf_buffer b
))
[SMTPat (frameOf_buffer (gsub_buffer b i len))]
val buffer_as_addr_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_as_addr (gsub_buffer b i len) == buffer_as_addr b
))
[SMTPat (buffer_as_addr (gsub_buffer b i len))]
val sub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i len ))
val offset_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i (UInt32.sub (buffer_length b) i)))
val buffer_length_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_length (gsub_buffer b i len) == len))
[SMTPat (buffer_length (gsub_buffer b i len))]
val buffer_live_gsub_buffer_equiv
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_live h (gsub_buffer b i len) <==> buffer_live h b)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_live_gsub_buffer_intro
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (buffer_live h b /\ UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h (gsub_buffer b i len)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_unused_in_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_unused_in (gsub_buffer b i len) h <==> buffer_unused_in b h)))
[SMTPat (buffer_unused_in (gsub_buffer b i len) h)]
val gsub_buffer_gsub_buffer
(#a: typ)
(b: buffer a)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1
))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\
gsub_buffer (gsub_buffer b i1 len1) i2 len2 == gsub_buffer b FStar.UInt32.(i1 +^ i2) len2
))
[SMTPat (gsub_buffer (gsub_buffer b i1 len1) i2 len2)]
val gsub_buffer_zero_buffer_length
(#a: typ)
(b: buffer a)
: Lemma
(ensures (gsub_buffer b 0ul (buffer_length b) == b))
[SMTPat (gsub_buffer b 0ul (buffer_length b))]
val buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot (Seq.seq (type_of_typ t))
val buffer_length_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires True)
(ensures (Seq.length (buffer_as_seq h b) == UInt32.v (buffer_length b)))
[SMTPat (Seq.length (buffer_as_seq h b))]
val buffer_as_seq_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_as_seq h (gsingleton_buffer_of_pointer p) == Seq.create 1 (gread h p)))
[SMTPat (buffer_as_seq h (gsingleton_buffer_of_pointer p))]
val buffer_as_seq_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray length t))
: Lemma
(requires True)
(ensures (buffer_as_seq h (gbuffer_of_array_pointer p) == gread h p))
[SMTPat (buffer_as_seq h (gbuffer_of_array_pointer p))]
val buffer_as_seq_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_as_seq h (gsub_buffer b i len) == Seq.slice (buffer_as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)))
[SMTPat (buffer_as_seq h (gsub_buffer b i len))]
val gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Ghost (pointer t)
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val pointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (pointer t)
(requires (fun h -> UInt32.v i < UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h p h' -> UInt32.v i < UInt32.v (buffer_length b) /\ h' == h /\ p == gpointer_of_buffer_cell b i))
val gpointer_of_buffer_cell_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
= gpointer_of_buffer_cell_gsub_buffer b i1 len i2
val live_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(h: HS.mem)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
(live h (gpointer_of_buffer_cell b i) <==> buffer_live h b)
))
[SMTPat (live h (gpointer_of_buffer_cell b i))]
val gpointer_of_buffer_cell_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < 1))
(ensures (UInt32.v i < 1 /\ gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i == p))
[SMTPat (gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i)]
val gpointer_of_buffer_cell_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(p: pointer (TArray length t))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i == gcell p i))
[SMTPat (gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i)]
val frameOf_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ frameOf (gpointer_of_buffer_cell b i) == frameOf_buffer b))
[SMTPat (frameOf (gpointer_of_buffer_cell b i))]
val as_addr_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ as_addr (gpointer_of_buffer_cell b i) == buffer_as_addr b))
[SMTPat (as_addr (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
[SMTPat (gread h (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell'
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
val index_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: nat)
: Lemma
(requires (i < UInt32.v (buffer_length b)))
(ensures (i < UInt32.v (buffer_length b) /\ Seq.index (buffer_as_seq h b) i == gread h (gpointer_of_buffer_cell b (UInt32.uint_to_t i))))
[SMTPat (Seq.index (buffer_as_seq h b) i)]
val gsingleton_buffer_of_pointer_gcell
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v len
))
(ensures (
UInt32.v i < UInt32.v len /\
gsingleton_buffer_of_pointer (gcell p i) == gsub_buffer (gbuffer_of_array_pointer p) i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gcell p i))]
val gsingleton_buffer_of_pointer_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i) == gsub_buffer b i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i))]
(* The readable permission lifted to buffers. *)
val buffer_readable
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_readable_buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (buffer_readable h b))
(ensures (buffer_live h b))
[SMTPatOr [
[SMTPat (buffer_readable h b)];
[SMTPat (buffer_live h b)];
]]
val buffer_readable_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(ensures (buffer_readable h (gsingleton_buffer_of_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gsingleton_buffer_of_pointer p))]
val buffer_readable_gbuffer_of_array_pointer
(#len: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_readable h (gbuffer_of_array_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gbuffer_of_array_pointer p))]
val buffer_readable_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h (gsub_buffer b i len)))
[SMTPat (buffer_readable h (gsub_buffer b i len))]
val readable_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ readable h (gpointer_of_buffer_cell b i)))
[SMTPat (readable h (gpointer_of_buffer_cell b i))]
val buffer_readable_intro
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(ensures (buffer_readable h b))
// [SMTPat (buffer_readable h b)] // TODO: dubious pattern, may trigger unreplayable hints
val buffer_readable_elim
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_readable h b
))
(ensures (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(*** The modifies clause *)
val loc : Type u#0
val loc_none: loc
val loc_union
(s1 s2: loc)
: GTot loc
(** The following is useful to make Z3 cut matching loops with
modifies_trans and modifies_refl *)
val loc_union_idem
(s: loc)
: Lemma
(loc_union s s == s)
[SMTPat (loc_union s s)]
val loc_pointer
(#t: typ)
(p: pointer t)
: GTot loc
val loc_buffer
(#t: typ)
(b: buffer t)
: GTot loc
val loc_addresses
(r: HS.rid)
(n: Set.set nat)
: GTot loc
val loc_regions
(r: Set.set HS.rid)
: GTot loc
(* Inclusion of memory locations *)
val loc_includes
(s1 s2: loc)
: GTot Type0
val loc_includes_refl
(s: loc)
: Lemma
(loc_includes s s)
[SMTPat (loc_includes s s)]
val loc_includes_trans
(s1 s2 s3: loc)
: Lemma
(requires (loc_includes s1 s2 /\ loc_includes s2 s3))
(ensures (loc_includes s1 s3))
val loc_includes_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_includes s s1 /\ loc_includes s s2))
(ensures (loc_includes s (loc_union s1 s2)))
[SMTPat (loc_includes s (loc_union s1 s2))]
val loc_includes_union_l
(s1 s2 s: loc)
: Lemma
(requires (loc_includes s1 s \/ loc_includes s2 s))
(ensures (loc_includes (loc_union s1 s2) s))
[SMTPat (loc_includes (loc_union s1 s2) s)]
val loc_includes_none
(s: loc)
: Lemma
(loc_includes s loc_none)
[SMTPat (loc_includes s loc_none)]
val loc_includes_pointer_pointer
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Lemma
(requires (includes p1 p2))
(ensures (loc_includes (loc_pointer p1) (loc_pointer p2)))
[SMTPat (loc_includes (loc_pointer p1) (loc_pointer p2))]
val loc_includes_gsingleton_buffer_of_pointer
(l: loc)
(#t: typ)
(p: pointer t)
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p)))]
val loc_includes_gbuffer_of_array_pointer
(l: loc)
(#len: array_length_t)
(#t: typ)
(p: pointer (TArray len t))
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gbuffer_of_array_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gbuffer_of_array_pointer p)))]
val loc_includes_gpointer_of_array_cell
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_includes l (loc_pointer (gpointer_of_buffer_cell b i)))]
val loc_includes_gsub_buffer_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer (gsub_buffer b i len))))
[SMTPat (loc_includes l (loc_buffer (gsub_buffer b i len)))]
val loc_includes_gsub_buffer_l
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1))
(ensures (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))))
[SMTPat (loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_includes_addresses_pointer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: pointer t)
: Lemma
(requires (frameOf p == r /\ Set.mem (as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_pointer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_pointer p))]
val loc_includes_addresses_buffer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: buffer t)
: Lemma
(requires (frameOf_buffer p == r /\ Set.mem (buffer_as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_buffer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_buffer p))]
val loc_includes_region_pointer
(#t: typ)
(s: Set.set HS.rid)
(p: pointer t)
: Lemma
(requires (Set.mem (frameOf p) s))
(ensures (loc_includes (loc_regions s) (loc_pointer p)))
[SMTPat (loc_includes (loc_regions s) (loc_pointer p))]
val loc_includes_region_buffer
(#t: typ)
(s: Set.set HS.rid)
(b: buffer t)
: Lemma
(requires (Set.mem (frameOf_buffer b) s))
(ensures (loc_includes (loc_regions s) (loc_buffer b)))
[SMTPat (loc_includes (loc_regions s) (loc_buffer b))]
val loc_includes_region_addresses
(s: Set.set HS.rid)
(r: HS.rid)
(a: Set.set nat)
: Lemma
(requires (Set.mem r s))
(ensures (loc_includes (loc_regions s) (loc_addresses r a)))
[SMTPat (loc_includes (loc_regions s) (loc_addresses r a))]
val loc_includes_region_region
(s1 s2: Set.set HS.rid)
: Lemma
(requires (Set.subset s2 s1))
(ensures (loc_includes (loc_regions s1) (loc_regions s2)))
[SMTPat (loc_includes (loc_regions s1) (loc_regions s2))]
val loc_includes_region_union_l
(l: loc)
(s1 s2: Set.set HS.rid)
: Lemma
(requires (loc_includes l (loc_regions (Set.intersect s2 (Set.complement s1)))))
(ensures (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2)))
[SMTPat (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2))]
(* Disjointness of two memory locations *)
val loc_disjoint
(s1 s2: loc)
: GTot Type0
val loc_disjoint_sym
(s1 s2: loc)
: Lemma
(requires (loc_disjoint s1 s2))
(ensures (loc_disjoint s2 s1))
[SMTPat (loc_disjoint s1 s2)]
val loc_disjoint_none_r
(s: loc)
: Lemma
(ensures (loc_disjoint s loc_none))
[SMTPat (loc_disjoint s loc_none)]
val loc_disjoint_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_disjoint s s1 /\ loc_disjoint s s2))
(ensures (loc_disjoint s (loc_union s1 s2)))
[SMTPat (loc_disjoint s (loc_union s1 s2))]
val loc_disjoint_root
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
val loc_disjoint_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd1 fd2: struct_field l)
: Lemma
(requires (fd1 <> fd2))
(ensures (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2))))
[SMTPat (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2)))]
val loc_disjoint_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
UInt32.v i1 <> UInt32.v i2
))
(ensures (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2))
))
[SMTPat (loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2)))]
val loc_disjoint_includes
(p1 p2 p1' p2' : loc)
: Lemma
(requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2))
(ensures (loc_disjoint p1' p2'))
(* TODO: The following is now wrong, should be replaced with readable
val live_not_equal_disjoint
(#t: typ)
(h: HS.mem)
(p1 p2: pointer t)
: Lemma
(requires (live h p1 /\ live h p2 /\ equal p1 p2 == false))
(ensures (disjoint p1 p2))
*)
val live_unused_in_disjoint_strong
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
val live_unused_in_disjoint
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
[SMTPatOr [
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (live h p1)];
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (unused_in p2 h)];
[SMTPat (live h p1); SMTPat (unused_in p2 h)];
]]
val pointer_live_reference_unused_in_disjoint
(#value1: typ)
(#value2: Type0)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ HS.unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_addresses (HS.frameOf p2) (Set.singleton (HS.as_addr p2)))))
[SMTPat (live h p1); SMTPat (HS.unused_in p2 h)]
val reference_live_pointer_unused_in_disjoint
(#value1: Type0)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_addresses (HS.frameOf p1) (Set.singleton (HS.as_addr p1))) (loc_pointer p2)))
[SMTPat (HS.contains h p1); SMTPat (unused_in p2 h)]
val loc_disjoint_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\ (
UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/
UInt32.v i2 + UInt32.v len2 <= UInt32.v i1
)))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\
loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))
))
[SMTPat (loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_disjoint_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\ (
UInt32.v i1 <> UInt32.v i2
)))
(ensures (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2))
))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2)))]
let loc_disjoint_gpointer_of_buffer_cell_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))]
= loc_disjoint_includes l (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i))
let loc_disjoint_gpointer_of_buffer_cell_l
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)]
= loc_disjoint_includes (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) l
val loc_disjoint_addresses
(r1 r2: HS.rid)
(n1 n2: Set.set nat)
: Lemma
(requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty))
(ensures (loc_disjoint (loc_addresses r1 n1) (loc_addresses r2 n2)))
[SMTPat (loc_disjoint (loc_addresses r1 n1) (loc_addresses r2 n2))]
val loc_disjoint_pointer_addresses
(#t: typ)
(p: pointer t)
(r: HS.rid)
(n: Set.set nat)
: Lemma
(requires (r <> frameOf p \/ (~ (Set.mem (as_addr p) n))))
(ensures (loc_disjoint (loc_pointer p) (loc_addresses r n)))
[SMTPat (loc_disjoint (loc_pointer p) (loc_addresses r n))]
val loc_disjoint_buffer_addresses
(#t: typ)
(p: buffer t)
(r: HH.rid)
(n: Set.set nat)
: Lemma
(requires (r <> frameOf_buffer p \/ (~ (Set.mem (buffer_as_addr p) n))))
(ensures (loc_disjoint (loc_buffer p) (loc_addresses r n)))
[SMTPat (loc_disjoint (loc_buffer p) (loc_addresses r n))]
val loc_disjoint_regions
(rs1 rs2: Set.set HS.rid)
: Lemma
(requires (Set.subset (Set.intersect rs1 rs2) Set.empty))
(ensures (loc_disjoint (loc_regions rs1) (loc_regions rs2)))
[SMTPat (loc_disjoint (loc_regions rs1) (loc_regions rs2))]
(** The modifies clause proper *)
val modifies
(s: loc)
(h1 h2: HS.mem)
: GTot Type0
val modifies_loc_regions_intro
(rs: Set.set HS.rid)
(h1 h2: HS.mem)
: Lemma
(requires (HS.modifies rs h1 h2))
(ensures (modifies (loc_regions rs) h1 h2))
val modifies_pointer_elim
(s: loc)
(h1 h2: HS.mem)
(#a': typ)
(p': pointer a')
: Lemma
(requires (
modifies s h1 h2 /\
live h1 p' /\
loc_disjoint (loc_pointer p') s
))
(ensures (
equal_values h1 p' h2 p'
))
[SMTPatOr [
[ SMTPat (modifies s h1 h2); SMTPat (gread h1 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (readable h1 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (live h1 p') ];
[ SMTPat (modifies s h1 h2); SMTPat (gread h2 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (readable h2 p') ] ;
[ SMTPat (modifies s h1 h2); SMTPat (live h2 p') ]
] ]
val modifies_buffer_elim
(#t1: typ)
(b: buffer t1)
(p: loc)
(h h': HS.mem)
: Lemma
(requires (
loc_disjoint (loc_buffer b) p /\
buffer_live h b /\
(UInt32.v (buffer_length b) == 0 ==> buffer_live h' b) /\ // necessary for liveness, because all buffers of size 0 are disjoint for any memory location, so we cannot talk about their liveness individually without referring to a larger nonempty buffer
modifies p h h'
))
(ensures (
buffer_live h' b /\ (
buffer_readable h b ==> (
buffer_readable h' b /\
buffer_as_seq h b == buffer_as_seq h' b
))))
[SMTPatOr [
[ SMTPat (modifies p h h'); SMTPat (buffer_as_seq h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_readable h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_live h b) ];
[ SMTPat (modifies p h h'); SMTPat (buffer_as_seq h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_readable h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (buffer_live h' b) ]
] ]
val modifies_reference_elim
(#t: Type0)
(b: HS.reference t)
(p: loc)
(h h': HS.mem)
: Lemma
(requires (
loc_disjoint (loc_addresses (HS.frameOf b) (Set.singleton (HS.as_addr b))) p /\
HS.contains h b /\
modifies p h h'
))
(ensures (
HS.contains h' b /\
HS.sel h b == HS.sel h' b
))
[SMTPatOr [
[ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ;
[ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ];
[ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ;
[ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ]
] ]
val modifies_refl
(s: loc)
(h: HS.mem)
: Lemma
(modifies s h h)
[SMTPat (modifies s h h)]
val modifies_loc_includes
(s1: loc)
(h h': HS.mem)
(s2: loc)
: Lemma
(requires (modifies s2 h h' /\ loc_includes s1 s2))
(ensures (modifies s1 h h'))
[SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]
val modifies_trans
(s12: loc)
(h1 h2: HS.mem)
(s23: loc)
(h3: HS.mem)
: Lemma
(requires (modifies s12 h1 h2 /\ modifies s23 h2 h3))
(ensures (modifies (loc_union s12 s23) h1 h3))
[SMTPat (modifies s12 h1 h2); SMTPat (modifies s23 h2 h3)]
let modifies_0 (h0 h1: HS.mem) : GTot Type0 =
modifies loc_none h0 h1 | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modifies_1 (#t: typ) (p: pointer t) (h0 h1: HS.mem) : GTot Type0 | [] | FStar.Pointer.Base.modifies_1 | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
p: FStar.Pointer.Base.pointer t ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Type0 | {
"end_col": 32,
"end_line": 2069,
"start_col": 2,
"start_line": 2069
} |
Prims.Tot | val typ_of_union_field (l: union_typ) (f: union_field l) : Tot (t: typ{t << l}) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f | val typ_of_union_field (l: union_typ) (f: union_field l) : Tot (t: typ{t << l})
let typ_of_union_field (l: union_typ) (f: union_field l) : Tot (t: typ{t << l}) = | false | null | false | typ_of_struct_field l f | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.union_typ",
"FStar.Pointer.Base.union_field",
"FStar.Pointer.Base.typ_of_struct_field",
"FStar.Pointer.Base.typ",
"Prims.precedes"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val typ_of_union_field (l: union_typ) (f: union_field l) : Tot (t: typ{t << l}) | [] | FStar.Pointer.Base.typ_of_union_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.union_typ -> f: FStar.Pointer.Base.union_field l
-> t: FStar.Pointer.Base.typ{t << l} | {
"end_col": 25,
"end_line": 122,
"start_col": 2,
"start_line": 122
} |
Prims.Tot | val typ_of_struct_field' (l: struct_typ') (f: struct_field' l) : Tot (t: typ{t << l}) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y | val typ_of_struct_field' (l: struct_typ') (f: struct_field' l) : Tot (t: typ{t << l})
let typ_of_struct_field' (l: struct_typ') (f: struct_field' l) : Tot (t: typ{t << l}) = | false | null | false | List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ'",
"FStar.Pointer.Base.struct_field'",
"Prims.unit",
"FStar.List.Tot.Properties.assoc_precedes",
"Prims.string",
"FStar.Pointer.Base.typ",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.List.Tot.Base.assoc",
"FStar.List.Tot.Properties.assoc_mem",
"Prims.precedes"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val typ_of_struct_field' (l: struct_typ') (f: struct_field' l) : Tot (t: typ{t << l}) | [] | FStar.Pointer.Base.typ_of_struct_field' | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ' -> f: FStar.Pointer.Base.struct_field' l
-> t: FStar.Pointer.Base.typ{t << l} | {
"end_col": 3,
"end_line": 107,
"start_col": 2,
"start_line": 104
} |
Prims.Tot | val typ_of_struct_field (l: struct_typ) (f: struct_field l) : Tot (t: typ{t << l}) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f | val typ_of_struct_field (l: struct_typ) (f: struct_field l) : Tot (t: typ{t << l})
let typ_of_struct_field (l: struct_typ) (f: struct_field l) : Tot (t: typ{t << l}) = | false | null | false | typ_of_struct_field' l.fields f | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct_field",
"FStar.Pointer.Base.typ_of_struct_field'",
"FStar.Pointer.Base.__proj__Mkstruct_typ__item__fields",
"FStar.Pointer.Base.typ",
"Prims.precedes"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val typ_of_struct_field (l: struct_typ) (f: struct_field l) : Tot (t: typ{t << l}) | [] | FStar.Pointer.Base.typ_of_struct_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ -> f: FStar.Pointer.Base.struct_field l
-> t: FStar.Pointer.Base.typ{t << l} | {
"end_col": 33,
"end_line": 113,
"start_col": 2,
"start_line": 113
} |
Prims.Tot | val type_of_struct_field''
(l: struct_typ')
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field' l)
: Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y | val type_of_struct_field''
(l: struct_typ')
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field' l)
: Tot Type0
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field' l)
: Tot Type0 = | false | null | false | List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ'",
"FStar.Pointer.Base.typ",
"Prims.precedes",
"FStar.Pointer.Base.struct_field'",
"Prims.unit",
"FStar.List.Tot.Properties.assoc_precedes",
"Prims.string",
"FStar.Pointer.Base.typ_of_struct_field'",
"FStar.List.Tot.Properties.assoc_mem"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_struct_field''
(l: struct_typ')
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field' l)
: Tot Type0 | [] | FStar.Pointer.Base.type_of_struct_field'' | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
l: FStar.Pointer.Base.struct_typ' ->
type_of_typ: (t: FStar.Pointer.Base.typ{t << l} -> Type0) ->
f: FStar.Pointer.Base.struct_field' l
-> Type0 | {
"end_col": 15,
"end_line": 229,
"start_col": 2,
"start_line": 226
} |
Prims.Tot | val type_of_struct_field'
(l: struct_typ)
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field l)
: Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f | val type_of_struct_field'
(l: struct_typ)
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field l)
: Tot Type0
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field l)
: Tot Type0 = | false | null | false | type_of_struct_field'' l.fields type_of_typ f | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.typ",
"Prims.precedes",
"FStar.Pointer.Base.struct_field",
"FStar.Pointer.Base.type_of_struct_field''",
"FStar.Pointer.Base.__proj__Mkstruct_typ__item__fields"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_struct_field'
(l: struct_typ)
(type_of_typ: (t: typ{t << l} -> Tot Type0))
(f: struct_field l)
: Tot Type0 | [] | FStar.Pointer.Base.type_of_struct_field' | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
l: FStar.Pointer.Base.struct_typ ->
type_of_typ: (t: FStar.Pointer.Base.typ{t << l} -> Type0) ->
f: FStar.Pointer.Base.struct_field l
-> Type0 | {
"end_col": 47,
"end_line": 240,
"start_col": 2,
"start_line": 240
} |
Prims.Tot | val type_of_base_typ (t: base_typ) : Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit | val type_of_base_typ (t: base_typ) : Tot Type0
let type_of_base_typ (t: base_typ) : Tot Type0 = | false | null | false | match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.base_typ",
"Prims.nat",
"FStar.UInt8.t",
"FStar.UInt16.t",
"FStar.UInt32.t",
"FStar.UInt64.t",
"Prims.int",
"FStar.Int8.t",
"FStar.Int16.t",
"FStar.Int32.t",
"FStar.Int64.t",
"FStar.Char.char",
"Prims.bool",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ) | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_base_typ (t: base_typ) : Tot Type0 | [] | FStar.Pointer.Base.type_of_base_typ | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Pointer.Base.base_typ -> Type0 | {
"end_col": 17,
"end_line": 213,
"start_col": 2,
"start_line": 200
} |
Prims.Tot | val struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l) | val struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool = | false | null | false | List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare (List.Tot.map (dfst_struct_field s) l) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct_literal",
"Prims.op_Equality",
"Prims.list",
"Prims.string",
"FStar.List.Tot.Base.sortWith",
"FStar.String.compare",
"FStar.List.Tot.Base.map",
"FStar.Pervasives.Native.tuple2",
"FStar.Pointer.Base.typ",
"FStar.Pervasives.Native.fst",
"FStar.Pointer.Base.__proj__Mkstruct_typ__item__fields",
"Prims.dtuple2",
"FStar.Pointer.Base.struct_field",
"FStar.Pointer.Base.type_of_struct_field",
"FStar.Pointer.Base.dfst_struct_field",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool | [] | FStar.Pointer.Base.struct_literal_wf | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Pointer.Base.struct_typ -> l: FStar.Pointer.Base.struct_literal s -> Prims.bool | {
"end_col": 42,
"end_line": 307,
"start_col": 2,
"start_line": 305
} |
Prims.Tot | val type_of_typ (t: typ) : Tot Type0 | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t | val type_of_typ (t: typ) : Tot Type0
let rec type_of_typ (t: typ) : Tot Type0 = | false | null | false | match t with
| TBase b -> type_of_base_typ b
| TStruct l -> struct l
| TUnion l -> union l
| TArray length t -> array length (type_of_typ t)
| TPointer t -> pointer t
| TNPointer t -> npointer t
| TBuffer t -> buffer t | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"total"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.base_typ",
"FStar.Pointer.Base.type_of_base_typ",
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct",
"FStar.Pointer.Base.union",
"FStar.Pointer.Base.array_length_t",
"FStar.Pointer.Base.array",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Base.pointer",
"FStar.Pointer.Base.npointer",
"FStar.Pointer.Base.buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ) | false | true | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val type_of_typ (t: typ) : Tot Type0 | [
"recursion"
] | FStar.Pointer.Base.type_of_typ | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Pointer.Base.typ -> Type0 | {
"end_col": 12,
"end_line": 262,
"start_col": 2,
"start_line": 249
} |
Prims.Pure | val struct_create (s: struct_typ) (l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l) | val struct_create (s: struct_typ) (l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
let struct_create (s: struct_typ) (l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) = | false | null | false | struct_create_fun s (fun_of_list s l) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct_literal",
"FStar.Pointer.Base.struct_create_fun",
"FStar.Pointer.Base.fun_of_list",
"FStar.Pointer.Base.struct",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.normalize_term",
"FStar.Pointer.Base.struct_literal_wf",
"Prims.l_True"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_create (s: struct_typ) (l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) | [] | FStar.Pointer.Base.struct_create | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Pointer.Base.struct_typ -> l: FStar.Pointer.Base.struct_literal s
-> Prims.Pure (FStar.Pointer.Base.struct s) | {
"end_col": 39,
"end_line": 342,
"start_col": 2,
"start_line": 342
} |
FStar.Pervasives.Lemma | val typ_depth_typ_of_struct_field (l: struct_typ') (f: struct_field' l)
: Lemma (ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l)) (decreases l) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end | val typ_depth_typ_of_struct_field (l: struct_typ') (f: struct_field' l)
: Lemma (ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l)) (decreases l)
let rec typ_depth_typ_of_struct_field (l: struct_typ') (f: struct_field' l)
: Lemma (ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l)) (decreases l) = | false | null | true | let (f', _) :: l' = l in
if f = f'
then ()
else
let f:string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma",
""
] | [
"FStar.Pointer.Base.struct_typ'",
"FStar.Pointer.Base.struct_field'",
"Prims.string",
"FStar.Pointer.Base.typ",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Equality",
"Prims.bool",
"FStar.Pointer.Base.typ_depth_typ_of_struct_field",
"Prims.unit",
"FStar.List.Tot.Properties.assoc_mem",
"Prims._assert",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"FStar.List.Tot.Base.map",
"FStar.Pervasives.Native.fst",
"Prims.l_True",
"Prims.squash",
"Prims.op_LessThanOrEqual",
"FStar.Pointer.Base.typ_depth",
"FStar.Pointer.Base.typ_of_struct_field'",
"FStar.Pointer.Base.struct_typ_depth",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val typ_depth_typ_of_struct_field (l: struct_typ') (f: struct_field' l)
: Lemma (ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l)) (decreases l) | [
"recursion"
] | FStar.Pointer.Base.typ_depth_typ_of_struct_field | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.struct_typ' -> f: FStar.Pointer.Base.struct_field' l
-> FStar.Pervasives.Lemma
(ensures
FStar.Pointer.Base.typ_depth (FStar.Pointer.Base.typ_of_struct_field' l f) <=
FStar.Pointer.Base.struct_typ_depth l) (decreases l) | {
"end_col": 5,
"end_line": 157,
"start_col": 1,
"start_line": 149
} |
Prims.Pure | val fun_of_list (s: struct_typ) (l: struct_literal s) (f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim () | val fun_of_list (s: struct_typ) (l: struct_literal s) (f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
let fun_of_list (s: struct_typ) (l: struct_literal s) (f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) = | false | null | false | let f':string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p ->
let (| _ , v |) = p in
v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim () | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [] | [
"FStar.Pointer.Base.struct_typ",
"FStar.Pointer.Base.struct_literal",
"FStar.Pointer.Base.struct_field",
"FStar.List.Tot.Base.find",
"Prims.dtuple2",
"FStar.Pointer.Base.type_of_struct_field",
"Prims.b2t",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.false_elim",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.None",
"FStar.List.Tot.Base.memP",
"Prims.bool",
"FStar.Classical.move_requires",
"FStar.List.Tot.Properties.find_none",
"FStar.List.Tot.Properties.memP_map_elim",
"Prims.string",
"FStar.Pointer.Base.dfst_struct_field",
"FStar.List.Tot.Properties.mem_memP",
"FStar.List.Tot.Base.map",
"FStar.List.Tot.Properties.mem_count",
"FStar.Pervasives.Native.tuple2",
"FStar.Pointer.Base.typ",
"FStar.Pervasives.Native.fst",
"FStar.Pointer.Base.__proj__Mkstruct_typ__item__fields",
"FStar.List.Tot.Properties.sortWith_permutation",
"FStar.String.compare",
"Prims.op_Equality",
"FStar.Pervasives.normalize_term",
"FStar.Pointer.Base.struct_literal_wf",
"Prims.l_True"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fun_of_list (s: struct_typ) (l: struct_literal s) (f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True)) | [] | FStar.Pointer.Base.fun_of_list | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
s: FStar.Pointer.Base.struct_typ ->
l: FStar.Pointer.Base.struct_literal s ->
f: FStar.Pointer.Base.struct_field s
-> Prims.Pure (FStar.Pointer.Base.type_of_struct_field s f) | {
"end_col": 17,
"end_line": 332,
"start_col": 1,
"start_line": 316
} |
FStar.Pervasives.Lemma | val loc_disjoint_gpointer_of_buffer_cell_r (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))] | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let loc_disjoint_gpointer_of_buffer_cell_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))]
= loc_disjoint_includes l (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) | val loc_disjoint_gpointer_of_buffer_cell_r (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))]
let loc_disjoint_gpointer_of_buffer_cell_r (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))] = | false | null | true | loc_disjoint_includes l (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma"
] | [
"FStar.Pointer.Base.loc",
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.loc_disjoint_includes",
"FStar.Pointer.Base.loc_buffer",
"FStar.Pointer.Base.loc_pointer",
"FStar.Pointer.Base.gpointer_of_buffer_cell",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length",
"FStar.Pointer.Base.loc_disjoint",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l)
val union_get_key (#l: union_typ) (v: union l) : GTot (struct_field l)
val union_get_value
(#l: union_typ)
(v: union l)
(fd: struct_field l)
: Pure (type_of_struct_field l fd)
(requires (union_get_key v == fd))
(ensures (fun _ -> True))
val union_create
(l: union_typ)
(fd: struct_field l)
(v: type_of_struct_field l fd)
: Tot (union l)
(*** Semantics of pointers *)
(** Operations on pointers *)
val equal
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Ghost bool
(requires True)
(ensures (fun b -> b == true <==> t1 == t2 /\ p1 == p2 ))
val as_addr (#t: typ) (p: pointer t): GTot (x: nat { x > 0 } )
val unused_in
(#value: typ)
(p: pointer value)
(h: HS.mem)
: GTot Type0
val live
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot Type0
val nlive
(#value: typ)
(h: HS.mem)
(p: npointer value)
: GTot Type0
val live_nlive
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(nlive h p <==> live h p)
[SMTPat (nlive h p)]
val g_is_null_nlive
(#t: typ)
(h: HS.mem)
(p: npointer t)
: Lemma
(requires (g_is_null p))
(ensures (nlive h p))
[SMTPat (g_is_null p); SMTPat (nlive h p)]
val live_not_unused_in
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(ensures (live h p /\ p `unused_in` h ==> False))
[SMTPat (live h p); SMTPat (p `unused_in` h)]
val gread
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot (type_of_typ value)
val frameOf
(#value: typ)
(p: pointer value)
: GTot HS.rid
val live_region_frameOf
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(requires (live h p))
(ensures (HS.live_region h (frameOf p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf p))];
[SMTPat (live h p)]
]]
val disjoint_roots_intro_pointer_vs_pointer
(#value1 value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 =!= as_addr p2))
val disjoint_roots_intro_pointer_vs_reference
(#value1: typ)
(#value2: Type)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ p2 `HS.unused_in` h))
(ensures (frameOf p1 <> HS.frameOf p2 \/ as_addr p1 =!= HS.as_addr p2))
val disjoint_roots_intro_reference_vs_pointer
(#value1: Type)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ p2 `unused_in` h))
(ensures (HS.frameOf p1 <> frameOf p2 \/ HS.as_addr p1 =!= as_addr p2))
val is_mm
(#value: typ)
(p: pointer value)
: GTot bool
(* // TODO: recover with addresses?
val recall
(#value: Type)
(p: pointer value {is_eternal_region (frameOf p) && not (is_mm p)})
: HST.Stack unit
(requires (fun m -> True))
(ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 p))
*)
val gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gfield p fd) == as_addr p))
[SMTPat (as_addr (gfield p fd))]
val unused_in_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gfield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gfield p fd) h)]
val live_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gfield p fd) <==> live h p))
[SMTPat (live h (gfield p fd))]
val gread_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (gread h (gfield p fd) == struct_sel (gread h p) fd))
[SMTPatOr [[SMTPat (gread h (gfield p fd))]; [SMTPat (struct_sel (gread h p) fd)]]]
val frameOf_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gfield p fd) == frameOf p))
[SMTPat (frameOf (gfield p fd))]
val is_mm_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gfield p fd) <==> is_mm p))
[SMTPat (is_mm (gfield p fd))]
val gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gufield p fd) == as_addr p))
[SMTPat (as_addr (gufield p fd))]
val unused_in_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gufield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gufield p fd) h)]
val live_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gufield p fd) <==> live h p))
[SMTPat (live h (gufield p fd))]
val gread_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (union_get_key (gread h p) == fd))
(ensures (
union_get_key (gread h p) == fd /\
gread h (gufield p fd) == union_get_value (gread h p) fd
))
[SMTPatOr [[SMTPat (gread h (gufield p fd))]; [SMTPat (union_get_value (gread h p) fd)]]]
val frameOf_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gufield p fd) == frameOf p))
[SMTPat (frameOf (gufield p fd))]
val is_mm_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gufield p fd) <==> is_mm p))
[SMTPat (is_mm (gufield p fd))]
val gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Ghost (pointer value)
(requires (UInt32.v i < UInt32.v length))
(ensures (fun _ -> True))
val as_addr_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ as_addr (gcell p i) == as_addr p))
[SMTPat (as_addr (gcell p i))]
val unused_in_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (unused_in (gcell p i) h <==> unused_in p h)))
[SMTPat (unused_in (gcell p i) h)]
val live_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (live h (gcell p i) <==> live h p)))
[SMTPat (live h (gcell p i))]
val gread_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gread h (gcell p i) == Seq.index (gread h p) (UInt32.v i)))
[SMTPat (gread h (gcell p i))]
val frameOf_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ frameOf (gcell p i) == frameOf p))
[SMTPat (frameOf (gcell p i))]
val is_mm_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ is_mm (gcell p i) == is_mm p))
[SMTPat (is_mm (gcell p i))]
val includes
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: GTot bool
val includes_refl
(#t: typ)
(p: pointer t)
: Lemma
(ensures (includes p p))
[SMTPat (includes p p)]
val includes_trans
(#t1 #t2 #t3: typ)
(p1: pointer t1)
(p2: pointer t2)
(p3: pointer t3)
: Lemma
(requires (includes p1 p2 /\ includes p2 p3))
(ensures (includes p1 p3))
val includes_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gfield p fd)))
val includes_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gufield p fd)))
val includes_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ includes p (gcell p i)))
(** The readable permission.
We choose to implement it only abstractly, instead of explicitly
tracking the permission in the heap.
*)
val readable
(#a: typ)
(h: HS.mem)
(b: pointer a)
: GTot Type0
val readable_live
(#a: typ)
(h: HS.mem)
(b: pointer a)
: Lemma
(requires (readable h b))
(ensures (live h b))
[SMTPatOr [
[SMTPat (readable h b)];
[SMTPat (live h b)];
]]
val readable_gfield
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires (readable h p))
(ensures (readable h (gfield p fd)))
[SMTPat (readable h (gfield p fd))]
val readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (
forall (f: struct_field l) .
readable h (gfield p f)
))
(ensures (readable h p))
// [SMTPat (readable #(TStruct l) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
val readable_struct_forall_mem
(#l: struct_typ)
(p: pointer (TStruct l))
: Lemma (forall
(h: HS.mem)
. (
forall (f: struct_field l) .
readable h (gfield p f)
) ==>
readable h p
)
val readable_struct_fields
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(s: list string)
: GTot Type0
val readable_struct_fields_nil
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(readable_struct_fields h p [])
[SMTPat (readable_struct_fields h p [])]
val readable_struct_fields_cons
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(f: string)
(q: list string)
: Lemma
(requires (readable_struct_fields h p q /\ (List.Tot.mem f (List.Tot.map fst l.fields) ==> (let f : struct_field l = f in readable h (gfield p f)))))
(ensures (readable_struct_fields h p (f::q)))
[SMTPat (readable_struct_fields h p (f::q))]
val readable_struct_fields_readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (readable_struct_fields h p (normalize_term (List.Tot.map fst l.fields))))
(ensures (readable h p))
val readable_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length /\ readable h p))
(ensures (UInt32.v i < UInt32.v length /\ readable h (gcell p i)))
[SMTPat (readable h (gcell p i))]
val readable_array
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
: Lemma
(requires (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v length ==>
readable h (gcell p i)
))
(ensures (readable h p))
// [SMTPat (readable #(TArray length value) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
(* TODO: improve on the following interface *)
val readable_gufield
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (readable h (gufield p fd) <==> (readable h p /\ union_get_key (gread h p) == fd)))
[SMTPat (readable h (gufield p fd))]
(** The active field of a union *)
val is_active_union_field
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot Type0
val is_active_union_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h p))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h (gufield p fd)))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_eq
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd1 fd2: struct_field l)
: Lemma
(requires (is_active_union_field h p fd1 /\ is_active_union_field h p fd2))
(ensures (fd1 == fd2))
[SMTPat (is_active_union_field h p fd1); SMTPat (is_active_union_field h p fd2)]
val is_active_union_field_get_key
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (union_get_key (gread h p) == fd))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd /\ readable h (gufield p fd)))
(ensures (readable h p))
[SMTPat (is_active_union_field h p fd); SMTPat (readable h (gufield p fd))]
val is_active_union_field_includes_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
(#t': typ)
(p' : pointer t')
: Lemma
(requires (includes (gufield p fd) p' /\ readable h p'))
(ensures (is_active_union_field h p fd))
(* Equality predicate on struct contents, without quantifiers *)
let equal_values #a h (b:pointer a) h' (b':pointer a) : GTot Type0 =
(live h b ==> live h' b') /\ (
readable h b ==> (
readable h' b' /\
gread h b == gread h' b'
))
(*** Semantics of buffers *)
(** Operations on buffers *)
val gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: GTot (buffer t)
val singleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gsingleton_buffer_of_pointer p))
val gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: GTot (buffer t)
val buffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gbuffer_of_array_pointer p))
val buffer_length
(#t: typ)
(b: buffer t)
: GTot UInt32.t
val buffer_length_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_length (gsingleton_buffer_of_pointer p) == 1ul))
[SMTPat (buffer_length (gsingleton_buffer_of_pointer p))]
val buffer_length_gbuffer_of_array_pointer
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_length (gbuffer_of_array_pointer p) == len))
[SMTPat (buffer_length (gbuffer_of_array_pointer p))]
val buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_live_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_live h (gsingleton_buffer_of_pointer p) <==> live h p ))
[SMTPat (buffer_live h (gsingleton_buffer_of_pointer p))]
val buffer_live_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_live h (gbuffer_of_array_pointer p) <==> live h p))
[SMTPat (buffer_live h (gbuffer_of_array_pointer p))]
val buffer_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: GTot Type0
val buffer_live_not_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: Lemma
((buffer_live h b /\ buffer_unused_in b h) ==> False)
val buffer_unused_in_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_unused_in (gsingleton_buffer_of_pointer p) h <==> unused_in p h ))
[SMTPat (buffer_unused_in (gsingleton_buffer_of_pointer p) h)]
val buffer_unused_in_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_unused_in (gbuffer_of_array_pointer p) h <==> unused_in p h))
[SMTPat (buffer_unused_in (gbuffer_of_array_pointer p) h)]
val frameOf_buffer
(#t: typ)
(b: buffer t)
: GTot HS.rid
val frameOf_buffer_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (frameOf_buffer (gsingleton_buffer_of_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gsingleton_buffer_of_pointer p))]
val frameOf_buffer_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (frameOf_buffer (gbuffer_of_array_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gbuffer_of_array_pointer p))]
val live_region_frameOf_buffer
(#value: typ)
(h: HS.mem)
(p: buffer value)
: Lemma
(requires (buffer_live h p))
(ensures (HS.live_region h (frameOf_buffer p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf_buffer p))];
[SMTPat (buffer_live h p)]
]]
val buffer_as_addr
(#t: typ)
(b: buffer t)
: GTot (x: nat { x > 0 } )
val buffer_as_addr_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (buffer_as_addr (gsingleton_buffer_of_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gsingleton_buffer_of_pointer p))]
val buffer_as_addr_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (buffer_as_addr (gbuffer_of_array_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gbuffer_of_array_pointer p))]
val gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Ghost (buffer t)
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val frameOf_buffer_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
frameOf_buffer (gsub_buffer b i len) == frameOf_buffer b
))
[SMTPat (frameOf_buffer (gsub_buffer b i len))]
val buffer_as_addr_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_as_addr (gsub_buffer b i len) == buffer_as_addr b
))
[SMTPat (buffer_as_addr (gsub_buffer b i len))]
val sub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i len ))
val offset_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i (UInt32.sub (buffer_length b) i)))
val buffer_length_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_length (gsub_buffer b i len) == len))
[SMTPat (buffer_length (gsub_buffer b i len))]
val buffer_live_gsub_buffer_equiv
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_live h (gsub_buffer b i len) <==> buffer_live h b)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_live_gsub_buffer_intro
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (buffer_live h b /\ UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h (gsub_buffer b i len)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_unused_in_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_unused_in (gsub_buffer b i len) h <==> buffer_unused_in b h)))
[SMTPat (buffer_unused_in (gsub_buffer b i len) h)]
val gsub_buffer_gsub_buffer
(#a: typ)
(b: buffer a)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1
))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\
gsub_buffer (gsub_buffer b i1 len1) i2 len2 == gsub_buffer b FStar.UInt32.(i1 +^ i2) len2
))
[SMTPat (gsub_buffer (gsub_buffer b i1 len1) i2 len2)]
val gsub_buffer_zero_buffer_length
(#a: typ)
(b: buffer a)
: Lemma
(ensures (gsub_buffer b 0ul (buffer_length b) == b))
[SMTPat (gsub_buffer b 0ul (buffer_length b))]
val buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot (Seq.seq (type_of_typ t))
val buffer_length_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires True)
(ensures (Seq.length (buffer_as_seq h b) == UInt32.v (buffer_length b)))
[SMTPat (Seq.length (buffer_as_seq h b))]
val buffer_as_seq_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_as_seq h (gsingleton_buffer_of_pointer p) == Seq.create 1 (gread h p)))
[SMTPat (buffer_as_seq h (gsingleton_buffer_of_pointer p))]
val buffer_as_seq_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray length t))
: Lemma
(requires True)
(ensures (buffer_as_seq h (gbuffer_of_array_pointer p) == gread h p))
[SMTPat (buffer_as_seq h (gbuffer_of_array_pointer p))]
val buffer_as_seq_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_as_seq h (gsub_buffer b i len) == Seq.slice (buffer_as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)))
[SMTPat (buffer_as_seq h (gsub_buffer b i len))]
val gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Ghost (pointer t)
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val pointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (pointer t)
(requires (fun h -> UInt32.v i < UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h p h' -> UInt32.v i < UInt32.v (buffer_length b) /\ h' == h /\ p == gpointer_of_buffer_cell b i))
val gpointer_of_buffer_cell_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
= gpointer_of_buffer_cell_gsub_buffer b i1 len i2
val live_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(h: HS.mem)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
(live h (gpointer_of_buffer_cell b i) <==> buffer_live h b)
))
[SMTPat (live h (gpointer_of_buffer_cell b i))]
val gpointer_of_buffer_cell_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < 1))
(ensures (UInt32.v i < 1 /\ gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i == p))
[SMTPat (gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i)]
val gpointer_of_buffer_cell_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(p: pointer (TArray length t))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i == gcell p i))
[SMTPat (gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i)]
val frameOf_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ frameOf (gpointer_of_buffer_cell b i) == frameOf_buffer b))
[SMTPat (frameOf (gpointer_of_buffer_cell b i))]
val as_addr_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ as_addr (gpointer_of_buffer_cell b i) == buffer_as_addr b))
[SMTPat (as_addr (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
[SMTPat (gread h (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell'
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
val index_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: nat)
: Lemma
(requires (i < UInt32.v (buffer_length b)))
(ensures (i < UInt32.v (buffer_length b) /\ Seq.index (buffer_as_seq h b) i == gread h (gpointer_of_buffer_cell b (UInt32.uint_to_t i))))
[SMTPat (Seq.index (buffer_as_seq h b) i)]
val gsingleton_buffer_of_pointer_gcell
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v len
))
(ensures (
UInt32.v i < UInt32.v len /\
gsingleton_buffer_of_pointer (gcell p i) == gsub_buffer (gbuffer_of_array_pointer p) i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gcell p i))]
val gsingleton_buffer_of_pointer_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i) == gsub_buffer b i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i))]
(* The readable permission lifted to buffers. *)
val buffer_readable
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_readable_buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (buffer_readable h b))
(ensures (buffer_live h b))
[SMTPatOr [
[SMTPat (buffer_readable h b)];
[SMTPat (buffer_live h b)];
]]
val buffer_readable_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(ensures (buffer_readable h (gsingleton_buffer_of_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gsingleton_buffer_of_pointer p))]
val buffer_readable_gbuffer_of_array_pointer
(#len: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_readable h (gbuffer_of_array_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gbuffer_of_array_pointer p))]
val buffer_readable_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h (gsub_buffer b i len)))
[SMTPat (buffer_readable h (gsub_buffer b i len))]
val readable_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ readable h (gpointer_of_buffer_cell b i)))
[SMTPat (readable h (gpointer_of_buffer_cell b i))]
val buffer_readable_intro
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(ensures (buffer_readable h b))
// [SMTPat (buffer_readable h b)] // TODO: dubious pattern, may trigger unreplayable hints
val buffer_readable_elim
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_readable h b
))
(ensures (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(*** The modifies clause *)
val loc : Type u#0
val loc_none: loc
val loc_union
(s1 s2: loc)
: GTot loc
(** The following is useful to make Z3 cut matching loops with
modifies_trans and modifies_refl *)
val loc_union_idem
(s: loc)
: Lemma
(loc_union s s == s)
[SMTPat (loc_union s s)]
val loc_pointer
(#t: typ)
(p: pointer t)
: GTot loc
val loc_buffer
(#t: typ)
(b: buffer t)
: GTot loc
val loc_addresses
(r: HS.rid)
(n: Set.set nat)
: GTot loc
val loc_regions
(r: Set.set HS.rid)
: GTot loc
(* Inclusion of memory locations *)
val loc_includes
(s1 s2: loc)
: GTot Type0
val loc_includes_refl
(s: loc)
: Lemma
(loc_includes s s)
[SMTPat (loc_includes s s)]
val loc_includes_trans
(s1 s2 s3: loc)
: Lemma
(requires (loc_includes s1 s2 /\ loc_includes s2 s3))
(ensures (loc_includes s1 s3))
val loc_includes_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_includes s s1 /\ loc_includes s s2))
(ensures (loc_includes s (loc_union s1 s2)))
[SMTPat (loc_includes s (loc_union s1 s2))]
val loc_includes_union_l
(s1 s2 s: loc)
: Lemma
(requires (loc_includes s1 s \/ loc_includes s2 s))
(ensures (loc_includes (loc_union s1 s2) s))
[SMTPat (loc_includes (loc_union s1 s2) s)]
val loc_includes_none
(s: loc)
: Lemma
(loc_includes s loc_none)
[SMTPat (loc_includes s loc_none)]
val loc_includes_pointer_pointer
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Lemma
(requires (includes p1 p2))
(ensures (loc_includes (loc_pointer p1) (loc_pointer p2)))
[SMTPat (loc_includes (loc_pointer p1) (loc_pointer p2))]
val loc_includes_gsingleton_buffer_of_pointer
(l: loc)
(#t: typ)
(p: pointer t)
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p)))]
val loc_includes_gbuffer_of_array_pointer
(l: loc)
(#len: array_length_t)
(#t: typ)
(p: pointer (TArray len t))
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gbuffer_of_array_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gbuffer_of_array_pointer p)))]
val loc_includes_gpointer_of_array_cell
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_includes l (loc_pointer (gpointer_of_buffer_cell b i)))]
val loc_includes_gsub_buffer_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer (gsub_buffer b i len))))
[SMTPat (loc_includes l (loc_buffer (gsub_buffer b i len)))]
val loc_includes_gsub_buffer_l
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1))
(ensures (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))))
[SMTPat (loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_includes_addresses_pointer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: pointer t)
: Lemma
(requires (frameOf p == r /\ Set.mem (as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_pointer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_pointer p))]
val loc_includes_addresses_buffer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: buffer t)
: Lemma
(requires (frameOf_buffer p == r /\ Set.mem (buffer_as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_buffer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_buffer p))]
val loc_includes_region_pointer
(#t: typ)
(s: Set.set HS.rid)
(p: pointer t)
: Lemma
(requires (Set.mem (frameOf p) s))
(ensures (loc_includes (loc_regions s) (loc_pointer p)))
[SMTPat (loc_includes (loc_regions s) (loc_pointer p))]
val loc_includes_region_buffer
(#t: typ)
(s: Set.set HS.rid)
(b: buffer t)
: Lemma
(requires (Set.mem (frameOf_buffer b) s))
(ensures (loc_includes (loc_regions s) (loc_buffer b)))
[SMTPat (loc_includes (loc_regions s) (loc_buffer b))]
val loc_includes_region_addresses
(s: Set.set HS.rid)
(r: HS.rid)
(a: Set.set nat)
: Lemma
(requires (Set.mem r s))
(ensures (loc_includes (loc_regions s) (loc_addresses r a)))
[SMTPat (loc_includes (loc_regions s) (loc_addresses r a))]
val loc_includes_region_region
(s1 s2: Set.set HS.rid)
: Lemma
(requires (Set.subset s2 s1))
(ensures (loc_includes (loc_regions s1) (loc_regions s2)))
[SMTPat (loc_includes (loc_regions s1) (loc_regions s2))]
val loc_includes_region_union_l
(l: loc)
(s1 s2: Set.set HS.rid)
: Lemma
(requires (loc_includes l (loc_regions (Set.intersect s2 (Set.complement s1)))))
(ensures (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2)))
[SMTPat (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2))]
(* Disjointness of two memory locations *)
val loc_disjoint
(s1 s2: loc)
: GTot Type0
val loc_disjoint_sym
(s1 s2: loc)
: Lemma
(requires (loc_disjoint s1 s2))
(ensures (loc_disjoint s2 s1))
[SMTPat (loc_disjoint s1 s2)]
val loc_disjoint_none_r
(s: loc)
: Lemma
(ensures (loc_disjoint s loc_none))
[SMTPat (loc_disjoint s loc_none)]
val loc_disjoint_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_disjoint s s1 /\ loc_disjoint s s2))
(ensures (loc_disjoint s (loc_union s1 s2)))
[SMTPat (loc_disjoint s (loc_union s1 s2))]
val loc_disjoint_root
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
val loc_disjoint_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd1 fd2: struct_field l)
: Lemma
(requires (fd1 <> fd2))
(ensures (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2))))
[SMTPat (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2)))]
val loc_disjoint_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
UInt32.v i1 <> UInt32.v i2
))
(ensures (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2))
))
[SMTPat (loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2)))]
val loc_disjoint_includes
(p1 p2 p1' p2' : loc)
: Lemma
(requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2))
(ensures (loc_disjoint p1' p2'))
(* TODO: The following is now wrong, should be replaced with readable
val live_not_equal_disjoint
(#t: typ)
(h: HS.mem)
(p1 p2: pointer t)
: Lemma
(requires (live h p1 /\ live h p2 /\ equal p1 p2 == false))
(ensures (disjoint p1 p2))
*)
val live_unused_in_disjoint_strong
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
val live_unused_in_disjoint
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
[SMTPatOr [
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (live h p1)];
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (unused_in p2 h)];
[SMTPat (live h p1); SMTPat (unused_in p2 h)];
]]
val pointer_live_reference_unused_in_disjoint
(#value1: typ)
(#value2: Type0)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ HS.unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_addresses (HS.frameOf p2) (Set.singleton (HS.as_addr p2)))))
[SMTPat (live h p1); SMTPat (HS.unused_in p2 h)]
val reference_live_pointer_unused_in_disjoint
(#value1: Type0)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_addresses (HS.frameOf p1) (Set.singleton (HS.as_addr p1))) (loc_pointer p2)))
[SMTPat (HS.contains h p1); SMTPat (unused_in p2 h)]
val loc_disjoint_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\ (
UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/
UInt32.v i2 + UInt32.v len2 <= UInt32.v i1
)))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\
loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))
))
[SMTPat (loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_disjoint_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\ (
UInt32.v i1 <> UInt32.v i2
)))
(ensures (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2))
))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2)))]
let loc_disjoint_gpointer_of_buffer_cell_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val loc_disjoint_gpointer_of_buffer_cell_r (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))] | [] | FStar.Pointer.Base.loc_disjoint_gpointer_of_buffer_cell_r | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.loc -> b: FStar.Pointer.Base.buffer t -> i: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v i < FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.Pointer.Base.loc_disjoint l (FStar.Pointer.Base.loc_buffer b))
(ensures
FStar.UInt32.v i < FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.Pointer.Base.loc_disjoint l
(FStar.Pointer.Base.loc_pointer (FStar.Pointer.Base.gpointer_of_buffer_cell b i)))
[
SMTPat (FStar.Pointer.Base.loc_disjoint l
(FStar.Pointer.Base.loc_pointer (FStar.Pointer.Base.gpointer_of_buffer_cell b i)))
] | {
"end_col": 86,
"end_line": 1905,
"start_col": 2,
"start_line": 1905
} |
FStar.Pervasives.Lemma | val loc_disjoint_gpointer_of_buffer_cell_l (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)] | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let loc_disjoint_gpointer_of_buffer_cell_l
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)]
= loc_disjoint_includes (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) l | val loc_disjoint_gpointer_of_buffer_cell_l (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)]
let loc_disjoint_gpointer_of_buffer_cell_l (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)] = | false | null | true | loc_disjoint_includes (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i)) l | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma"
] | [
"FStar.Pointer.Base.loc",
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.loc_disjoint_includes",
"FStar.Pointer.Base.loc_buffer",
"FStar.Pointer.Base.loc_pointer",
"FStar.Pointer.Base.gpointer_of_buffer_cell",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length",
"FStar.Pointer.Base.loc_disjoint",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l)
val union_get_key (#l: union_typ) (v: union l) : GTot (struct_field l)
val union_get_value
(#l: union_typ)
(v: union l)
(fd: struct_field l)
: Pure (type_of_struct_field l fd)
(requires (union_get_key v == fd))
(ensures (fun _ -> True))
val union_create
(l: union_typ)
(fd: struct_field l)
(v: type_of_struct_field l fd)
: Tot (union l)
(*** Semantics of pointers *)
(** Operations on pointers *)
val equal
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Ghost bool
(requires True)
(ensures (fun b -> b == true <==> t1 == t2 /\ p1 == p2 ))
val as_addr (#t: typ) (p: pointer t): GTot (x: nat { x > 0 } )
val unused_in
(#value: typ)
(p: pointer value)
(h: HS.mem)
: GTot Type0
val live
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot Type0
val nlive
(#value: typ)
(h: HS.mem)
(p: npointer value)
: GTot Type0
val live_nlive
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(nlive h p <==> live h p)
[SMTPat (nlive h p)]
val g_is_null_nlive
(#t: typ)
(h: HS.mem)
(p: npointer t)
: Lemma
(requires (g_is_null p))
(ensures (nlive h p))
[SMTPat (g_is_null p); SMTPat (nlive h p)]
val live_not_unused_in
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(ensures (live h p /\ p `unused_in` h ==> False))
[SMTPat (live h p); SMTPat (p `unused_in` h)]
val gread
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot (type_of_typ value)
val frameOf
(#value: typ)
(p: pointer value)
: GTot HS.rid
val live_region_frameOf
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(requires (live h p))
(ensures (HS.live_region h (frameOf p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf p))];
[SMTPat (live h p)]
]]
val disjoint_roots_intro_pointer_vs_pointer
(#value1 value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 =!= as_addr p2))
val disjoint_roots_intro_pointer_vs_reference
(#value1: typ)
(#value2: Type)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ p2 `HS.unused_in` h))
(ensures (frameOf p1 <> HS.frameOf p2 \/ as_addr p1 =!= HS.as_addr p2))
val disjoint_roots_intro_reference_vs_pointer
(#value1: Type)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ p2 `unused_in` h))
(ensures (HS.frameOf p1 <> frameOf p2 \/ HS.as_addr p1 =!= as_addr p2))
val is_mm
(#value: typ)
(p: pointer value)
: GTot bool
(* // TODO: recover with addresses?
val recall
(#value: Type)
(p: pointer value {is_eternal_region (frameOf p) && not (is_mm p)})
: HST.Stack unit
(requires (fun m -> True))
(ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 p))
*)
val gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gfield p fd) == as_addr p))
[SMTPat (as_addr (gfield p fd))]
val unused_in_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gfield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gfield p fd) h)]
val live_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gfield p fd) <==> live h p))
[SMTPat (live h (gfield p fd))]
val gread_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (gread h (gfield p fd) == struct_sel (gread h p) fd))
[SMTPatOr [[SMTPat (gread h (gfield p fd))]; [SMTPat (struct_sel (gread h p) fd)]]]
val frameOf_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gfield p fd) == frameOf p))
[SMTPat (frameOf (gfield p fd))]
val is_mm_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gfield p fd) <==> is_mm p))
[SMTPat (is_mm (gfield p fd))]
val gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gufield p fd) == as_addr p))
[SMTPat (as_addr (gufield p fd))]
val unused_in_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gufield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gufield p fd) h)]
val live_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gufield p fd) <==> live h p))
[SMTPat (live h (gufield p fd))]
val gread_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (union_get_key (gread h p) == fd))
(ensures (
union_get_key (gread h p) == fd /\
gread h (gufield p fd) == union_get_value (gread h p) fd
))
[SMTPatOr [[SMTPat (gread h (gufield p fd))]; [SMTPat (union_get_value (gread h p) fd)]]]
val frameOf_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gufield p fd) == frameOf p))
[SMTPat (frameOf (gufield p fd))]
val is_mm_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gufield p fd) <==> is_mm p))
[SMTPat (is_mm (gufield p fd))]
val gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Ghost (pointer value)
(requires (UInt32.v i < UInt32.v length))
(ensures (fun _ -> True))
val as_addr_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ as_addr (gcell p i) == as_addr p))
[SMTPat (as_addr (gcell p i))]
val unused_in_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (unused_in (gcell p i) h <==> unused_in p h)))
[SMTPat (unused_in (gcell p i) h)]
val live_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (live h (gcell p i) <==> live h p)))
[SMTPat (live h (gcell p i))]
val gread_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gread h (gcell p i) == Seq.index (gread h p) (UInt32.v i)))
[SMTPat (gread h (gcell p i))]
val frameOf_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ frameOf (gcell p i) == frameOf p))
[SMTPat (frameOf (gcell p i))]
val is_mm_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ is_mm (gcell p i) == is_mm p))
[SMTPat (is_mm (gcell p i))]
val includes
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: GTot bool
val includes_refl
(#t: typ)
(p: pointer t)
: Lemma
(ensures (includes p p))
[SMTPat (includes p p)]
val includes_trans
(#t1 #t2 #t3: typ)
(p1: pointer t1)
(p2: pointer t2)
(p3: pointer t3)
: Lemma
(requires (includes p1 p2 /\ includes p2 p3))
(ensures (includes p1 p3))
val includes_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gfield p fd)))
val includes_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gufield p fd)))
val includes_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ includes p (gcell p i)))
(** The readable permission.
We choose to implement it only abstractly, instead of explicitly
tracking the permission in the heap.
*)
val readable
(#a: typ)
(h: HS.mem)
(b: pointer a)
: GTot Type0
val readable_live
(#a: typ)
(h: HS.mem)
(b: pointer a)
: Lemma
(requires (readable h b))
(ensures (live h b))
[SMTPatOr [
[SMTPat (readable h b)];
[SMTPat (live h b)];
]]
val readable_gfield
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires (readable h p))
(ensures (readable h (gfield p fd)))
[SMTPat (readable h (gfield p fd))]
val readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (
forall (f: struct_field l) .
readable h (gfield p f)
))
(ensures (readable h p))
// [SMTPat (readable #(TStruct l) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
val readable_struct_forall_mem
(#l: struct_typ)
(p: pointer (TStruct l))
: Lemma (forall
(h: HS.mem)
. (
forall (f: struct_field l) .
readable h (gfield p f)
) ==>
readable h p
)
val readable_struct_fields
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(s: list string)
: GTot Type0
val readable_struct_fields_nil
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(readable_struct_fields h p [])
[SMTPat (readable_struct_fields h p [])]
val readable_struct_fields_cons
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(f: string)
(q: list string)
: Lemma
(requires (readable_struct_fields h p q /\ (List.Tot.mem f (List.Tot.map fst l.fields) ==> (let f : struct_field l = f in readable h (gfield p f)))))
(ensures (readable_struct_fields h p (f::q)))
[SMTPat (readable_struct_fields h p (f::q))]
val readable_struct_fields_readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (readable_struct_fields h p (normalize_term (List.Tot.map fst l.fields))))
(ensures (readable h p))
val readable_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length /\ readable h p))
(ensures (UInt32.v i < UInt32.v length /\ readable h (gcell p i)))
[SMTPat (readable h (gcell p i))]
val readable_array
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
: Lemma
(requires (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v length ==>
readable h (gcell p i)
))
(ensures (readable h p))
// [SMTPat (readable #(TArray length value) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
(* TODO: improve on the following interface *)
val readable_gufield
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (readable h (gufield p fd) <==> (readable h p /\ union_get_key (gread h p) == fd)))
[SMTPat (readable h (gufield p fd))]
(** The active field of a union *)
val is_active_union_field
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot Type0
val is_active_union_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h p))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h (gufield p fd)))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_eq
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd1 fd2: struct_field l)
: Lemma
(requires (is_active_union_field h p fd1 /\ is_active_union_field h p fd2))
(ensures (fd1 == fd2))
[SMTPat (is_active_union_field h p fd1); SMTPat (is_active_union_field h p fd2)]
val is_active_union_field_get_key
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (union_get_key (gread h p) == fd))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd /\ readable h (gufield p fd)))
(ensures (readable h p))
[SMTPat (is_active_union_field h p fd); SMTPat (readable h (gufield p fd))]
val is_active_union_field_includes_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
(#t': typ)
(p' : pointer t')
: Lemma
(requires (includes (gufield p fd) p' /\ readable h p'))
(ensures (is_active_union_field h p fd))
(* Equality predicate on struct contents, without quantifiers *)
let equal_values #a h (b:pointer a) h' (b':pointer a) : GTot Type0 =
(live h b ==> live h' b') /\ (
readable h b ==> (
readable h' b' /\
gread h b == gread h' b'
))
(*** Semantics of buffers *)
(** Operations on buffers *)
val gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: GTot (buffer t)
val singleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gsingleton_buffer_of_pointer p))
val gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: GTot (buffer t)
val buffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gbuffer_of_array_pointer p))
val buffer_length
(#t: typ)
(b: buffer t)
: GTot UInt32.t
val buffer_length_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_length (gsingleton_buffer_of_pointer p) == 1ul))
[SMTPat (buffer_length (gsingleton_buffer_of_pointer p))]
val buffer_length_gbuffer_of_array_pointer
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_length (gbuffer_of_array_pointer p) == len))
[SMTPat (buffer_length (gbuffer_of_array_pointer p))]
val buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_live_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_live h (gsingleton_buffer_of_pointer p) <==> live h p ))
[SMTPat (buffer_live h (gsingleton_buffer_of_pointer p))]
val buffer_live_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_live h (gbuffer_of_array_pointer p) <==> live h p))
[SMTPat (buffer_live h (gbuffer_of_array_pointer p))]
val buffer_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: GTot Type0
val buffer_live_not_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: Lemma
((buffer_live h b /\ buffer_unused_in b h) ==> False)
val buffer_unused_in_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_unused_in (gsingleton_buffer_of_pointer p) h <==> unused_in p h ))
[SMTPat (buffer_unused_in (gsingleton_buffer_of_pointer p) h)]
val buffer_unused_in_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_unused_in (gbuffer_of_array_pointer p) h <==> unused_in p h))
[SMTPat (buffer_unused_in (gbuffer_of_array_pointer p) h)]
val frameOf_buffer
(#t: typ)
(b: buffer t)
: GTot HS.rid
val frameOf_buffer_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (frameOf_buffer (gsingleton_buffer_of_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gsingleton_buffer_of_pointer p))]
val frameOf_buffer_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (frameOf_buffer (gbuffer_of_array_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gbuffer_of_array_pointer p))]
val live_region_frameOf_buffer
(#value: typ)
(h: HS.mem)
(p: buffer value)
: Lemma
(requires (buffer_live h p))
(ensures (HS.live_region h (frameOf_buffer p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf_buffer p))];
[SMTPat (buffer_live h p)]
]]
val buffer_as_addr
(#t: typ)
(b: buffer t)
: GTot (x: nat { x > 0 } )
val buffer_as_addr_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (buffer_as_addr (gsingleton_buffer_of_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gsingleton_buffer_of_pointer p))]
val buffer_as_addr_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (buffer_as_addr (gbuffer_of_array_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gbuffer_of_array_pointer p))]
val gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Ghost (buffer t)
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val frameOf_buffer_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
frameOf_buffer (gsub_buffer b i len) == frameOf_buffer b
))
[SMTPat (frameOf_buffer (gsub_buffer b i len))]
val buffer_as_addr_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_as_addr (gsub_buffer b i len) == buffer_as_addr b
))
[SMTPat (buffer_as_addr (gsub_buffer b i len))]
val sub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i len ))
val offset_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i (UInt32.sub (buffer_length b) i)))
val buffer_length_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_length (gsub_buffer b i len) == len))
[SMTPat (buffer_length (gsub_buffer b i len))]
val buffer_live_gsub_buffer_equiv
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_live h (gsub_buffer b i len) <==> buffer_live h b)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_live_gsub_buffer_intro
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (buffer_live h b /\ UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h (gsub_buffer b i len)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_unused_in_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_unused_in (gsub_buffer b i len) h <==> buffer_unused_in b h)))
[SMTPat (buffer_unused_in (gsub_buffer b i len) h)]
val gsub_buffer_gsub_buffer
(#a: typ)
(b: buffer a)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1
))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\
gsub_buffer (gsub_buffer b i1 len1) i2 len2 == gsub_buffer b FStar.UInt32.(i1 +^ i2) len2
))
[SMTPat (gsub_buffer (gsub_buffer b i1 len1) i2 len2)]
val gsub_buffer_zero_buffer_length
(#a: typ)
(b: buffer a)
: Lemma
(ensures (gsub_buffer b 0ul (buffer_length b) == b))
[SMTPat (gsub_buffer b 0ul (buffer_length b))]
val buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot (Seq.seq (type_of_typ t))
val buffer_length_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires True)
(ensures (Seq.length (buffer_as_seq h b) == UInt32.v (buffer_length b)))
[SMTPat (Seq.length (buffer_as_seq h b))]
val buffer_as_seq_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_as_seq h (gsingleton_buffer_of_pointer p) == Seq.create 1 (gread h p)))
[SMTPat (buffer_as_seq h (gsingleton_buffer_of_pointer p))]
val buffer_as_seq_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray length t))
: Lemma
(requires True)
(ensures (buffer_as_seq h (gbuffer_of_array_pointer p) == gread h p))
[SMTPat (buffer_as_seq h (gbuffer_of_array_pointer p))]
val buffer_as_seq_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_as_seq h (gsub_buffer b i len) == Seq.slice (buffer_as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)))
[SMTPat (buffer_as_seq h (gsub_buffer b i len))]
val gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Ghost (pointer t)
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val pointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (pointer t)
(requires (fun h -> UInt32.v i < UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h p h' -> UInt32.v i < UInt32.v (buffer_length b) /\ h' == h /\ p == gpointer_of_buffer_cell b i))
val gpointer_of_buffer_cell_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
= gpointer_of_buffer_cell_gsub_buffer b i1 len i2
val live_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(h: HS.mem)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
(live h (gpointer_of_buffer_cell b i) <==> buffer_live h b)
))
[SMTPat (live h (gpointer_of_buffer_cell b i))]
val gpointer_of_buffer_cell_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < 1))
(ensures (UInt32.v i < 1 /\ gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i == p))
[SMTPat (gpointer_of_buffer_cell (gsingleton_buffer_of_pointer p) i)]
val gpointer_of_buffer_cell_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(p: pointer (TArray length t))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i == gcell p i))
[SMTPat (gpointer_of_buffer_cell (gbuffer_of_array_pointer p) i)]
val frameOf_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ frameOf (gpointer_of_buffer_cell b i) == frameOf_buffer b))
[SMTPat (frameOf (gpointer_of_buffer_cell b i))]
val as_addr_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ as_addr (gpointer_of_buffer_cell b i) == buffer_as_addr b))
[SMTPat (as_addr (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
[SMTPat (gread h (gpointer_of_buffer_cell b i))]
val gread_gpointer_of_buffer_cell'
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ gread h (gpointer_of_buffer_cell b i) == Seq.index (buffer_as_seq h b) (UInt32.v i)))
val index_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: nat)
: Lemma
(requires (i < UInt32.v (buffer_length b)))
(ensures (i < UInt32.v (buffer_length b) /\ Seq.index (buffer_as_seq h b) i == gread h (gpointer_of_buffer_cell b (UInt32.uint_to_t i))))
[SMTPat (Seq.index (buffer_as_seq h b) i)]
val gsingleton_buffer_of_pointer_gcell
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v len
))
(ensures (
UInt32.v i < UInt32.v len /\
gsingleton_buffer_of_pointer (gcell p i) == gsub_buffer (gbuffer_of_array_pointer p) i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gcell p i))]
val gsingleton_buffer_of_pointer_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (
UInt32.v i < UInt32.v (buffer_length b)
))
(ensures (
UInt32.v i < UInt32.v (buffer_length b) /\
gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i) == gsub_buffer b i 1ul
))
[SMTPat (gsingleton_buffer_of_pointer (gpointer_of_buffer_cell b i))]
(* The readable permission lifted to buffers. *)
val buffer_readable
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_readable_buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (buffer_readable h b))
(ensures (buffer_live h b))
[SMTPatOr [
[SMTPat (buffer_readable h b)];
[SMTPat (buffer_live h b)];
]]
val buffer_readable_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(ensures (buffer_readable h (gsingleton_buffer_of_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gsingleton_buffer_of_pointer p))]
val buffer_readable_gbuffer_of_array_pointer
(#len: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_readable h (gbuffer_of_array_pointer p) <==> readable h p))
[SMTPat (buffer_readable h (gbuffer_of_array_pointer p))]
val buffer_readable_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_readable h (gsub_buffer b i len)))
[SMTPat (buffer_readable h (gsub_buffer b i len))]
val readable_gpointer_of_buffer_cell
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ buffer_readable h b))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ readable h (gpointer_of_buffer_cell b i)))
[SMTPat (readable h (gpointer_of_buffer_cell b i))]
val buffer_readable_intro
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(ensures (buffer_readable h b))
// [SMTPat (buffer_readable h b)] // TODO: dubious pattern, may trigger unreplayable hints
val buffer_readable_elim
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires (
buffer_readable h b
))
(ensures (
buffer_live h b /\ (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v (buffer_length b) ==>
readable h (gpointer_of_buffer_cell b i)
)))
(*** The modifies clause *)
val loc : Type u#0
val loc_none: loc
val loc_union
(s1 s2: loc)
: GTot loc
(** The following is useful to make Z3 cut matching loops with
modifies_trans and modifies_refl *)
val loc_union_idem
(s: loc)
: Lemma
(loc_union s s == s)
[SMTPat (loc_union s s)]
val loc_pointer
(#t: typ)
(p: pointer t)
: GTot loc
val loc_buffer
(#t: typ)
(b: buffer t)
: GTot loc
val loc_addresses
(r: HS.rid)
(n: Set.set nat)
: GTot loc
val loc_regions
(r: Set.set HS.rid)
: GTot loc
(* Inclusion of memory locations *)
val loc_includes
(s1 s2: loc)
: GTot Type0
val loc_includes_refl
(s: loc)
: Lemma
(loc_includes s s)
[SMTPat (loc_includes s s)]
val loc_includes_trans
(s1 s2 s3: loc)
: Lemma
(requires (loc_includes s1 s2 /\ loc_includes s2 s3))
(ensures (loc_includes s1 s3))
val loc_includes_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_includes s s1 /\ loc_includes s s2))
(ensures (loc_includes s (loc_union s1 s2)))
[SMTPat (loc_includes s (loc_union s1 s2))]
val loc_includes_union_l
(s1 s2 s: loc)
: Lemma
(requires (loc_includes s1 s \/ loc_includes s2 s))
(ensures (loc_includes (loc_union s1 s2) s))
[SMTPat (loc_includes (loc_union s1 s2) s)]
val loc_includes_none
(s: loc)
: Lemma
(loc_includes s loc_none)
[SMTPat (loc_includes s loc_none)]
val loc_includes_pointer_pointer
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Lemma
(requires (includes p1 p2))
(ensures (loc_includes (loc_pointer p1) (loc_pointer p2)))
[SMTPat (loc_includes (loc_pointer p1) (loc_pointer p2))]
val loc_includes_gsingleton_buffer_of_pointer
(l: loc)
(#t: typ)
(p: pointer t)
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gsingleton_buffer_of_pointer p)))]
val loc_includes_gbuffer_of_array_pointer
(l: loc)
(#len: array_length_t)
(#t: typ)
(p: pointer (TArray len t))
: Lemma
(requires (loc_includes l (loc_pointer p)))
(ensures (loc_includes l (loc_buffer (gbuffer_of_array_pointer p))))
[SMTPat (loc_includes l (loc_buffer (gbuffer_of_array_pointer p)))]
val loc_includes_gpointer_of_array_cell
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_includes l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_includes l (loc_pointer (gpointer_of_buffer_cell b i)))]
val loc_includes_gsub_buffer_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ loc_includes l (loc_buffer (gsub_buffer b i len))))
[SMTPat (loc_includes l (loc_buffer (gsub_buffer b i len)))]
val loc_includes_gsub_buffer_l
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1))
(ensures (UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))))
[SMTPat (loc_includes (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_includes_addresses_pointer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: pointer t)
: Lemma
(requires (frameOf p == r /\ Set.mem (as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_pointer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_pointer p))]
val loc_includes_addresses_buffer
(#t: typ)
(r: HS.rid)
(s: Set.set nat)
(p: buffer t)
: Lemma
(requires (frameOf_buffer p == r /\ Set.mem (buffer_as_addr p) s))
(ensures (loc_includes (loc_addresses r s) (loc_buffer p)))
[SMTPat (loc_includes (loc_addresses r s) (loc_buffer p))]
val loc_includes_region_pointer
(#t: typ)
(s: Set.set HS.rid)
(p: pointer t)
: Lemma
(requires (Set.mem (frameOf p) s))
(ensures (loc_includes (loc_regions s) (loc_pointer p)))
[SMTPat (loc_includes (loc_regions s) (loc_pointer p))]
val loc_includes_region_buffer
(#t: typ)
(s: Set.set HS.rid)
(b: buffer t)
: Lemma
(requires (Set.mem (frameOf_buffer b) s))
(ensures (loc_includes (loc_regions s) (loc_buffer b)))
[SMTPat (loc_includes (loc_regions s) (loc_buffer b))]
val loc_includes_region_addresses
(s: Set.set HS.rid)
(r: HS.rid)
(a: Set.set nat)
: Lemma
(requires (Set.mem r s))
(ensures (loc_includes (loc_regions s) (loc_addresses r a)))
[SMTPat (loc_includes (loc_regions s) (loc_addresses r a))]
val loc_includes_region_region
(s1 s2: Set.set HS.rid)
: Lemma
(requires (Set.subset s2 s1))
(ensures (loc_includes (loc_regions s1) (loc_regions s2)))
[SMTPat (loc_includes (loc_regions s1) (loc_regions s2))]
val loc_includes_region_union_l
(l: loc)
(s1 s2: Set.set HS.rid)
: Lemma
(requires (loc_includes l (loc_regions (Set.intersect s2 (Set.complement s1)))))
(ensures (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2)))
[SMTPat (loc_includes (loc_union (loc_regions s1) l) (loc_regions s2))]
(* Disjointness of two memory locations *)
val loc_disjoint
(s1 s2: loc)
: GTot Type0
val loc_disjoint_sym
(s1 s2: loc)
: Lemma
(requires (loc_disjoint s1 s2))
(ensures (loc_disjoint s2 s1))
[SMTPat (loc_disjoint s1 s2)]
val loc_disjoint_none_r
(s: loc)
: Lemma
(ensures (loc_disjoint s loc_none))
[SMTPat (loc_disjoint s loc_none)]
val loc_disjoint_union_r
(s s1 s2: loc)
: Lemma
(requires (loc_disjoint s s1 /\ loc_disjoint s s2))
(ensures (loc_disjoint s (loc_union s1 s2)))
[SMTPat (loc_disjoint s (loc_union s1 s2))]
val loc_disjoint_root
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
val loc_disjoint_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd1 fd2: struct_field l)
: Lemma
(requires (fd1 <> fd2))
(ensures (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2))))
[SMTPat (loc_disjoint (loc_pointer (gfield p fd1)) (loc_pointer (gfield p fd2)))]
val loc_disjoint_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
UInt32.v i1 <> UInt32.v i2
))
(ensures (
UInt32.v i1 < UInt32.v length /\
UInt32.v i2 < UInt32.v length /\
loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2))
))
[SMTPat (loc_disjoint (loc_pointer (gcell p i1)) (loc_pointer (gcell p i2)))]
val loc_disjoint_includes
(p1 p2 p1' p2' : loc)
: Lemma
(requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2))
(ensures (loc_disjoint p1' p2'))
(* TODO: The following is now wrong, should be replaced with readable
val live_not_equal_disjoint
(#t: typ)
(h: HS.mem)
(p1 p2: pointer t)
: Lemma
(requires (live h p1 /\ live h p2 /\ equal p1 p2 == false))
(ensures (disjoint p1 p2))
*)
val live_unused_in_disjoint_strong
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 <> as_addr p2))
val live_unused_in_disjoint
(#value1: typ)
(#value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_pointer p2)))
[SMTPatOr [
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (live h p1)];
[SMTPat (loc_disjoint (loc_pointer p1) (loc_pointer p2)); SMTPat (unused_in p2 h)];
[SMTPat (live h p1); SMTPat (unused_in p2 h)];
]]
val pointer_live_reference_unused_in_disjoint
(#value1: typ)
(#value2: Type0)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ HS.unused_in p2 h))
(ensures (loc_disjoint (loc_pointer p1) (loc_addresses (HS.frameOf p2) (Set.singleton (HS.as_addr p2)))))
[SMTPat (live h p1); SMTPat (HS.unused_in p2 h)]
val reference_live_pointer_unused_in_disjoint
(#value1: Type0)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ unused_in p2 h))
(ensures (loc_disjoint (loc_addresses (HS.frameOf p1) (Set.singleton (HS.as_addr p1))) (loc_pointer p2)))
[SMTPat (HS.contains h p1); SMTPat (unused_in p2 h)]
val loc_disjoint_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\ (
UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/
UInt32.v i2 + UInt32.v len2 <= UInt32.v i1
)))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v (buffer_length b) /\
loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2))
))
[SMTPat (loc_disjoint (loc_buffer (gsub_buffer b i1 len1)) (loc_buffer (gsub_buffer b i2 len2)))]
val loc_disjoint_gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\ (
UInt32.v i1 <> UInt32.v i2
)))
(ensures (
UInt32.v i1 < UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2))
))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i1)) (loc_pointer (gpointer_of_buffer_cell b i2)))]
let loc_disjoint_gpointer_of_buffer_cell_r
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_buffer b)))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i))))
[SMTPat (loc_disjoint l (loc_pointer (gpointer_of_buffer_cell b i)))]
= loc_disjoint_includes l (loc_buffer b) l (loc_pointer (gpointer_of_buffer_cell b i))
let loc_disjoint_gpointer_of_buffer_cell_l
(l: loc)
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val loc_disjoint_gpointer_of_buffer_cell_l (l: loc) (#t: typ) (b: buffer t) (i: UInt32.t)
: Lemma (requires (UInt32.v i < UInt32.v (buffer_length b) /\ loc_disjoint (loc_buffer b) l))
(ensures
(UInt32.v i < UInt32.v (buffer_length b) /\
loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l))
[SMTPat (loc_disjoint (loc_pointer (gpointer_of_buffer_cell b i)) l)] | [] | FStar.Pointer.Base.loc_disjoint_gpointer_of_buffer_cell_l | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | l: FStar.Pointer.Base.loc -> b: FStar.Pointer.Base.buffer t -> i: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v i < FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.Pointer.Base.loc_disjoint (FStar.Pointer.Base.loc_buffer b) l)
(ensures
FStar.UInt32.v i < FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.Pointer.Base.loc_disjoint (FStar.Pointer.Base.loc_pointer (FStar.Pointer.Base.gpointer_of_buffer_cell
b
i))
l)
[
SMTPat (FStar.Pointer.Base.loc_disjoint (FStar.Pointer.Base.loc_pointer (FStar.Pointer.Base.gpointer_of_buffer_cell
b
i))
l)
] | {
"end_col": 86,
"end_line": 1916,
"start_col": 2,
"start_line": 1916
} |
FStar.Pervasives.Lemma | val gpointer_of_buffer_cell_gsub_buffer' (#t: typ) (b: buffer t) (i1 len i2: UInt32.t)
: Lemma
(requires
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len))
(ensures
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 ==
gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)] | [
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST // for := , !",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
= gpointer_of_buffer_cell_gsub_buffer b i1 len i2 | val gpointer_of_buffer_cell_gsub_buffer' (#t: typ) (b: buffer t) (i1 len i2: UInt32.t)
: Lemma
(requires
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len))
(ensures
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 ==
gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)]
let gpointer_of_buffer_cell_gsub_buffer' (#t: typ) (b: buffer t) (i1 len i2: UInt32.t)
: Lemma
(requires
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len))
(ensures
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 ==
gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)] = | false | null | true | gpointer_of_buffer_cell_gsub_buffer b i1 len i2 | {
"checked_file": "FStar.Pointer.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Base.fsti"
} | [
"lemma"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Pointer.Base.gpointer_of_buffer_cell_gsub_buffer",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"FStar.Pointer.Base.pointer",
"FStar.Pointer.Base.gpointer_of_buffer_cell",
"FStar.Pointer.Base.gsub_buffer",
"FStar.UInt32.op_Plus_Hat",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Base
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
open FStar.HyperStack.ST // for := , !
(*** Definitions *)
(** Type codes *)
type base_typ =
| TUInt
| TUInt8
| TUInt16
| TUInt32
| TUInt64
| TInt
| TInt8
| TInt16
| TInt32
| TInt64
| TChar
| TBool
| TUnit
// C11, Sect. 6.2.5 al. 20: arrays must be nonempty
type array_length_t = (length: UInt32.t { UInt32.v length > 0 } )
type typ =
| TBase:
(b: base_typ) ->
typ
| TStruct:
(l: struct_typ) ->
typ
| TUnion:
(l: union_typ) ->
typ
| TArray:
(length: array_length_t ) ->
(t: typ) ->
typ
| TPointer:
(t: typ) ->
typ
| TNPointer:
(t: typ) ->
typ
| TBuffer:
(t: typ) ->
typ
and struct_typ' = (l: list (string * typ) {
Cons? l /\ // C11, 6.2.5 al. 20: structs and unions must have at least one field
List.Tot.noRepeats (List.Tot.map fst l)
})
and struct_typ = {
name: string;
fields: struct_typ' ;
}
and union_typ = struct_typ
(** `struct_field l` is the type of fields of `TStruct l`
(i.e. a refinement of `string`).
*)
let struct_field'
(l: struct_typ')
: Tot eqtype
= (s: string { List.Tot.mem s (List.Tot.map fst l) } )
let struct_field
(l: struct_typ)
: Tot eqtype
= struct_field' l.fields
(** `union_field l` is the type of fields of `TUnion l`
(i.e. a refinement of `string`).
*)
let union_field = struct_field
(** `typ_of_struct_field l f` is the type of data associated with field `f` in
`TStruct l` (i.e. a refinement of `typ`).
*)
let typ_of_struct_field'
(l: struct_typ')
(f: struct_field' l)
: Tot (t: typ {t << l})
= List.Tot.assoc_mem f l;
let y = Some?.v (List.Tot.assoc f l) in
List.Tot.assoc_precedes f l y;
y
let typ_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field' l.fields f
(** `typ_of_union_field l f` is the type of data associated with field `f` in
`TUnion l` (i.e. a refinement of `typ`).
*)
let typ_of_union_field
(l: union_typ)
(f: union_field l)
: Tot (t: typ {t << l})
= typ_of_struct_field l f
let rec typ_depth
(t: typ)
: GTot nat
= match t with
| TArray _ t -> 1 + typ_depth t
| TUnion l
| TStruct l -> 1 + struct_typ_depth l.fields
| _ -> 0
and struct_typ_depth
(l: list (string * typ))
: GTot nat
= match l with
| [] -> 0
| h :: l ->
let (_, t) = h in // matching like this prevents needing two units of ifuel
let n1 = typ_depth t in
let n2 = struct_typ_depth l in
if n1 > n2 then n1 else n2
let rec typ_depth_typ_of_struct_field
(l: struct_typ')
(f: struct_field' l)
: Lemma
(ensures (typ_depth (typ_of_struct_field' l f) <= struct_typ_depth l))
(decreases l)
= let ((f', _) :: l') = l in
if f = f'
then ()
else begin
let f: string = f in
assert (List.Tot.mem f (List.Tot.map fst l'));
List.Tot.assoc_mem f l';
typ_depth_typ_of_struct_field l' f
end
(** Pointers to data of type t.
This defines two main types:
- `npointer (t: typ)`, a pointer that may be "NULL";
- `pointer (t: typ)`, a pointer that cannot be "NULL"
(defined as a refinement of `npointer`).
`nullptr #t` (of type `npointer t`) represents the "NULL" value.
*)
val npointer (t: typ) : Tot Type0
(** The null pointer *)
val nullptr (#t: typ): Tot (npointer t)
val g_is_null (#t: typ) (p: npointer t) : GTot bool
val g_is_null_intro
(t: typ)
: Lemma
(g_is_null (nullptr #t) == true)
[SMTPat (g_is_null (nullptr #t))]
// concrete, for subtyping
let pointer (t: typ) : Tot Type0 = (p: npointer t { g_is_null p == false } )
(** Buffers *)
val buffer (t: typ): Tot Type0
(** Interpretation of type codes.
Defines functions mapping from type codes (`typ`) to their interpretation as
FStar types. For example, `type_of_typ (TBase TUInt8)` is `FStar.UInt8.t`.
*)
(** Interpretation of base types. *)
let type_of_base_typ
(t: base_typ)
: Tot Type0
= match t with
| TUInt -> nat
| TUInt8 -> FStar.UInt8.t
| TUInt16 -> FStar.UInt16.t
| TUInt32 -> FStar.UInt32.t
| TUInt64 -> FStar.UInt64.t
| TInt -> int
| TInt8 -> FStar.Int8.t
| TInt16 -> FStar.Int16.t
| TInt32 -> FStar.Int32.t
| TInt64 -> FStar.Int64.t
| TChar -> FStar.Char.char
| TBool -> bool
| TUnit -> unit
(** Interpretation of arrays of elements of (interpreted) type `t`. *)
type array (length: array_length_t) (t: Type) = (s: Seq.seq t {Seq.length s == UInt32.v length})
let type_of_struct_field''
(l: struct_typ')
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field' l)
: Tot Type0 =
List.Tot.assoc_mem f l;
let y = typ_of_struct_field' l f in
List.Tot.assoc_precedes f l y;
type_of_typ y
[@@ unifier_hint_injective]
let type_of_struct_field'
(l: struct_typ)
(type_of_typ: (
(t: typ { t << l } ) ->
Tot Type0
))
(f: struct_field l)
: Tot Type0
= type_of_struct_field'' l.fields type_of_typ f
val struct (l: struct_typ) : Tot Type0
val union (l: union_typ) : Tot Type0
(* Interprets a type code (`typ`) as a FStar type (`Type0`). *)
let rec type_of_typ
(t: typ)
: Tot Type0
= match t with
| TBase b -> type_of_base_typ b
| TStruct l ->
struct l
| TUnion l ->
union l
| TArray length t ->
array length (type_of_typ t)
| TPointer t ->
pointer t
| TNPointer t ->
npointer t
| TBuffer t ->
buffer t
let type_of_typ_array
(len: array_length_t)
(t: typ)
: Lemma
(type_of_typ (TArray len t) == array len (type_of_typ t))
[SMTPat (type_of_typ (TArray len t))]
= ()
let type_of_struct_field
(l: struct_typ)
: Tot (struct_field l -> Tot Type0)
= type_of_struct_field' l (fun (x:typ{x << l}) -> type_of_typ x)
let type_of_typ_struct
(l: struct_typ)
: Lemma
(type_of_typ (TStruct l) == struct l)
[SMTPat (type_of_typ (TStruct l))]
= assert_norm (type_of_typ (TStruct l) == struct l)
let type_of_typ_type_of_struct_field
(l: struct_typ)
(f: struct_field l)
: Lemma
(type_of_typ (typ_of_struct_field l f) == type_of_struct_field l f)
[SMTPat (type_of_typ (typ_of_struct_field l f))]
= ()
val struct_sel (#l: struct_typ) (s: struct l) (f: struct_field l) : Tot (type_of_struct_field l f)
let dfst_struct_field
(s: struct_typ)
(p: (x: struct_field s & type_of_struct_field s x))
: Tot string
=
let (| f, _ |) = p in
f
let struct_literal (s: struct_typ) : Tot Type0 = list (x: struct_field s & type_of_struct_field s x)
let struct_literal_wf (s: struct_typ) (l: struct_literal s) : Tot bool =
List.Tot.sortWith FStar.String.compare (List.Tot.map fst s.fields) =
List.Tot.sortWith FStar.String.compare
(List.Tot.map (dfst_struct_field s) l)
let fun_of_list
(s: struct_typ)
(l: struct_literal s)
(f: struct_field s)
: Pure (type_of_struct_field s f)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
=
let f' : string = f in
let phi (p: (x: struct_field s & type_of_struct_field s x)) : Tot bool =
dfst_struct_field s p = f'
in
match List.Tot.find phi l with
| Some p -> let (| _, v |) = p in v
| _ ->
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map fst s.fields);
List.Tot.sortWith_permutation FStar.String.compare (List.Tot.map (dfst_struct_field s) l);
List.Tot.mem_memP f' (List.Tot.map fst s.fields);
List.Tot.mem_count (List.Tot.map fst s.fields) f';
List.Tot.mem_count (List.Tot.map (dfst_struct_field s) l) f';
List.Tot.mem_memP f' (List.Tot.map (dfst_struct_field s) l);
List.Tot.memP_map_elim (dfst_struct_field s) f' l;
Classical.forall_intro (Classical.move_requires (List.Tot.find_none phi l));
false_elim ()
val struct_create_fun (l: struct_typ) (f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd))) : Tot (struct l)
let struct_create
(s: struct_typ)
(l: struct_literal s)
: Pure (struct s)
(requires (normalize_term (struct_literal_wf s l) == true))
(ensures (fun _ -> True))
= struct_create_fun s (fun_of_list s l)
val struct_sel_struct_create_fun
(l: struct_typ)
(f: ((fd: struct_field l) -> Tot (type_of_struct_field l fd)))
(fd: struct_field l)
: Lemma
(struct_sel (struct_create_fun l f) fd == f fd)
[SMTPat (struct_sel (struct_create_fun l f) fd)]
let type_of_typ_union
(l: union_typ)
: Lemma
(type_of_typ (TUnion l) == union l)
[SMTPat (type_of_typ (TUnion l))]
= assert_norm (type_of_typ (TUnion l) == union l)
val union_get_key (#l: union_typ) (v: union l) : GTot (struct_field l)
val union_get_value
(#l: union_typ)
(v: union l)
(fd: struct_field l)
: Pure (type_of_struct_field l fd)
(requires (union_get_key v == fd))
(ensures (fun _ -> True))
val union_create
(l: union_typ)
(fd: struct_field l)
(v: type_of_struct_field l fd)
: Tot (union l)
(*** Semantics of pointers *)
(** Operations on pointers *)
val equal
(#t1 #t2: typ)
(p1: pointer t1)
(p2: pointer t2)
: Ghost bool
(requires True)
(ensures (fun b -> b == true <==> t1 == t2 /\ p1 == p2 ))
val as_addr (#t: typ) (p: pointer t): GTot (x: nat { x > 0 } )
val unused_in
(#value: typ)
(p: pointer value)
(h: HS.mem)
: GTot Type0
val live
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot Type0
val nlive
(#value: typ)
(h: HS.mem)
(p: npointer value)
: GTot Type0
val live_nlive
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(nlive h p <==> live h p)
[SMTPat (nlive h p)]
val g_is_null_nlive
(#t: typ)
(h: HS.mem)
(p: npointer t)
: Lemma
(requires (g_is_null p))
(ensures (nlive h p))
[SMTPat (g_is_null p); SMTPat (nlive h p)]
val live_not_unused_in
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(ensures (live h p /\ p `unused_in` h ==> False))
[SMTPat (live h p); SMTPat (p `unused_in` h)]
val gread
(#value: typ)
(h: HS.mem)
(p: pointer value)
: GTot (type_of_typ value)
val frameOf
(#value: typ)
(p: pointer value)
: GTot HS.rid
val live_region_frameOf
(#value: typ)
(h: HS.mem)
(p: pointer value)
: Lemma
(requires (live h p))
(ensures (HS.live_region h (frameOf p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf p))];
[SMTPat (live h p)]
]]
val disjoint_roots_intro_pointer_vs_pointer
(#value1 value2: typ)
(h: HS.mem)
(p1: pointer value1)
(p2: pointer value2)
: Lemma
(requires (live h p1 /\ unused_in p2 h))
(ensures (frameOf p1 <> frameOf p2 \/ as_addr p1 =!= as_addr p2))
val disjoint_roots_intro_pointer_vs_reference
(#value1: typ)
(#value2: Type)
(h: HS.mem)
(p1: pointer value1)
(p2: HS.reference value2)
: Lemma
(requires (live h p1 /\ p2 `HS.unused_in` h))
(ensures (frameOf p1 <> HS.frameOf p2 \/ as_addr p1 =!= HS.as_addr p2))
val disjoint_roots_intro_reference_vs_pointer
(#value1: Type)
(#value2: typ)
(h: HS.mem)
(p1: HS.reference value1)
(p2: pointer value2)
: Lemma
(requires (HS.contains h p1 /\ p2 `unused_in` h))
(ensures (HS.frameOf p1 <> frameOf p2 \/ HS.as_addr p1 =!= as_addr p2))
val is_mm
(#value: typ)
(p: pointer value)
: GTot bool
(* // TODO: recover with addresses?
val recall
(#value: Type)
(p: pointer value {is_eternal_region (frameOf p) && not (is_mm p)})
: HST.Stack unit
(requires (fun m -> True))
(ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 p))
*)
val gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gfield p fd) == as_addr p))
[SMTPat (as_addr (gfield p fd))]
val unused_in_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gfield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gfield p fd) h)]
val live_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gfield p fd) <==> live h p))
[SMTPat (live h (gfield p fd))]
val gread_gfield
(h: HS.mem)
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (gread h (gfield p fd) == struct_sel (gread h p) fd))
[SMTPatOr [[SMTPat (gread h (gfield p fd))]; [SMTPat (struct_sel (gread h p) fd)]]]
val frameOf_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gfield p fd) == frameOf p))
[SMTPat (frameOf (gfield p fd))]
val is_mm_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gfield p fd) <==> is_mm p))
[SMTPat (is_mm (gfield p fd))]
val gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot (pointer (typ_of_struct_field l fd))
val as_addr_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (as_addr (gufield p fd) == as_addr p))
[SMTPat (as_addr (gufield p fd))]
val unused_in_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
(h: HS.mem)
: Lemma
(requires True)
(ensures (unused_in (gufield p fd) h <==> unused_in p h))
[SMTPat (unused_in (gufield p fd) h)]
val live_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (live h (gufield p fd) <==> live h p))
[SMTPat (live h (gufield p fd))]
val gread_gufield
(h: HS.mem)
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (union_get_key (gread h p) == fd))
(ensures (
union_get_key (gread h p) == fd /\
gread h (gufield p fd) == union_get_value (gread h p) fd
))
[SMTPatOr [[SMTPat (gread h (gufield p fd))]; [SMTPat (union_get_value (gread h p) fd)]]]
val frameOf_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (frameOf (gufield p fd) == frameOf p))
[SMTPat (frameOf (gufield p fd))]
val is_mm_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (is_mm (gufield p fd) <==> is_mm p))
[SMTPat (is_mm (gufield p fd))]
val gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Ghost (pointer value)
(requires (UInt32.v i < UInt32.v length))
(ensures (fun _ -> True))
val as_addr_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ as_addr (gcell p i) == as_addr p))
[SMTPat (as_addr (gcell p i))]
val unused_in_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (unused_in (gcell p i) h <==> unused_in p h)))
[SMTPat (unused_in (gcell p i) h)]
val live_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ (live h (gcell p i) <==> live h p)))
[SMTPat (live h (gcell p i))]
val gread_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ gread h (gcell p i) == Seq.index (gread h p) (UInt32.v i)))
[SMTPat (gread h (gcell p i))]
val frameOf_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ frameOf (gcell p i) == frameOf p))
[SMTPat (frameOf (gcell p i))]
val is_mm_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ is_mm (gcell p i) == is_mm p))
[SMTPat (is_mm (gcell p i))]
val includes
(#value1: typ)
(#value2: typ)
(p1: pointer value1)
(p2: pointer value2)
: GTot bool
val includes_refl
(#t: typ)
(p: pointer t)
: Lemma
(ensures (includes p p))
[SMTPat (includes p p)]
val includes_trans
(#t1 #t2 #t3: typ)
(p1: pointer t1)
(p2: pointer t2)
(p3: pointer t3)
: Lemma
(requires (includes p1 p2 /\ includes p2 p3))
(ensures (includes p1 p3))
val includes_gfield
(#l: struct_typ)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gfield p fd)))
val includes_gufield
(#l: union_typ)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (includes p (gufield p fd)))
val includes_gcell
(#length: array_length_t)
(#value: typ)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length))
(ensures (UInt32.v i < UInt32.v length /\ includes p (gcell p i)))
(** The readable permission.
We choose to implement it only abstractly, instead of explicitly
tracking the permission in the heap.
*)
val readable
(#a: typ)
(h: HS.mem)
(b: pointer a)
: GTot Type0
val readable_live
(#a: typ)
(h: HS.mem)
(b: pointer a)
: Lemma
(requires (readable h b))
(ensures (live h b))
[SMTPatOr [
[SMTPat (readable h b)];
[SMTPat (live h b)];
]]
val readable_gfield
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(fd: struct_field l)
: Lemma
(requires (readable h p))
(ensures (readable h (gfield p fd)))
[SMTPat (readable h (gfield p fd))]
val readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (
forall (f: struct_field l) .
readable h (gfield p f)
))
(ensures (readable h p))
// [SMTPat (readable #(TStruct l) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
val readable_struct_forall_mem
(#l: struct_typ)
(p: pointer (TStruct l))
: Lemma (forall
(h: HS.mem)
. (
forall (f: struct_field l) .
readable h (gfield p f)
) ==>
readable h p
)
val readable_struct_fields
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(s: list string)
: GTot Type0
val readable_struct_fields_nil
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(readable_struct_fields h p [])
[SMTPat (readable_struct_fields h p [])]
val readable_struct_fields_cons
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
(f: string)
(q: list string)
: Lemma
(requires (readable_struct_fields h p q /\ (List.Tot.mem f (List.Tot.map fst l.fields) ==> (let f : struct_field l = f in readable h (gfield p f)))))
(ensures (readable_struct_fields h p (f::q)))
[SMTPat (readable_struct_fields h p (f::q))]
val readable_struct_fields_readable_struct
(#l: struct_typ)
(h: HS.mem)
(p: pointer (TStruct l))
: Lemma
(requires (readable_struct_fields h p (normalize_term (List.Tot.map fst l.fields))))
(ensures (readable h p))
val readable_gcell
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
(i: UInt32.t)
: Lemma
(requires (UInt32.v i < UInt32.v length /\ readable h p))
(ensures (UInt32.v i < UInt32.v length /\ readable h (gcell p i)))
[SMTPat (readable h (gcell p i))]
val readable_array
(#length: array_length_t)
(#value: typ)
(h: HS.mem)
(p: pointer (TArray length value))
: Lemma
(requires (
forall (i: UInt32.t) .
UInt32.v i < UInt32.v length ==>
readable h (gcell p i)
))
(ensures (readable h p))
// [SMTPat (readable #(TArray length value) h p)] // TODO: dubious pattern, will probably trigger unreplayable hints
(* TODO: improve on the following interface *)
val readable_gufield
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires True)
(ensures (readable h (gufield p fd) <==> (readable h p /\ union_get_key (gread h p) == fd)))
[SMTPat (readable h (gufield p fd))]
(** The active field of a union *)
val is_active_union_field
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: GTot Type0
val is_active_union_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h p))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_live
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (live h (gufield p fd)))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_eq
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd1 fd2: struct_field l)
: Lemma
(requires (is_active_union_field h p fd1 /\ is_active_union_field h p fd2))
(ensures (fd1 == fd2))
[SMTPat (is_active_union_field h p fd1); SMTPat (is_active_union_field h p fd2)]
val is_active_union_field_get_key
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd))
(ensures (union_get_key (gread h p) == fd))
[SMTPat (is_active_union_field h p fd)]
val is_active_union_field_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
: Lemma
(requires (is_active_union_field h p fd /\ readable h (gufield p fd)))
(ensures (readable h p))
[SMTPat (is_active_union_field h p fd); SMTPat (readable h (gufield p fd))]
val is_active_union_field_includes_readable
(#l: union_typ)
(h: HS.mem)
(p: pointer (TUnion l))
(fd: struct_field l)
(#t': typ)
(p' : pointer t')
: Lemma
(requires (includes (gufield p fd) p' /\ readable h p'))
(ensures (is_active_union_field h p fd))
(* Equality predicate on struct contents, without quantifiers *)
let equal_values #a h (b:pointer a) h' (b':pointer a) : GTot Type0 =
(live h b ==> live h' b') /\ (
readable h b ==> (
readable h' b' /\
gread h b == gread h' b'
))
(*** Semantics of buffers *)
(** Operations on buffers *)
val gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: GTot (buffer t)
val singleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gsingleton_buffer_of_pointer p))
val gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: GTot (buffer t)
val buffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: HST.Stack (buffer t)
(requires (fun h -> live h p))
(ensures (fun h b h' -> h' == h /\ b == gbuffer_of_array_pointer p))
val buffer_length
(#t: typ)
(b: buffer t)
: GTot UInt32.t
val buffer_length_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_length (gsingleton_buffer_of_pointer p) == 1ul))
[SMTPat (buffer_length (gsingleton_buffer_of_pointer p))]
val buffer_length_gbuffer_of_array_pointer
(#t: typ)
(#len: array_length_t)
(p: pointer (TArray len t))
: Lemma
(requires True)
(ensures (buffer_length (gbuffer_of_array_pointer p) == len))
[SMTPat (buffer_length (gbuffer_of_array_pointer p))]
val buffer_live
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot Type0
val buffer_live_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_live h (gsingleton_buffer_of_pointer p) <==> live h p ))
[SMTPat (buffer_live h (gsingleton_buffer_of_pointer p))]
val buffer_live_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_live h (gbuffer_of_array_pointer p) <==> live h p))
[SMTPat (buffer_live h (gbuffer_of_array_pointer p))]
val buffer_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: GTot Type0
val buffer_live_not_unused_in
(#t: typ)
(b: buffer t)
(h: HS.mem)
: Lemma
((buffer_live h b /\ buffer_unused_in b h) ==> False)
val buffer_unused_in_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
(h: HS.mem)
: Lemma
(ensures (buffer_unused_in (gsingleton_buffer_of_pointer p) h <==> unused_in p h ))
[SMTPat (buffer_unused_in (gsingleton_buffer_of_pointer p) h)]
val buffer_unused_in_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
(h: HS.mem)
: Lemma
(requires True)
(ensures (buffer_unused_in (gbuffer_of_array_pointer p) h <==> unused_in p h))
[SMTPat (buffer_unused_in (gbuffer_of_array_pointer p) h)]
val frameOf_buffer
(#t: typ)
(b: buffer t)
: GTot HS.rid
val frameOf_buffer_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (frameOf_buffer (gsingleton_buffer_of_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gsingleton_buffer_of_pointer p))]
val frameOf_buffer_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (frameOf_buffer (gbuffer_of_array_pointer p) == frameOf p))
[SMTPat (frameOf_buffer (gbuffer_of_array_pointer p))]
val live_region_frameOf_buffer
(#value: typ)
(h: HS.mem)
(p: buffer value)
: Lemma
(requires (buffer_live h p))
(ensures (HS.live_region h (frameOf_buffer p)))
[SMTPatOr [
[SMTPat (HS.live_region h (frameOf_buffer p))];
[SMTPat (buffer_live h p)]
]]
val buffer_as_addr
(#t: typ)
(b: buffer t)
: GTot (x: nat { x > 0 } )
val buffer_as_addr_gsingleton_buffer_of_pointer
(#t: typ)
(p: pointer t)
: Lemma
(ensures (buffer_as_addr (gsingleton_buffer_of_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gsingleton_buffer_of_pointer p))]
val buffer_as_addr_gbuffer_of_array_pointer
(#t: typ)
(#length: array_length_t)
(p: pointer (TArray length t))
: Lemma
(ensures (buffer_as_addr (gbuffer_of_array_pointer p) == as_addr p))
[SMTPat (buffer_as_addr (gbuffer_of_array_pointer p))]
val gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Ghost (buffer t)
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val frameOf_buffer_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
frameOf_buffer (gsub_buffer b i len) == frameOf_buffer b
))
[SMTPat (frameOf_buffer (gsub_buffer b i len))]
val buffer_as_addr_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (
UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_as_addr (gsub_buffer b i len) == buffer_as_addr b
))
[SMTPat (buffer_as_addr (gsub_buffer b i len))]
val sub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i len ))
val offset_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (buffer t)
(requires (fun h -> UInt32.v i <= UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h b' h' -> UInt32.v i <= UInt32.v (buffer_length b) /\ h' == h /\ b' == gsub_buffer b i (UInt32.sub (buffer_length b) i)))
val buffer_length_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_length (gsub_buffer b i len) == len))
[SMTPat (buffer_length (gsub_buffer b i len))]
val buffer_live_gsub_buffer_equiv
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_live h (gsub_buffer b i len) <==> buffer_live h b)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_live_gsub_buffer_intro
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (buffer_live h b /\ UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_live h (gsub_buffer b i len)))
[SMTPat (buffer_live h (gsub_buffer b i len))]
val buffer_unused_in_gsub_buffer
(#t: typ)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ (buffer_unused_in (gsub_buffer b i len) h <==> buffer_unused_in b h)))
[SMTPat (buffer_unused_in (gsub_buffer b i len) h)]
val gsub_buffer_gsub_buffer
(#a: typ)
(b: buffer a)
(i1: UInt32.t)
(len1: UInt32.t)
(i2: UInt32.t)
(len2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1
))
(ensures (
UInt32.v i1 + UInt32.v len1 <= UInt32.v (buffer_length b) /\
UInt32.v i2 + UInt32.v len2 <= UInt32.v len1 /\
gsub_buffer (gsub_buffer b i1 len1) i2 len2 == gsub_buffer b FStar.UInt32.(i1 +^ i2) len2
))
[SMTPat (gsub_buffer (gsub_buffer b i1 len1) i2 len2)]
val gsub_buffer_zero_buffer_length
(#a: typ)
(b: buffer a)
: Lemma
(ensures (gsub_buffer b 0ul (buffer_length b) == b))
[SMTPat (gsub_buffer b 0ul (buffer_length b))]
val buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: GTot (Seq.seq (type_of_typ t))
val buffer_length_buffer_as_seq
(#t: typ)
(h: HS.mem)
(b: buffer t)
: Lemma
(requires True)
(ensures (Seq.length (buffer_as_seq h b) == UInt32.v (buffer_length b)))
[SMTPat (Seq.length (buffer_as_seq h b))]
val buffer_as_seq_gsingleton_buffer_of_pointer
(#t: typ)
(h: HS.mem)
(p: pointer t)
: Lemma
(requires True)
(ensures (buffer_as_seq h (gsingleton_buffer_of_pointer p) == Seq.create 1 (gread h p)))
[SMTPat (buffer_as_seq h (gsingleton_buffer_of_pointer p))]
val buffer_as_seq_gbuffer_of_array_pointer
(#length: array_length_t)
(#t: typ)
(h: HS.mem)
(p: pointer (TArray length t))
: Lemma
(requires True)
(ensures (buffer_as_seq h (gbuffer_of_array_pointer p) == gread h p))
[SMTPat (buffer_as_seq h (gbuffer_of_array_pointer p))]
val buffer_as_seq_gsub_buffer
(#t: typ)
(h: HS.mem)
(b: buffer t)
(i: UInt32.t)
(len: UInt32.t)
: Lemma
(requires (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b)))
(ensures (UInt32.v i + UInt32.v len <= UInt32.v (buffer_length b) /\ buffer_as_seq h (gsub_buffer b i len) == Seq.slice (buffer_as_seq h b) (UInt32.v i) (UInt32.v i + UInt32.v len)))
[SMTPat (buffer_as_seq h (gsub_buffer b i len))]
val gpointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: Ghost (pointer t)
(requires (UInt32.v i < UInt32.v (buffer_length b)))
(ensures (fun _ -> True))
val pointer_of_buffer_cell
(#t: typ)
(b: buffer t)
(i: UInt32.t)
: HST.Stack (pointer t)
(requires (fun h -> UInt32.v i < UInt32.v (buffer_length b) /\ buffer_live h b))
(ensures (fun h p h' -> UInt32.v i < UInt32.v (buffer_length b) /\ h' == h /\ p == gpointer_of_buffer_cell b i))
val gpointer_of_buffer_cell_gsub_buffer
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
))
let gpointer_of_buffer_cell_gsub_buffer'
(#t: typ)
(b: buffer t)
(i1: UInt32.t)
(len: UInt32.t)
(i2: UInt32.t)
: Lemma
(requires (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len
))
(ensures (
UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\
UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 == gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)
)) | false | false | FStar.Pointer.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gpointer_of_buffer_cell_gsub_buffer' (#t: typ) (b: buffer t) (i1 len i2: UInt32.t)
: Lemma
(requires
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len))
(ensures
(UInt32.v i1 + UInt32.v len <= UInt32.v (buffer_length b) /\ UInt32.v i2 < UInt32.v len /\
gpointer_of_buffer_cell (gsub_buffer b i1 len) i2 ==
gpointer_of_buffer_cell b FStar.UInt32.(i1 +^ i2)))
[SMTPat (gpointer_of_buffer_cell (gsub_buffer b i1 len) i2)] | [] | FStar.Pointer.Base.gpointer_of_buffer_cell_gsub_buffer' | {
"file_name": "ulib/legacy/FStar.Pointer.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: FStar.Pointer.Base.buffer t -> i1: FStar.UInt32.t -> len: FStar.UInt32.t -> i2: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v i1 + FStar.UInt32.v len <=
FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.UInt32.v i2 < FStar.UInt32.v len)
(ensures
FStar.UInt32.v i1 + FStar.UInt32.v len <=
FStar.UInt32.v (FStar.Pointer.Base.buffer_length b) /\
FStar.UInt32.v i2 < FStar.UInt32.v len /\
FStar.Pointer.Base.gpointer_of_buffer_cell (FStar.Pointer.Base.gsub_buffer b i1 len) i2 ==
FStar.Pointer.Base.gpointer_of_buffer_cell b (i1 +^ i2))
[
SMTPat (FStar.Pointer.Base.gpointer_of_buffer_cell (FStar.Pointer.Base.gsub_buffer b i1 len)
i2)
] | {
"end_col": 49,
"end_line": 1329,
"start_col": 2,
"start_line": 1329
} |
FStar.HyperStack.ST.Stack | val test_string (t: test_t) (testname inputstring: string)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Printf",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_string (t:test_t) (testname:string) (inputstring:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
let input = bytes_of_hex inputstring in
test_bytes t testname input;
pop_frame() | val test_string (t: test_t) (testname inputstring: string)
: Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_string (t: test_t) (testname inputstring: string)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) = | true | null | false | push_frame ();
let input = bytes_of_hex inputstring in
test_bytes t testname input;
pop_frame () | {
"checked_file": "LowParse.TestLib.SLow.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.IO.fst.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.TestLib.SLow.fst"
} | [] | [
"LowParse.TestLib.SLow.test_t",
"Prims.string",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"LowParse.TestLib.SLow.test_bytes",
"FStar.Bytes.bytes",
"FStar.Bytes.bytes_of_hex",
"FStar.HyperStack.ST.push_frame",
"FStar.Monotonic.HyperStack.mem",
"Prims.b2t"
] | [] | module LowParse.TestLib.SLow
open FStar.HyperStack.ST
open FStar.Bytes
open FStar.HyperStack.IO
open FStar.Printf
module U32 = FStar.UInt32
#reset-options "--using_facts_from '* -LowParse'"
#reset-options "--z3cliopt smt.arith.nl=false"
(** The type of a unit test. It takes an input Bytes, parses it,
and returns a newly formatted Bytes. Or it returns None if
there is a fail to parse. *)
type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true)
assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes
(** Test one parser+formatter pair against an in-memory buffer of Bytes *)
let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
print_string (sprintf "==== Testing Bytes %s ====\n" testname);
let result = t input in
(match result with
| Some (formattedresult, offset) -> (
if U32.gt offset (len input) then (
print_string "Invalid length return - it is longer than the input buffer!"
) else (
let inputslice = FStar.Bytes.slice input 0ul offset in
if formattedresult = inputslice then
print_string "Formatted data matches original input data\n"
else (
print_string "FAIL: formatted data does not match original input data\n"
)
)
)
| _ -> print_string "Failed to parse\n"
);
print_string (sprintf "==== Finished %s ====\n" testname);
pop_frame()
(** Test one parser+formatter pair against a string of hex bytes, as Bytes *) | false | false | LowParse.TestLib.SLow.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_string (t: test_t) (testname inputstring: string)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) | [] | LowParse.TestLib.SLow.test_string | {
"file_name": "src/lowparse/LowParse.TestLib.SLow.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t: LowParse.TestLib.SLow.test_t -> testname: Prims.string -> inputstring: Prims.string
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 48,
"start_col": 2,
"start_line": 45
} |
FStar.HyperStack.ST.Stack | val test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Printf",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_file (t:test_t) (filename:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
let input = load_file filename in
test_bytes t filename input;
pop_frame() | val test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true) = | true | null | false | push_frame ();
let input = load_file filename in
test_bytes t filename input;
pop_frame () | {
"checked_file": "LowParse.TestLib.SLow.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.IO.fst.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.TestLib.SLow.fst"
} | [] | [
"LowParse.TestLib.SLow.test_t",
"Prims.string",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"LowParse.TestLib.SLow.test_bytes",
"FStar.Bytes.bytes",
"LowParse.TestLib.SLow.load_file",
"FStar.HyperStack.ST.push_frame",
"FStar.Monotonic.HyperStack.mem",
"Prims.b2t"
] | [] | module LowParse.TestLib.SLow
open FStar.HyperStack.ST
open FStar.Bytes
open FStar.HyperStack.IO
open FStar.Printf
module U32 = FStar.UInt32
#reset-options "--using_facts_from '* -LowParse'"
#reset-options "--z3cliopt smt.arith.nl=false"
(** The type of a unit test. It takes an input Bytes, parses it,
and returns a newly formatted Bytes. Or it returns None if
there is a fail to parse. *)
type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true)
assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes
(** Test one parser+formatter pair against an in-memory buffer of Bytes *)
let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
print_string (sprintf "==== Testing Bytes %s ====\n" testname);
let result = t input in
(match result with
| Some (formattedresult, offset) -> (
if U32.gt offset (len input) then (
print_string "Invalid length return - it is longer than the input buffer!"
) else (
let inputslice = FStar.Bytes.slice input 0ul offset in
if formattedresult = inputslice then
print_string "Formatted data matches original input data\n"
else (
print_string "FAIL: formatted data does not match original input data\n"
)
)
)
| _ -> print_string "Failed to parse\n"
);
print_string (sprintf "==== Finished %s ====\n" testname);
pop_frame()
(** Test one parser+formatter pair against a string of hex bytes, as Bytes *)
let test_string (t:test_t) (testname:string) (inputstring:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
let input = bytes_of_hex inputstring in
test_bytes t testname input;
pop_frame()
(** Test one parser+formatter pair against a disk file, as Bytes *) | false | false | LowParse.TestLib.SLow.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true) | [] | LowParse.TestLib.SLow.test_file | {
"file_name": "src/lowparse/LowParse.TestLib.SLow.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t: LowParse.TestLib.SLow.test_t -> filename: Prims.string -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 55,
"start_col": 2,
"start_line": 52
} |
FStar.HyperStack.ST.Stack | val test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Printf",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.TestLib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame();
print_string (sprintf "==== Testing Bytes %s ====\n" testname);
let result = t input in
(match result with
| Some (formattedresult, offset) -> (
if U32.gt offset (len input) then (
print_string "Invalid length return - it is longer than the input buffer!"
) else (
let inputslice = FStar.Bytes.slice input 0ul offset in
if formattedresult = inputslice then
print_string "Formatted data matches original input data\n"
else (
print_string "FAIL: formatted data does not match original input data\n"
)
)
)
| _ -> print_string "Failed to parse\n"
);
print_string (sprintf "==== Finished %s ====\n" testname);
pop_frame() | val test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes)
: Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) = | true | null | false | push_frame ();
print_string (sprintf "==== Testing Bytes %s ====\n" testname);
let result = t input in
(match result with
| Some (formattedresult, offset) ->
(if U32.gt offset (len input)
then (print_string "Invalid length return - it is longer than the input buffer!")
else
(let inputslice = FStar.Bytes.slice input 0ul offset in
if formattedresult = inputslice
then print_string "Formatted data matches original input data\n"
else (print_string "FAIL: formatted data does not match original input data\n")))
| _ -> print_string "Failed to parse\n");
print_string (sprintf "==== Finished %s ====\n" testname);
pop_frame () | {
"checked_file": "LowParse.TestLib.SLow.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.IO.fst.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.TestLib.SLow.fst"
} | [] | [
"LowParse.TestLib.SLow.test_t",
"Prims.string",
"FStar.Bytes.bytes",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"FStar.HyperStack.IO.print_string",
"FStar.Printf.sprintf",
"FStar.UInt32.t",
"FStar.UInt32.gt",
"FStar.Bytes.len",
"Prims.bool",
"Prims.op_Equality",
"Prims.eq2",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"FStar.Bytes.reveal",
"FStar.Seq.Base.slice",
"FStar.UInt32.v",
"FStar.UInt32.uint_to_t",
"FStar.Bytes.slice",
"FStar.UInt32.__uint_to_t",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.HyperStack.ST.push_frame",
"FStar.Monotonic.HyperStack.mem",
"Prims.b2t"
] | [] | module LowParse.TestLib.SLow
open FStar.HyperStack.ST
open FStar.Bytes
open FStar.HyperStack.IO
open FStar.Printf
module U32 = FStar.UInt32
#reset-options "--using_facts_from '* -LowParse'"
#reset-options "--z3cliopt smt.arith.nl=false"
(** The type of a unit test. It takes an input Bytes, parses it,
and returns a newly formatted Bytes. Or it returns None if
there is a fail to parse. *)
type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true)
assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes
(** Test one parser+formatter pair against an in-memory buffer of Bytes *) | false | false | LowParse.TestLib.SLow.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes)
: Stack unit (fun _ -> true) (fun _ _ _ -> true) | [] | LowParse.TestLib.SLow.test_bytes | {
"file_name": "src/lowparse/LowParse.TestLib.SLow.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t: LowParse.TestLib.SLow.test_t -> testname: Prims.string -> input: FStar.Bytes.bytes
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 41,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val parse_u64_kind:parser_kind | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u64_kind : parser_kind =
total_constant_size_parser_kind 8 | val parse_u64_kind:parser_kind
let parse_u64_kind:parser_kind = | false | null | false | total_constant_size_parser_kind 8 | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"total"
] | [
"LowParse.Spec.Base.total_constant_size_parser_kind"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
inline_for_extraction
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
val tot_parse_u8: tot_parser parse_u8_kind U8.t
let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8
val parse_u8_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U8.v v == E.be_to_n (Seq.slice b 0 1)
)))
val parse_u8_spec'
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
v == Seq.index b 0
)))
val serialize_u8 : serializer parse_u8
val serialize_u8_spec
(x: U8.t)
: Lemma
(serialize serialize_u8 x `Seq.equal` Seq.create 1 x)
let serialize_u8_spec'
(x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\
Seq.index s 0 == x)
= serialize_u8_spec x
inline_for_extraction
let parse_u16_kind : parser_kind =
total_constant_size_parser_kind 2
val parse_u16: parser parse_u16_kind U16.t
val parse_u16_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 2))
(ensures (
let pp = parse parse_u16 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U16.v v == E.be_to_n (Seq.slice b 0 2)
)))
val serialize_u16 : serializer parse_u16
inline_for_extraction
let parse_u32_kind : parser_kind =
total_constant_size_parser_kind 4
val parse_u32: parser parse_u32_kind U32.t
val parse_u32_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 4))
(ensures (
let pp = parse parse_u32 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U32.v v == E.be_to_n (Seq.slice b 0 4)
)))
val serialize_u32 : serializer parse_u32
inline_for_extraction | false | true | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u64_kind:parser_kind | [] | LowParse.Spec.Int.parse_u64_kind | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser_kind | {
"end_col": 35,
"end_line": 95,
"start_col": 2,
"start_line": 95
} |
Prims.Tot | val parse_u32_kind:parser_kind | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u32_kind : parser_kind =
total_constant_size_parser_kind 4 | val parse_u32_kind:parser_kind
let parse_u32_kind:parser_kind = | false | null | false | total_constant_size_parser_kind 4 | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"total"
] | [
"LowParse.Spec.Base.total_constant_size_parser_kind"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
inline_for_extraction
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
val tot_parse_u8: tot_parser parse_u8_kind U8.t
let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8
val parse_u8_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U8.v v == E.be_to_n (Seq.slice b 0 1)
)))
val parse_u8_spec'
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
v == Seq.index b 0
)))
val serialize_u8 : serializer parse_u8
val serialize_u8_spec
(x: U8.t)
: Lemma
(serialize serialize_u8 x `Seq.equal` Seq.create 1 x)
let serialize_u8_spec'
(x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\
Seq.index s 0 == x)
= serialize_u8_spec x
inline_for_extraction
let parse_u16_kind : parser_kind =
total_constant_size_parser_kind 2
val parse_u16: parser parse_u16_kind U16.t
val parse_u16_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 2))
(ensures (
let pp = parse parse_u16 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U16.v v == E.be_to_n (Seq.slice b 0 2)
)))
val serialize_u16 : serializer parse_u16
inline_for_extraction | false | true | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u32_kind:parser_kind | [] | LowParse.Spec.Int.parse_u32_kind | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser_kind | {
"end_col": 35,
"end_line": 76,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | val parse_u8:parser parse_u8_kind U8.t | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8 | val parse_u8:parser parse_u8_kind U8.t
let parse_u8:parser parse_u8_kind U8.t = | false | null | false | tot_parse_u8 | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"total"
] | [
"LowParse.Spec.Int.tot_parse_u8"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
inline_for_extraction
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
val tot_parse_u8: tot_parser parse_u8_kind U8.t | false | true | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u8:parser parse_u8_kind U8.t | [] | LowParse.Spec.Int.parse_u8 | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t | {
"end_col": 54,
"end_line": 16,
"start_col": 42,
"start_line": 16
} |
Prims.Tot | val parse_u16_kind:parser_kind | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u16_kind : parser_kind =
total_constant_size_parser_kind 2 | val parse_u16_kind:parser_kind
let parse_u16_kind:parser_kind = | false | null | false | total_constant_size_parser_kind 2 | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"total"
] | [
"LowParse.Spec.Base.total_constant_size_parser_kind"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
inline_for_extraction
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
val tot_parse_u8: tot_parser parse_u8_kind U8.t
let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8
val parse_u8_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U8.v v == E.be_to_n (Seq.slice b 0 1)
)))
val parse_u8_spec'
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
v == Seq.index b 0
)))
val serialize_u8 : serializer parse_u8
val serialize_u8_spec
(x: U8.t)
: Lemma
(serialize serialize_u8 x `Seq.equal` Seq.create 1 x)
let serialize_u8_spec'
(x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\
Seq.index s 0 == x)
= serialize_u8_spec x
inline_for_extraction | false | true | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u16_kind:parser_kind | [] | LowParse.Spec.Int.parse_u16_kind | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser_kind | {
"end_col": 35,
"end_line": 57,
"start_col": 2,
"start_line": 57
} |
Prims.Tot | val parse_u8_kind:parser_kind | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 | val parse_u8_kind:parser_kind
let parse_u8_kind:parser_kind = | false | null | false | total_constant_size_parser_kind 1 | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"total"
] | [
"LowParse.Spec.Base.total_constant_size_parser_kind"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64 | false | true | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u8_kind:parser_kind | [] | LowParse.Spec.Int.parse_u8_kind | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.parser_kind | {
"end_col": 67,
"end_line": 12,
"start_col": 34,
"start_line": 12
} |
FStar.Pervasives.Lemma | val serialize_u8_spec' (x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\ Seq.index s 0 == x) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_u8_spec'
(x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\
Seq.index s 0 == x)
= serialize_u8_spec x | val serialize_u8_spec' (x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\ Seq.index s 0 == x)
let serialize_u8_spec' (x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\ Seq.index s 0 == x) = | false | null | true | serialize_u8_spec x | {
"checked_file": "LowParse.Spec.Int.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Int.fsti"
} | [
"lemma"
] | [
"FStar.UInt8.t",
"LowParse.Spec.Int.serialize_u8_spec",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Seq.Base.index",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.Int.parse_u8_kind",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.Int.serialize_u8",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Int
include LowParse.Spec.Base
module Seq = FStar.Seq
module E = FStar.Endianness
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
inline_for_extraction
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
val tot_parse_u8: tot_parser parse_u8_kind U8.t
let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8
val parse_u8_spec
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
U8.v v == E.be_to_n (Seq.slice b 0 1)
)))
val parse_u8_spec'
(b: bytes)
: Lemma
(requires (Seq.length b >= 1))
(ensures (
let pp = parse parse_u8 b in
Some? pp /\ (
let (Some (v, consumed)) = pp in
v == Seq.index b 0
)))
val serialize_u8 : serializer parse_u8
val serialize_u8_spec
(x: U8.t)
: Lemma
(serialize serialize_u8 x `Seq.equal` Seq.create 1 x)
let serialize_u8_spec'
(x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\ | false | false | LowParse.Spec.Int.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_u8_spec' (x: U8.t)
: Lemma
(let s = serialize serialize_u8 x in
Seq.length s == 1 /\ Seq.index s 0 == x) | [] | LowParse.Spec.Int.serialize_u8_spec' | {
"file_name": "src/lowparse/LowParse.Spec.Int.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt8.t
-> FStar.Pervasives.Lemma
(ensures
(let s = LowParse.Spec.Base.serialize LowParse.Spec.Int.serialize_u8 x in
FStar.Seq.Base.length s == 1 /\ FStar.Seq.Base.index s 0 == x)) | {
"end_col": 21,
"end_line": 53,
"start_col": 2,
"start_line": 53
} |
FStar.Tactics.Effect.Tac | val terms_to_string (t: list term) : T.Tac string | [
{
"abbrev": true,
"full_module": "Pulse.Typing.Metatheory",
"short_module": "Metatheory"
},
{
"abbrev": true,
"full_module": "Pulse.Typing.FV",
"short_module": "FV"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Prover",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let terms_to_string (t:list term)
: T.Tac string
= String.concat "\n" (T.map Pulse.Syntax.Printer.term_to_string t) | val terms_to_string (t: list term) : T.Tac string
let terms_to_string (t: list term) : T.Tac string = | true | null | false | String.concat "\n" (T.map Pulse.Syntax.Printer.term_to_string t) | {
"checked_file": "Pulse.Checker.Exists.fst.checked",
"dependencies": [
"Pulse.Typing.Metatheory.fsti.checked",
"Pulse.Typing.FV.fsti.checked",
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.String.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.Exists.fst"
} | [] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"FStar.String.concat",
"Prims.string",
"FStar.Tactics.Util.map",
"Pulse.Syntax.Printer.term_to_string"
] | [] | module Pulse.Checker.Exists
open Pulse.Syntax
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Checker.Pure
open Pulse.Checker.Base
open Pulse.Checker.Prover
module T = FStar.Tactics.V2
module P = Pulse.Syntax.Printer
module FV = Pulse.Typing.FV
module Metatheory = Pulse.Typing.Metatheory
let vprop_as_list_typing (#g:env) (#p:term)
(t:tot_typing g p tm_vprop)
(x:term { List.Tot.memP x (vprop_as_list p) })
: tot_typing g x tm_vprop
= assume false; t
let terms_to_string (t:list term) | false | false | Pulse.Checker.Exists.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val terms_to_string (t: list term) : T.Tac string | [] | Pulse.Checker.Exists.terms_to_string | {
"file_name": "lib/steel/pulse/Pulse.Checker.Exists.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.list Pulse.Syntax.Base.term -> FStar.Tactics.Effect.Tac Prims.string | {
"end_col": 68,
"end_line": 25,
"start_col": 4,
"start_line": 25
} |
FStar.Tactics.Effect.Tac | val check_intro_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { intro_exists_witness_singleton st })
(vprop_typing: option (tot_typing g (intro_exists_vprop st) tm_vprop))
: T.Tac (checker_result_t g pre post_hint) | [
{
"abbrev": true,
"full_module": "Pulse.Typing.Metatheory",
"short_module": "Metatheory"
},
{
"abbrev": true,
"full_module": "Pulse.Typing.FV",
"short_module": "FV"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Prover",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_intro_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { intro_exists_witness_singleton st })
(vprop_typing: option (tot_typing g (intro_exists_vprop st) tm_vprop))
: T.Tac (checker_result_t g pre post_hint) =
let g = Pulse.Typing.Env.push_context g "check_intro_exists_non_erased" st.range in
let Tm_IntroExists { p=t; witnesses=[witness] } = st.term in
let (| t, t_typing |) =
match vprop_typing with
| Some typing -> (| t, typing |)
| _ -> check_vprop g t
in
if not (Tm_ExistsSL? (t <: term).t)
then fail g (Some st.range)
(Printf.sprintf "check_intro_exists_non_erased: vprop %s is not an existential"
(P.term_to_string t));
let Tm_ExistsSL u b p = (t <: term).t in
Pulse.Typing.FV.tot_typing_freevars t_typing;
let ty_typing, _ = Metatheory.tm_exists_inversion #g #u #b.binder_ty #p t_typing (fresh g) in
let (| witness, witness_typing |) =
check_term_with_expected_type_and_effect g witness T.E_Ghost b.binder_ty in
let d = T_IntroExists g u b p witness ty_typing t_typing witness_typing in
let (| c, d |) : (c:_ & st_typing g _ c) = (| _, d |) in
prove_post_hint (try_frame_pre pre_typing (match_comp_res_with_post_hint d post_hint) res_ppname) post_hint (t <: term).range | val check_intro_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { intro_exists_witness_singleton st })
(vprop_typing: option (tot_typing g (intro_exists_vprop st) tm_vprop))
: T.Tac (checker_result_t g pre post_hint)
let check_intro_exists
(g: env)
(pre: term)
(pre_typing: tot_typing g pre tm_vprop)
(post_hint: post_hint_opt g)
(res_ppname: ppname)
(st: st_term{intro_exists_witness_singleton st})
(vprop_typing: option (tot_typing g (intro_exists_vprop st) tm_vprop))
: T.Tac (checker_result_t g pre post_hint) = | true | null | false | let g = Pulse.Typing.Env.push_context g "check_intro_exists_non_erased" st.range in
let Tm_IntroExists { p = t ; witnesses = [witness] } = st.term in
let (| t , t_typing |) =
match vprop_typing with
| Some typing -> (| t, typing |)
| _ -> check_vprop g t
in
if not (Tm_ExistsSL? (t <: term).t)
then
fail g
(Some st.range)
(Printf.sprintf "check_intro_exists_non_erased: vprop %s is not an existential"
(P.term_to_string t));
let Tm_ExistsSL u b p = (t <: term).t in
Pulse.Typing.FV.tot_typing_freevars t_typing;
let ty_typing, _ = Metatheory.tm_exists_inversion #g #u #b.binder_ty #p t_typing (fresh g) in
let (| witness , witness_typing |) =
check_term_with_expected_type_and_effect g witness T.E_Ghost b.binder_ty
in
let d = T_IntroExists g u b p witness ty_typing t_typing witness_typing in
let (| c , d |):(c: _ & st_typing g _ c) = (| _, d |) in
prove_post_hint (try_frame_pre pre_typing (match_comp_res_with_post_hint d post_hint) res_ppname)
post_hint
(t <: term).range | {
"checked_file": "Pulse.Checker.Exists.fst.checked",
"dependencies": [
"Pulse.Typing.Metatheory.fsti.checked",
"Pulse.Typing.FV.fsti.checked",
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.String.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.Exists.fst"
} | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.post_hint_opt",
"Pulse.Syntax.Base.ppname",
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Checker.Exists.intro_exists_witness_singleton",
"FStar.Pervasives.Native.option",
"Pulse.Checker.Exists.intro_exists_vprop",
"Pulse.Syntax.Base.vprop",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Pulse.Typing.universe_of",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Typing.Env.push_binding",
"Pulse.Typing.Env.fresh",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Typing.typing",
"FStar.Stubs.TypeChecker.Core.E_Ghost",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Pulse.Typing.wtag",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.ctag",
"Pulse.Syntax.Base.STT_Ghost",
"Pulse.Syntax.Base.Tm_IntroExists",
"Pulse.Syntax.Base.Mkst_term'__Tm_IntroExists__payload",
"Pulse.Syntax.Base.tm_exists_sl",
"Prims.Cons",
"Prims.Nil",
"Pulse.Checker.Prover.prove_post_hint",
"Pulse.Syntax.Base.__proj__Mkterm__item__range",
"Pulse.Checker.Base.checker_result_t",
"FStar.Pervasives.Native.None",
"Pulse.Typing.post_hint_t",
"Pulse.Checker.Prover.try_frame_pre",
"FStar.Pervasives.dtuple3",
"Pulse.Syntax.Base.comp_st",
"Pulse.Checker.Base.match_comp_res_with_post_hint",
"Prims.dtuple2",
"Prims.Mkdtuple2",
"Pulse.Typing.comp_intro_exists",
"Pulse.Typing.T_IntroExists",
"Pulse.Checker.Pure.check_term_with_expected_type_and_effect",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.Metatheory.Base.tm_exists_inversion",
"Prims.unit",
"Pulse.Typing.FV.tot_typing_freevars",
"Pulse.Syntax.Base.term'",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Prims.op_Negation",
"Pulse.Syntax.Base.uu___is_Tm_ExistsSL",
"Pulse.Typing.Env.fail",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Prims.string",
"FStar.Printf.sprintf",
"Pulse.Syntax.Printer.term_to_string",
"Prims.bool",
"Pulse.Checker.Pure.check_vprop",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Prims.eq2",
"Pulse.Typing.Env.push_context"
] | [] | module Pulse.Checker.Exists
open Pulse.Syntax
open Pulse.Typing
open Pulse.Typing.Combinators
open Pulse.Checker.Pure
open Pulse.Checker.Base
open Pulse.Checker.Prover
module T = FStar.Tactics.V2
module P = Pulse.Syntax.Printer
module FV = Pulse.Typing.FV
module Metatheory = Pulse.Typing.Metatheory
let vprop_as_list_typing (#g:env) (#p:term)
(t:tot_typing g p tm_vprop)
(x:term { List.Tot.memP x (vprop_as_list p) })
: tot_typing g x tm_vprop
= assume false; t
let terms_to_string (t:list term)
: T.Tac string
= String.concat "\n" (T.map Pulse.Syntax.Printer.term_to_string t)
let check_elim_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(t:st_term{Tm_ElimExists? t.term})
: T.Tac (checker_result_t g pre post_hint) =
let g = Pulse.Typing.Env.push_context g "check_elim_exists" t.range in
let Tm_ElimExists { p = t } = t.term in
let (| t, t_typing |) : (t:term & tot_typing g t tm_vprop ) =
match t.t with
| Tm_Unknown -> (
//There should be exactly one exists_ vprop in the context and we eliminate it
let ts = vprop_as_list pre in
let exist_tms = List.Tot.Base.filter #term (function | {t = Tm_ExistsSL _ _ _ } -> true | _ -> false) ts in
match exist_tms with
| [one] ->
assume (one `List.Tot.memP` ts);
(| one, vprop_as_list_typing pre_typing one |) //shouldn't need to check this again
| _ ->
fail g (Some t.range)
(Printf.sprintf "Could not decide which exists term to eliminate: choices are\n%s"
(terms_to_string exist_tms))
)
| _ ->
let t, _ = instantiate_term_implicits g t in
check_vprop g t
in
if not (Tm_ExistsSL? t.t)
then fail g (Some t.range)
(Printf.sprintf "check_elim_exists: elim_exists argument %s not an existential"
(P.term_to_string t));
let Tm_ExistsSL u { binder_ty=ty } p = t.t in
let (| u', ty_typing |) = check_universe g ty in
if eq_univ u u'
then let x = fresh g in
let d = T_ElimExists g u ty p x ty_typing t_typing in
prove_post_hint (try_frame_pre pre_typing (match_comp_res_with_post_hint d post_hint) res_ppname) post_hint t.range
else fail g (Some t.range)
(Printf.sprintf "check_elim_exists: universe checking failed, computed %s, expected %s"
(P.univ_to_string u') (P.univ_to_string u))
let check_intro_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { intro_exists_witness_singleton st }) | false | false | Pulse.Checker.Exists.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_intro_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { intro_exists_witness_singleton st })
(vprop_typing: option (tot_typing g (intro_exists_vprop st) tm_vprop))
: T.Tac (checker_result_t g pre post_hint) | [] | Pulse.Checker.Exists.check_intro_exists | {
"file_name": "lib/steel/pulse/Pulse.Checker.Exists.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
g: Pulse.Typing.Env.env ->
pre: Pulse.Syntax.Base.term ->
pre_typing: Pulse.Typing.tot_typing g pre Pulse.Syntax.Base.tm_vprop ->
post_hint: Pulse.Typing.post_hint_opt g ->
res_ppname: Pulse.Syntax.Base.ppname ->
st: Pulse.Syntax.Base.st_term{Pulse.Checker.Exists.intro_exists_witness_singleton st} ->
vprop_typing:
FStar.Pervasives.Native.option (Pulse.Typing.tot_typing g
(Pulse.Checker.Exists.intro_exists_vprop st)
Pulse.Syntax.Base.tm_vprop)
-> FStar.Tactics.Effect.Tac (Pulse.Checker.Base.checker_result_t g pre post_hint) | {
"end_col": 127,
"end_line": 107,
"start_col": 46,
"start_line": 83
} |
FStar.HyperStack.ST.Stack | val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_felem_one b =
Hacl.Bignum25519.make_one b | val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b = | true | null | false | Hacl.Bignum25519.make_one b | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.make_one",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one) | [] | Hacl.EC.Ed25519.mk_felem_one | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 29,
"end_line": 51,
"start_col": 2,
"start_line": 51
} |
FStar.HyperStack.ST.Stack | val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_felem_zero b =
Hacl.Bignum25519.make_zero b | val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b = | true | null | false | Hacl.Bignum25519.make_zero b | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.make_zero",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero) | [] | Hacl.EC.Ed25519.mk_felem_zero | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 30,
"end_line": 37,
"start_col": 2,
"start_line": 37
} |
FStar.HyperStack.ST.Stack | val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p | val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p = | true | null | false | Hacl.Impl.Ed25519.PointConstants.make_point_inf p | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.PointConstants.make_point_inf",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity) | [] | Hacl.EC.Ed25519.mk_point_at_inf | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.Ed25519.Field51.point -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 51,
"end_line": 236,
"start_col": 2,
"start_line": 236
} |
FStar.HyperStack.ST.Stack | val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p | val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p = | true | null | false | Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.PointConstants.make_g",
"Prims.unit",
"Spec.Ed25519.Lemmas.g_is_on_curve"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g) | [] | Hacl.EC.Ed25519.mk_base_point | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.Ed25519.Field51.point -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 43,
"end_line": 251,
"start_col": 2,
"start_line": 250
} |
FStar.HyperStack.ST.Stack | val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_eq p q =
Hacl.Impl.Ed25519.PointEqual.point_equal p q | val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)))
let point_eq p q = | true | null | false | Hacl.Impl.Ed25519.PointEqual.point_equal p q | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.PointEqual.point_equal",
"Prims.bool"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p
[@@ Comment "Write `-p` in `out` (point negation).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_negate: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint out p /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == Spec.Ed25519.point_negate (F51.point_eval h0 p))
let point_negate p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_negate (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointNegate.point_negate p out
[@@ Comment "Write `p + q` in `out` (point addition).
The arguments `p`, `q` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p`, `q`, and `out` are either pairwise disjoint or equal"]
val point_add: p:F51.point -> q:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ live h q /\
eq_or_disjoint p q /\
eq_or_disjoint p out /\ eq_or_disjoint q out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out ==
SE.point_add (F51.point_eval h0 p) (F51.point_eval h0 q))
let point_add p q out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_add_lemma
(F51.refl_ext_point (as_seq h0 p))
(F51.refl_ext_point (as_seq h0 q));
Hacl.Impl.Ed25519.PointAdd.point_add out p q
[@@ Comment "Write `p + p` in `out` (point doubling).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are either pairwise disjoint or equal"]
val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p))
let point_double p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p
[@@ Comment "Write `[scalar]p` in `out` (point multiplication or scalar multiplication).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
The argument `scalar` is meant to be 32 bytes in size, i.e., uint8_t[32].
The function first loads a little-endian scalar element from `scalar` and
then computes a point multiplication.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `scalar`, `p`, and `out` are pairwise disjoint"]
val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p)))
let point_mul scalar p out =
Hacl.Impl.Ed25519.Ladder.point_mul out scalar p
[@@ Comment "Checks whether `p` is equal to `q` (point equality).
The function returns `true` if `p` is equal to `q` and `false` otherwise.
The arguments `p` and `q` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `q` are either disjoint or equal"]
val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))) | [] | Hacl.EC.Ed25519.point_eq | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.Ed25519.Field51.point -> q: Hacl.Impl.Ed25519.Field51.point
-> FStar.HyperStack.ST.Stack Prims.bool | {
"end_col": 46,
"end_line": 372,
"start_col": 2,
"start_line": 372
} |
FStar.HyperStack.ST.Stack | val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_load b out =
Hacl.Bignum25519.load_51 out b | val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out = | true | null | false | Hacl.Bignum25519.load_51 out b | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.load_51",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) | [] | Hacl.EC.Ed25519.felem_load | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 32,
"end_line": 192,
"start_col": 2,
"start_line": 192
} |
FStar.HyperStack.ST.Stack | val point_compress: p:F51.point -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint p out /\
F51.point_inv_t h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == SE.point_compress (F51.point_eval h0 p)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_compress p out =
Hacl.Impl.Ed25519.PointCompress.point_compress out p | val point_compress: p:F51.point -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint p out /\
F51.point_inv_t h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == SE.point_compress (F51.point_eval h0 p))
let point_compress p out = | true | null | false | Hacl.Impl.Ed25519.PointCompress.point_compress out p | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.point",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.PointCompress.point_compress",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p
[@@ Comment "Write `-p` in `out` (point negation).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_negate: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint out p /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == Spec.Ed25519.point_negate (F51.point_eval h0 p))
let point_negate p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_negate (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointNegate.point_negate p out
[@@ Comment "Write `p + q` in `out` (point addition).
The arguments `p`, `q` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p`, `q`, and `out` are either pairwise disjoint or equal"]
val point_add: p:F51.point -> q:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ live h q /\
eq_or_disjoint p q /\
eq_or_disjoint p out /\ eq_or_disjoint q out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out ==
SE.point_add (F51.point_eval h0 p) (F51.point_eval h0 q))
let point_add p q out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_add_lemma
(F51.refl_ext_point (as_seq h0 p))
(F51.refl_ext_point (as_seq h0 q));
Hacl.Impl.Ed25519.PointAdd.point_add out p q
[@@ Comment "Write `p + p` in `out` (point doubling).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are either pairwise disjoint or equal"]
val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p))
let point_double p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p
[@@ Comment "Write `[scalar]p` in `out` (point multiplication or scalar multiplication).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
The argument `scalar` is meant to be 32 bytes in size, i.e., uint8_t[32].
The function first loads a little-endian scalar element from `scalar` and
then computes a point multiplication.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `scalar`, `p`, and `out` are pairwise disjoint"]
val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p)))
let point_mul scalar p out =
Hacl.Impl.Ed25519.Ladder.point_mul out scalar p
[@@ Comment "Checks whether `p` is equal to `q` (point equality).
The function returns `true` if `p` is equal to `q` and `false` otherwise.
The arguments `p` and `q` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `q` are either disjoint or equal"]
val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)))
let point_eq p q =
Hacl.Impl.Ed25519.PointEqual.point_equal p q
[@@ Comment "Compress a point in extended homogeneous coordinates to its compressed form.
The argument `p` points to a point of 20 limbs in size, i.e., uint64_t[20].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
The function first converts a given point `p` from extended homogeneous to affine coordinates
and then writes [ 2^255 * (`x` % 2) + `y` ] in `out`.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_compress: p:F51.point -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint p out /\
F51.point_inv_t h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == SE.point_compress (F51.point_eval h0 p)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_compress: p:F51.point -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint p out /\
F51.point_inv_t h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == SE.point_compress (F51.point_eval h0 p)) | [] | Hacl.EC.Ed25519.point_compress | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.Ed25519.Field51.point -> out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 54,
"end_line": 395,
"start_col": 2,
"start_line": 395
} |
FStar.HyperStack.ST.Stack | val point_decompress: s:lbuffer uint8 32ul -> out:F51.point ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ disjoint s out)
(ensures fun h0 b h1 -> modifies (loc out) h0 h1 /\
(b ==> F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out)) /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_decompress s out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 s);
Hacl.Impl.Ed25519.PointDecompress.point_decompress out s | val point_decompress: s:lbuffer uint8 32ul -> out:F51.point ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ disjoint s out)
(ensures fun h0 b h1 -> modifies (loc out) h0 h1 /\
(b ==> F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out)) /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s)))))
let point_decompress s out = | true | null | false | let h0 = ST.get () in
Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 s);
Hacl.Impl.Ed25519.PointDecompress.point_decompress out s | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.PointDecompress.point_decompress",
"Prims.bool",
"Prims.unit",
"Spec.Ed25519.Lemmas.point_decompress_lemma",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p
[@@ Comment "Write `-p` in `out` (point negation).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_negate: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint out p /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == Spec.Ed25519.point_negate (F51.point_eval h0 p))
let point_negate p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_negate (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointNegate.point_negate p out
[@@ Comment "Write `p + q` in `out` (point addition).
The arguments `p`, `q` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p`, `q`, and `out` are either pairwise disjoint or equal"]
val point_add: p:F51.point -> q:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ live h q /\
eq_or_disjoint p q /\
eq_or_disjoint p out /\ eq_or_disjoint q out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out ==
SE.point_add (F51.point_eval h0 p) (F51.point_eval h0 q))
let point_add p q out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_add_lemma
(F51.refl_ext_point (as_seq h0 p))
(F51.refl_ext_point (as_seq h0 q));
Hacl.Impl.Ed25519.PointAdd.point_add out p q
[@@ Comment "Write `p + p` in `out` (point doubling).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are either pairwise disjoint or equal"]
val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p))
let point_double p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p
[@@ Comment "Write `[scalar]p` in `out` (point multiplication or scalar multiplication).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
The argument `scalar` is meant to be 32 bytes in size, i.e., uint8_t[32].
The function first loads a little-endian scalar element from `scalar` and
then computes a point multiplication.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `scalar`, `p`, and `out` are pairwise disjoint"]
val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p)))
let point_mul scalar p out =
Hacl.Impl.Ed25519.Ladder.point_mul out scalar p
[@@ Comment "Checks whether `p` is equal to `q` (point equality).
The function returns `true` if `p` is equal to `q` and `false` otherwise.
The arguments `p` and `q` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `q` are either disjoint or equal"]
val point_eq: p:F51.point -> q:F51.point ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ eq_or_disjoint p q /\
F51.point_inv_t h p /\ F51.point_inv_t h q)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> SE.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q)))
let point_eq p q =
Hacl.Impl.Ed25519.PointEqual.point_equal p q
[@@ Comment "Compress a point in extended homogeneous coordinates to its compressed form.
The argument `p` points to a point of 20 limbs in size, i.e., uint64_t[20].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
The function first converts a given point `p` from extended homogeneous to affine coordinates
and then writes [ 2^255 * (`x` % 2) + `y` ] in `out`.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_compress: p:F51.point -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint p out /\
F51.point_inv_t h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == SE.point_compress (F51.point_eval h0 p))
let point_compress p out =
Hacl.Impl.Ed25519.PointCompress.point_compress out p
[@@ Comment "Decompress a point in extended homogeneous coordinates from its compressed form.
The function returns `true` for successful decompression of a compressed point
and `false` otherwise.
The argument `s` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a point of 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `s` and `out` are disjoint"]
val point_decompress: s:lbuffer uint8 32ul -> out:F51.point ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ disjoint s out)
(ensures fun h0 b h1 -> modifies (loc out) h0 h1 /\
(b ==> F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out)) /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_decompress: s:lbuffer uint8 32ul -> out:F51.point ->
Stack bool
(requires fun h ->
live h out /\ live h s /\ disjoint s out)
(ensures fun h0 b h1 -> modifies (loc out) h0 h1 /\
(b ==> F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out)) /\
(b <==> Some? (SE.point_decompress (as_seq h0 s))) /\
(b ==> (F51.point_eval h1 out == Some?.v (SE.point_decompress (as_seq h0 s))))) | [] | Hacl.EC.Ed25519.point_decompress | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> out: Hacl.Impl.Ed25519.Field51.point
-> FStar.HyperStack.ST.Stack Prims.bool | {
"end_col": 58,
"end_line": 421,
"start_col": 28,
"start_line": 418
} |
FStar.HyperStack.ST.Stack | val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out | val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out = | true | null | false | Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.reduce_513",
"Prims.unit",
"Hacl.Impl.Curve25519.Field51.fsub"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) | [] | Hacl.EC.Ed25519.felem_sub | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Impl.Ed25519.Field51.felem ->
b: Hacl.Impl.Ed25519.Field51.felem ->
out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 33,
"end_line": 101,
"start_col": 2,
"start_line": 100
} |
FStar.HyperStack.ST.Stack | val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out | val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out = | true | null | false | Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.reduce_513",
"Prims.unit",
"Hacl.Bignum25519.inverse"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) | [] | Hacl.EC.Ed25519.felem_inv | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Impl.Ed25519.Field51.felem -> out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 33,
"end_line": 171,
"start_col": 2,
"start_line": 170
} |
FStar.HyperStack.ST.Stack | val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out | val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out = | true | null | false | Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Hacl.Bignum25519.reduce_513",
"Prims.unit",
"Hacl.Impl.Curve25519.Field51.fadd"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) | [] | Hacl.EC.Ed25519.felem_add | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Impl.Ed25519.Field51.felem ->
b: Hacl.Impl.Ed25519.Field51.felem ->
out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 33,
"end_line": 76,
"start_col": 2,
"start_line": 75
} |
FStar.HyperStack.ST.Stack | val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_store a out =
Hacl.Bignum25519.store_51 out a | val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out = | true | null | false | Hacl.Bignum25519.store_51 out a | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Bignum25519.store_51",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a)) | [] | Hacl.EC.Ed25519.felem_store | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Impl.Ed25519.Field51.felem -> out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 33,
"end_line": 212,
"start_col": 2,
"start_line": 212
} |
FStar.HyperStack.ST.Stack | val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame() | val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out = | true | null | false | push_frame ();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame () | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Curve25519.Field51.fsqr",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u128",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) | [] | Hacl.EC.Ed25519.felem_sqr | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Impl.Ed25519.Field51.felem -> out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 148,
"start_col": 2,
"start_line": 145
} |
FStar.HyperStack.ST.Stack | val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p))) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul scalar p out =
Hacl.Impl.Ed25519.Ladder.point_mul out scalar p | val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p)))
let point_mul scalar p out = | true | null | false | Hacl.Impl.Ed25519.Ladder.point_mul out scalar p | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.Ladder.point_mul",
"Prims.unit"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p
[@@ Comment "Write `-p` in `out` (point negation).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_negate: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint out p /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == Spec.Ed25519.point_negate (F51.point_eval h0 p))
let point_negate p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_negate (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointNegate.point_negate p out
[@@ Comment "Write `p + q` in `out` (point addition).
The arguments `p`, `q` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p`, `q`, and `out` are either pairwise disjoint or equal"]
val point_add: p:F51.point -> q:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ live h q /\
eq_or_disjoint p q /\
eq_or_disjoint p out /\ eq_or_disjoint q out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out ==
SE.point_add (F51.point_eval h0 p) (F51.point_eval h0 q))
let point_add p q out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_add_lemma
(F51.refl_ext_point (as_seq h0 p))
(F51.refl_ext_point (as_seq h0 q));
Hacl.Impl.Ed25519.PointAdd.point_add out p q
[@@ Comment "Write `p + p` in `out` (point doubling).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are either pairwise disjoint or equal"]
val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p))
let point_double p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p
[@@ Comment "Write `[scalar]p` in `out` (point multiplication or scalar multiplication).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
The argument `scalar` is meant to be 32 bytes in size, i.e., uint8_t[32].
The function first loads a little-endian scalar element from `scalar` and
then computes a point multiplication.
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `scalar`, `p`, and `out` are pairwise disjoint"]
val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p))) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul: scalar:lbuffer uint8 32ul -> p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h scalar /\ live h p /\ live h out /\
disjoint out p /\ disjoint out scalar /\
disjoint p scalar /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
SE.to_aff_point (F51.point_eval h1 out) ==
SE.to_aff_point (SE.point_mul (as_seq h0 scalar) (F51.point_eval h0 p))) | [] | Hacl.EC.Ed25519.point_mul | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
scalar: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
p: Hacl.Impl.Ed25519.Field51.point ->
out: Hacl.Impl.Ed25519.Field51.point
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 49,
"end_line": 351,
"start_col": 2,
"start_line": 351
} |
FStar.HyperStack.ST.Stack | val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame() | val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out = | true | null | false | push_frame ();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame () | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.felem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Curve25519.Field51.fmul",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u128",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) | [] | Hacl.EC.Ed25519.felem_mul | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Impl.Ed25519.Field51.felem ->
b: Hacl.Impl.Ed25519.Field51.felem ->
out: Hacl.Impl.Ed25519.Field51.felem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 125,
"start_col": 2,
"start_line": 122
} |
FStar.HyperStack.ST.Stack | val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p)) | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Ladder",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.EC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_double p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p | val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p))
let point_double p out = | true | null | false | let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_double_lemma (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointDouble.point_double out p | {
"checked_file": "Hacl.EC.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointEqual.fst.checked",
"Hacl.Impl.Ed25519.PointDouble.fst.checked",
"Hacl.Impl.Ed25519.PointDecompress.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.PointCompress.fst.checked",
"Hacl.Impl.Ed25519.PointAdd.fst.checked",
"Hacl.Impl.Ed25519.Ladder.fsti.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.EC.Ed25519.fst"
} | [] | [
"Hacl.Impl.Ed25519.Field51.point",
"Hacl.Impl.Ed25519.PointDouble.point_double",
"Prims.unit",
"Spec.Ed25519.Lemmas.to_aff_point_double_lemma",
"Hacl.Impl.Ed25519.Field51.refl_ext_point",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.EC.Ed25519
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module F51 = Hacl.Impl.Ed25519.Field51
module SE = Spec.Ed25519
module SC = Spec.Curve25519
module ML = Hacl.Impl.Ed25519.Ladder
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@@ CPrologue
"/*******************************************************************************
Verified field arithmetic modulo p = 2^255 - 19.
This is a 64-bit optimized version, where a field element in radix-2^{51} is
represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5].
*******************************************************************************/\n";
Comment "Write the additive identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_zero: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.zero)
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
[@@ Comment "Write the multiplicative identity in `f`.
The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."]
val mk_felem_one: b:F51.felem ->
Stack unit
(requires fun h -> live h b)
(ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\
F51.mul_inv_t h1 b /\
F51.fevalh h1 b == SC.one)
let mk_felem_one b =
Hacl.Bignum25519.make_one b
[@@ Comment "Write `a + b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_add a b out =
Hacl.Impl.Curve25519.Field51.fadd out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a - b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
(disjoint out a \/ out == a) /\
(disjoint out b \/ out == b) /\
(disjoint a b \/ a == b) /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_sub a b out =
Hacl.Impl.Curve25519.Field51.fsub out a b;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Write `a * b mod p` in `out`.
The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a`, `b`, and `out` are either pairwise disjoint or equal"]
val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h b /\ live h out /\
F51.mul_inv_t h a /\
F51.mul_inv_t h b)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b))
let felem_mul a b out =
push_frame();
let tmp = create 10ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fmul out a b tmp;
pop_frame()
[@@ Comment "Write `a * a mod p` in `out`.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are either disjoint or equal"]
val felem_sqr: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a))
let felem_sqr a out =
push_frame();
let tmp = create 5ul (u128 0) in
Hacl.Impl.Curve25519.Field51.fsqr out a tmp;
pop_frame()
[@@ Comment "Write `a ^ (p - 2) mod p` in `out`.
The function computes modular multiplicative inverse if `a` <> zero.
The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_inv: a:F51.felem -> out:F51.felem ->
Stack unit
(requires fun h ->
live h a /\ live h out /\ disjoint a out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out =
Hacl.Bignum25519.inverse out a;
Hacl.Bignum25519.reduce_513 out
[@@ Comment "Load a little-endian field element from memory.
The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32].
The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `b` and `out` are disjoint
NOTE that the function also performs the reduction modulo 2^255."]
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem ->
Stack unit
(requires fun h -> live h b /\ live h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.mul_inv_t h1 out /\
F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out =
Hacl.Bignum25519.load_51 out b
[@@ Comment "Serialize a field element into little-endian memory.
The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5].
The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `a` and `out` are disjoint"]
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h a /\ live h out /\
F51.mul_inv_t h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out =
Hacl.Bignum25519.store_51 out a
[@@ CPrologue
"/*******************************************************************************
Verified group operations for the edwards25519 elliptic curve of the form
−x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2.
This is a 64-bit optimized version, where a group element in extended homogeneous
coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit
integers, i.e., uint64_t[20].
*******************************************************************************/\n";
Comment "Write the point at infinity (additive identity) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_point_at_inf: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
[@@ Comment "Write the base point (generator) in `p`.
The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."]
val mk_base_point: p:F51.point ->
Stack unit
(requires fun h -> live h p)
(ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\
F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\
SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve ();
Hacl.Impl.Ed25519.PointConstants.make_g p
[@@ Comment "Write `-p` in `out` (point negation).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are disjoint"]
val point_negate: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ disjoint out p /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == Spec.Ed25519.point_negate (F51.point_eval h0 p))
let point_negate p out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_negate (F51.refl_ext_point (as_seq h0 p));
Hacl.Impl.Ed25519.PointNegate.point_negate p out
[@@ Comment "Write `p + q` in `out` (point addition).
The arguments `p`, `q` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p`, `q`, and `out` are either pairwise disjoint or equal"]
val point_add: p:F51.point -> q:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\ live h q /\
eq_or_disjoint p q /\
eq_or_disjoint p out /\ eq_or_disjoint q out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out ==
SE.point_add (F51.point_eval h0 p) (F51.point_eval h0 q))
let point_add p q out =
let h0 = ST.get () in
Spec.Ed25519.Lemmas.to_aff_point_add_lemma
(F51.refl_ext_point (as_seq h0 p))
(F51.refl_ext_point (as_seq h0 q));
Hacl.Impl.Ed25519.PointAdd.point_add out p q
[@@ Comment "Write `p + p` in `out` (point doubling).
The argument `p` and the outparam `out` are meant to be 20 limbs in size, i.e., uint64_t[20].
Before calling this function, the caller will need to ensure that the following
precondition is observed.
• `p` and `out` are either pairwise disjoint or equal"]
val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p)) | false | false | Hacl.EC.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_double: p:F51.point -> out:F51.point ->
Stack unit
(requires fun h ->
live h out /\ live h p /\
eq_or_disjoint p out /\
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
F51.point_eval h1 out == SE.point_double (F51.point_eval h0 p)) | [] | Hacl.EC.Ed25519.point_double | {
"file_name": "code/ed25519/Hacl.EC.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Hacl.Impl.Ed25519.Field51.point -> out: Hacl.Impl.Ed25519.Field51.point
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 50,
"end_line": 324,
"start_col": 24,
"start_line": 321
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.